2

Chapter

Fellegi-Holt Systems

Chair: John Kovar, Statistics Canada

William E. Winkler # Thomas F. Petkunas
Joel Bissonnette

William E. Winkler # Lisa R. Draper

Chapter

DISCRETE: A Fellegi-Holt Edit System
for Demographic Data

William E. Winkler and Thomas F. Petkunas,
U. §S. Burean of the Census

Abstract

of the DISCRETE edit system. The system is a prototype whose pur-

pose is to demonstrate the viability of new Operations Research (OR) algo-
rithms for edit generation and error localization. While the OR algorithms are
written 1n a general fashion that could be used in a variety of systems, the i/o, data
structure, and imputation sections of the code are written in a survey-specific fash-
ton. The source code cannot easily be ported to a variety of computer systems and
15 not easy to maintain. The first two sections consist of a description of the basic
edit system and an example showing specific details of the input and output files
used by the software. The final section is a summary.

Thjs document provides background on the workings and an application

«“

DISCRETE: A Fellegi-Holt Edit System
for Demographic Data

William E. Winkler and Thomas F. Petkunas,
U. 8. Bureau of the Census

| Description of the DISCRETE Edit System

The following subsections describe aspects of the DISCRETE edit system.
Purpose, Model, and History

The DISCRETE edit system is designed for general edits of discrete data. The system utilizes the
Fellegi-Holt (FH) model of editing. Source code for DISCRETE was written by the author (Winkler,
1995a) and is based on theory and computational algorithms from Fellegi and Holt (1976) and Winkler
(1995b).

Software and Computer Systems

The software consists of two programs, gened.for and edit.for The software is written in FOR-
TRAN and is not easily portable. With some work. the software runs on TRM-PCs under DOS and
UNIX workstations. The programs run in batch mode and the interface is character-based.

The first program, gened.for, generates the class of implicit edits that are necessary for the error
localization problem. The error localization problem consists of determining the minimum number of
fields to impute so that an edit-failing record will satisfy all edits, It uses as input a file of explicit
edits that have been defined by an analyst. As output, it produces the file of implicit edits that are
logically derived from the explicit edits and also checks the logical consistency of the entire set of
edits. The class of implicit edits that are generated are so-called maximal implicit edits. The class of
originally defined explicit edits plus the class of maximal implicit edits is known to be sufficient for
solving the error localization problem (Garfinkel, Kunnathur, and Liepins, 1986, hereafter, GKL) and
known to be a subset of the class originally defined by Fellegi and Holt. The method of generating the
maximal implicit edits is due to Winkler (1995h) and replaces an earlier method of GKL. The GKL
edit-generation algorithm has a driver algorithm for traversing nodes in a tree and an algorithm for
generating new implicit edits at each node in the tree. The nodes are the locations at which new
implicit edits can be generated. The Winkler algarithm has a different driver algorithm for traversing
the nodes in the trees, an in-between algorithm that determines the subset of edits that are sent to the
implicit-edit-generation algorithm, and an edit-generation algorithm similar to the one of GKL.

The second program, edit.for, performs error localization (i.e., determines the minimal number of
fields to impute for a record failing edits) and then does imputation. The input files consist of the set
of implicit edits produced by gened.for and the data file being edited. The error localization algorithm

m MSCRETE: A FeLLeG-Hour System ror DemograrHic Diata

(Winkler, 1995b) is significantly faster than an error localization due to GKL because it first uses a
greedy algorithm and then, if necessary, uses a cutting plane algorithm. Error-localization by GKL is
via a pure cutting plane argument which is orders of magnitude slower than the greedy algorithm even
with moderate size problems. While greedy algorithms can yield suboptimal solutions with general
problems, greedy algorithms typically yield optimal solutions with edit problems. Cutting-plane argu-
ments are generally known to be the most effective for solving integer programming problems (Nemhauser
and Wolsey, 198E). Another difference between Winkler (1995a) and GKL is that the number of edits
passed to the error localization stage grows at a somewhat slower exponential rate under Winkler (1995b)
than under GKL. The slower exponential growth is due to a more precise characterization of the im-
plicit edits needed for error localization (Winkler, 1995b). As computation in integer programming is
known to grow faster than the product of the exponential of the number of edits and the exponential of
the number of variables associated with the edits, the new error localization procedure should be much
faster in practice. The imputation module of edit.for currently delineates the set of values for the
minimal set of variables needing to be changed so that all edits are satisfied. In applications of the
DISCRETE edit system, the imputation methodology currently consists of analyst-defined if-then-else
rules of substitution. The substitutions for edit-failing data satisfy the edit rules and are very survey
specific. Although general substitution rules within the restraints imposed by the Fellegi-Holt theory
could be developed, they often would not be as acceptable to subject-matter specialists as the survey-
specific rules. The advantage of the general substitution rules is that they would greatly speed the
implementation on new surveys because analysts would not have to spend as much time defining edit
rules and substitution rules.

The outputs from the second program consist of summary statistics, the file of edited (i.e., containing
imputes) data, and a file giving details of each record that was changed. The details consist of the failed edits,
the minimum fields to impute, and other information related to specific data records.

Documentation

The only documentation associated with the DISCRETE edit system is Winkler (1995a). The docu-

mentation is minimal and only describes how to compile and run the software on the example included
with it.

Limitations

As computation grows exponentially as the number of variables and the number of value-states of
variables increase, large systems of edits may be slow. At present, we do not know the the larges size
the system will handle. The system, which has i/o modules based on an earlier system that utilized
algorithms of GKL, does not easily recompile and run. A large number of include files must be modi-
fied and initial values of some data structures that describe the data are hard-coded.

As the software is an early prototype version, insufficient time has been spent on debugging source
code. While the OR portions of the source code run perfectly on a variety of test decks, it may fail in
certain data situations that have yet to be encountered. Because the i/o portions of the code are survey-
specific, they are very difficult to port to new surveys because the size and initial values of several of
the data structures need to be hardcoded in the include files.

41

WINKLER aND PETKUNAS

Strengths

The DISCRETE system deals with completely general edits of discrete data. If the FORTRAN include
files (see above) can be properly changed, then the software is straightforward to apply in all situations.
Checking the logical consistency of the set of edits (via gened.for) does not require test data. Error localiza-
tion (via edit.for) should be far faster than under previously written FH systems for discrete data.

Maintenance of DISCRETE Code

As it is presently written, DISCRETE code is not sufficiently well organized and documented so
that it can be maintained. Hundreds of lines of code associated with i/o and data structures are survey-
specific.

Future Work on DISCRETE

The DISCRETE system will be improved with general ifo modules, more efficient algorithms for
determining the acceptable value-states of the set of error-localized variables, and an indexing method
for tracking the set of imputes for each set of edit failures. The optimization loops of the error-localiza-
tion code may also be improved. The advantage of the indexing method is that it will make the code
more easily useable on large surveys such as censuses because many of the optimization loops associ-
ated with error localization will only be used once. A loop in the future code will produce a string basad
on the set of failing edits, perform a binary tree search on previously computed strings associated with
edit failures, find the index and set of error-localized fields if the index exists, and, if the index does not
exist in the existing trable, perform optimization and add the appropriate errorlocalized fields for the
new index. The main overhead of the indexing method is a sorting algorithm that periodically rebal-
ances the binary tree after a certain number of updates.

|| Example

The example basically shows what the inputs and outputs from runnin g the two programs of the DIS-
CRETE system look like. The first program generates all the implicit edits that are needed for error
localization and checks the logical consistency of the entire edit system. An edit system is inconsistent
when no data records can satisfy all edits. The second program uses the entire set of implicit edits that
are produced by the first program and edits data records. For each edit-failing record, it determines the
minimum number of fields (variable values) to change to make the record consistent.

Implicit Edit Generation

The first program, gened.for, takes a set of explicit edits and generates a set of logically derived
edits. The edits are generated by the procedure of FH and consist of the smallest set needed for error
localization. Two tasks must be performed. The first is to create an input file of explicit edits. The edits
are generally created by subject-matter analysts who are familiar with the survey. An example is given
in Table 1. There are 5 edits involving 6 fields (variables). The kth variables takes values 1, ..., nk,
where the number of values nk must be coded in a parameter file. A record fails the first edit if variable 1
takes values | or 2, variable 4 takes values 1 or 2, and variable 5 takes value 1. Variables 2 and 3 may take any
values in edit 1,

“«o DISCRETE: A FeLLeci-Hout Svstem pos Democrarmic Data

Table 1.--Example of Explicit
Edit Input File

Explicitedit# 1: 3 entering field(s)

YARI 2response(s): 1 2
YAR4 2 response(s): 1 2
VARS 1 response(s): |

Explicit edit # 2: 4 entering field(s)

VARZ2 2 response(s): 3 4
VAR3 1 response(s): 2
VARS I response(s): 2
VARG 2 response(s): 1 2
Explicit edit # 3: 3 entering ficld(s)
VAR3 I responseis): 1
VAR4 2 response(s): 1 3
VARA Jresponse(s): 2 3 4
Explicit edit # 4: 2 entering field(s)
VARZ 2 response(s); 1 2
VaR4 2 response(s): 1 3
Explicitedit # 5: 3 entering field(s)
VAR 2 response(s): 2 3
VAR3 | response(s): 2
VARG | response(s): |

Table 2.--Example of Selected Implicit Edits from

Output File
6 VAR3 VAR4 VARS VARG
1 0 0]
1
T VAR3 VAR4 VARS VARG
1 0 1 0
2]
& VAR4 VARS VARG
2 I 1
9 VAR3 VAR4 VARG
1 0 0
10 VAR2 VAR4 VARS VARG
2 1 1 1
3 2
11 VAR2 VAR3 VARG
i}] 1
1 Zz
3

43

WiINKLER anD PETKUNAS N'

The second task is to change a parameter statement at the beginning of the program and recompile the
program. The statement has the form

PARAMETER (MXEDS=20,MXSIZE=8 NDATPT =8, NEXP=5 NFLDS=6).

MXEDS is the upper bound on the storage for the number of edits. MXSIZE is the maximum number of
values that any variable can assume. NDAIPT is the sum of the number of values that all the variables
assume, NEXP is the number of explicit edits. NFLDS is the number of variables {(Table 2.

The example of this section is a modified version of the example of GKL. The modification consist-
ing of permuting the variables as follows: 1 -> 3,2 -> 4, 3 -> 5, 4 -> 6,5->1,and 6 -> 2. The
DISCRETE software generates all 13 implicit edits whereas the GKL software generate 12 of the 13
implicit edits. With an example using actual survey data and 24 explicit edits, the DISCRETE software
generates all 7 implicit edits whereas the GKL software generates 6 of 7. The reason that the GKL
software does not generate all implicit is due to the manner in which the tree of nodes is traversed. The
GKL software traverses the tree of nodes according to their theory.

Error Localization

The main edit program, edit.for, takes two inputs. The first is the set of implicit edits produced by
gened.for. The second input is the file being edited. A FORTRAN FORMAT statement that describes
the locations of the input variables in the second file must be modified. A large parameter statement that
controls the amount of storage needed by the program is not described because of its length. Eventually,
the parameter statement will have to be described in comments.

Twao output files are produced. The first consists of summary statistics. The second (see Tables 3
and 4) contains details of the edits, blank fields, and possible imputations for each edit-failing record.
The edit code presently only delineates acceptable values for the fields designated during error localiza-
tion. The actual imputed values could be determined via statistical modelling by analysts. The imputa-
tion could be written into a subroutine that would be inserted at the end of error localization.

In a typical application, the revised values (Tables 3 and 4) would not be left blank but would be imputed
according to rules developed by analysts familiar with the specific set of survey data,

” Application

A prototype application of the DISCRETE edit was developed for the New York City Housing and
Vacancy Survey (NYC-HVS). This prototype was used to edit ten of the primary fields on the question-
naire. Data collected via the NYC-HVS are used to determine rent control regulations for New York
City. The variables that we used in edits were: TENURE, PUBLIC HOUSING?, TYPE OF CON-
STRUCTION (TOC), TOC CODE, YEAR MOVED, YEAR BUILT, YEAR ACQUIRED, CO-0OP OR
CONDO, RENT AMOUNT, and OWNER OCCUPIED. With previous edits, these fields were edited
sequentially, starting with the TENURE field. The TENURE field reports whether the occupant of the
dwelling is

O the owner,
O pays rent, or
O lives there rent free.

«<o DISCRETE: A Fruiesi-Hour Systes ror Devocaardic Dara

Table 3.--First Example of Edit-Failing Record in Main Output from EDIT.FOR

Record #

Implicit edit # 1 failed:

1. VARI
4. VAR4
5. WARS

Implicit edit # 5 failed:

1. VAR
3.VAR3
6. VARG

Implicit edit # 6 failed:

3. VAR3
4. VAR4
5 WARS
6. VARG

Deleted fields:

The weight of the solution is 2.1100

imputation candidates for field 6. VARG

3.3
4.4

imputation candidates for field 5. VARS

2.2

Field names

ID: 1001

Failed
Revised Weights Edits

= e = b o D

el SO
— 3 b2

WINKLER AND PETKUNAS

«o

Table 4.--Second Example of Edit-Failing Record in Main Output from EDIT.FOR

Record# 2(2)

Implicit edit # 1 failed:
1. VARI £
4. VAR4 A
5.VARS £l

Implicit edit # 4 failed:
2. VAR2 e |
4. VAR4 o

Implicit edit # 5 failed:
1. VAR 02
3. VAR3 i
6. VARS 2|

Implicit edit # 6 failed:
3. VAR3 :
4. VAR4 i
5. VARS : 1
6. VARG]

Implicit edit # 7 failed:
2. VARZ o |
3. VAR3 A2
5. VARS |
6. VARG w4

Implicit edit # 16 failed:
1. VARI1 2
2. VAR2]
5. VARS B

Deleted fields.

6. VARG

The weight of the solution is 3.1800

imputation candidates for field 5. VARS
2.2

imputation candidates for field 6. VARG
2.2 «

33
4.4

imputation candidates for field 4. VAR4
202

Reported

[D: 1002

4. VAR4

Revised

=

&

Bl
T TR T ol
Y

2.2

2.2
-1.
=1.
-1.

Weights
1100
1.090
1.080
1.070
1.060
1.050

Failed
Edits

46

«o DISCRETE: A FELLEG-HolT System ror DEMOGRAPHIC DaTa

A sequential edit, implies an edit based on if-then-else rules, The advantage of sequential edits is that
they are often easily implemented. A principal disadvantage is that they are not easily checked for
logical consistency. Another disadvantage is that there has to be a initial field from which the remain-
ing fields will be edited. The TENURE field was the initial field for the Annual Housing Survey
(AHS). The initial field is never edited in the sequential edit application but can be using a Fellegi-
Holt model.

The prototype edit considers all fields simultaneously. The TENURE field was edited in the same
manner ds the other nine lelds. Tt would be a correct assumption that most respondents are aware of
their living arrangement, making TENURE a very reliably reported field. Therefore, TENURE did
hold a higher weight. However, there are other circumstances that would cause it to be incorrect. It
still needed to be edited.

The explicit edits needed for the DISCRETE prototype were developed from the edits of the prior
set of sequential edits. Only the 24 edits that exclusively included the ten fields were considered.
Because of the existing sequential edits, the explicit edits needed for the prototype DISCRETE edit
were developed with very minimal support from the subject-matter specialists. These 24 edits were
run through the edit generator, gened.for, and 8 implicit edits were computed. The edit generator
reduced the number of explicit edits to 23, because it determined that one of the explicit edits was
redundant. There was now a total of 31 edits for the ten data items.

The DISCRETE prototype produced edited data that were only slightly cleaner than the sequential
edit because the data for the AHS were quite clean. The AHS is a long-term survey in which responses
are obtained by experienced enumerators rather than via mail responses. The results of the prototype
edit were similar to those of the previous sequential edit, except for one striking difference. Using the
prototype edit, the TENURE field was in conflict with other fields more often than the subject-matter
staff had anticipated.

A second prototype was developed for the Survey of Work Experience of Young Women. This
prototype showed the power of the DISCRETE system because it allowed the editing of a large number
of data items involving a very complicated skip pattern. No edits had previously been developed for
these items because of the complicated nature of the edit situation. The core data items consisted of
WORKING STATUS, HOURS/WEEK, HOURS/WEEK CHECK-ITEM, OFFTIME, OVERTIME, and
CURRENT LABOR FORCE GROUP. Overall, this prototype was developed for 24 data items. Using
previous edit systems, these data items were not edited because of their complex relationships and skip
patterns. However, these skip patterns were incorporated into the prototype as explicit edits. This
turned out to be a surprising advantage of the simultaneous edit. Working with subject-matter staff, 42
explicit edits were developed for the 24 data items. The edit generator computed an additional 40
implicit edits for a total ot 52 edits. Because of the use of the method of data collection used for this
survey, the data were very clean. However, the results of this prototype were not as important as was
the fact that the prototype was able to edit relationships that were previously considered too complex.

|| Summary

The DISCRETE system is a Fellegi-Holt edit system for general edits of discrete data. It is a
prototype systemn that is written in FORTRAN. As currently written, it is not maintainable and not

47

WINKLER AND PETEUNAS

easily portable. Due to new theoretical/algorithmic characterizations (Winkler, 1995b), the system
should be more generally applicable than any currently existing system. Although no speed tests have
been done, the software should be approximately as fast as other currently existing edit systems.

" References

Fellegi, I. P. and Holt, D. (1976). A Systematic Approach to Automatic Edit and Imputation, Journal of
the American Statistical Association, 71, 17-35,

Garfinkel, R. S., Kunnathur, A. 8. and Liepins, G. E. (1986). Optimal Imputation of Erroneous Data:
Categorical Data, General Edits, Operations Research, 34, 744-751.

Winkler, W. E. (1995a). DISCRETE Edit System, computer system and unpublished documentation, Statis-
tical Research Division, U. S. Bureau of the Census, Washin gton, D.C., USA.

Winkler, W. E. (1995b). Editing Discrete Data, Proceedings of the Section on Survey Research Methods,
American Statistical Association, to appear. L]

48

Chapter

Generalized Edit and Imputation System
for Numeric Data

Joel Bissonnette, Statistics Canada

Abstract

needs of the professional statistician, and can be used to satisfy the edit and

imputation requirements of primarily quantitative surveys. For the editing
phase, it checks the consistency of edit rules and produces many summary tables
based on survey data, which help 10 determine the edit rules to apply: it also uses
advanced linear programming techniques to flag the fields to be imputed, according
to the edit rules. Outlier detection is also available.

S tatistics Canada's Generalized Edit and Imputation System (GEIS) serves the

For the imputation phase, a choice of three methods is offered. Deterministic
imputation identifies fields for which there is only one possible value that allows the
record to pass the original edits. Donor imputation replaces the values in error by
imputing those from the valid nearest-neighbour record that is most similar to the
record in error. Imputation estimators provide imputation for individual fields us-
ing a variety of estimators: ratio, current and historical means, and historical values
with or without trend adjustments. =

48

2

Chapter

The New SPEER Edit System

William E. Winkler and Lisa R. Draper,
U.S. Bureau of the Census

Abstract

his paper describes the methodology, the workings, and an applica-
| tion of the SPEER (Structured Programs for Economic Editing and
Referrals) edit system.
The original SPEER, developed by Brian Greenberg, is a Fellegi-
Holt system for editing ratios of cconomic data and has been used on
some of the largest U.S. economic surveys. The advantages of Fellegi-
Holt systems are

O they check the logical consistency of an edit system prior to the
receipt of data,

03 the main logic resides in reusable mathematical algorithms with
control by easily maintained input tables, and

3 with one pass against an edit-failing record, the minimal number
of fields are changed to values such that the entire record satis-
fies all edits.

The current SPEER system consists of entirely new FORTRAN source
code and computational algorithms, is exceedingly fast, and is portable
across all known computer systems. Merely by changing a parameter
file consisting of input and output filenames and input FORTRAN for-
mat statements, SPEER can be run against entirely different surveys.

80

<«

The New SPEER Edit System

William E. Winkler and Lisa R. Draper
U. S. Bureau of the Census

| Description of the SPEER Edit System
The following subsections describe aspects of the SPEER edit system.
Purpose, Model, and History

The SPEER edit system is designed for ratio edits of continuous economic data. The system utilizes
the Fellegi-Holt model of editing. The first version of SPEER was written by Brian Greenberg (Greenberg
and Surdi, 1984; Greenberg and Petkunas, 1990) and the current version was written by William Winkler
{1995). The computational algorithms, much of the imputation methodology, and the source code in the
current version is new.

Software and Computer Systems

The software consists of two programs, gb3.for and spr3.for. The software is written in portable
FORTRAN which should recompile on a variety of computers. It currently runs on IBM PCs under DOS,
Windows, or 05/2, DEC VAXes under VMS, DEC Alpha under Windows NT, UNISYS, and a variety of
UNIX workstations. The programs run in batch mode and the interface is character-based.

The first program, gh3.for, generates the entire set of edit bounds. The main input is a file containing
at least three lines. The first line is the name of the input file of explicit edits, the second is the name of
the output file of implicit edits, and the third is the name of the output summary file. If a fourth line is
present, it consists of the FORTRAN FORMAT for the input file of explicit edits. If a file of variable
names, BNAMES DAT, is present, then the variable names in it are used; otherwise, default names of the
form VRnnn are used where nnn can range as high as 999. After the main input is read, the inputs and
outputs are the usual ones associated with edit-generation programs. The most important input is the file
of explicit edits that have been defined by an analyst. This input must be in a fixed format that is
specified in the program documentation. As output, gh3.for produces the file of implicit edits that are
logically derived from the explicit edits and also checks the logical consistency of the entire set of edits.
With appropriate test data, an auxilliary program D-MASO (also in FORTRAN) can help an analyst
determine the lower and upper bounds on the ratios that are in the set of explicit edits. The appropriate
test data might consist of prior year's edited data or (a subset of) the current year's data.

The second program, spr3.for. performs error localization (i.e., determines the minimal numhber of
fields to impute for a record failing edits) and then does imputation. The main input is a control file with
at least five lines. The five lines are (1) the name of the input file being edited, (2) the name of the file
containing implicit edits, (3) the name of the output, (4) the FORTRAN format of the quantitative data in
the file being edited, and (5) the number of variables (fields) being edited. Five additional lines are also

51

WiINKLER anD DRAPER «

read in. They are (6) the name of the file containing implicit edits, (7) the name of the file containing
variable names, (8) the name of the file of beta coefficients, (9) the file of weights, and (10) optional
FORTRAN FORMAT for file of explicit edits. The first six lines are mandatory. If the last five lines or
the associated files do not exist, then defaults are used. The weights affect which fields are imputed.
The variables with lower weights are imputed before those with higher weights. After the control file
is read, the input files consist of the set of implicit edits produced by gb3.for, the data file being edited,
and a st of “beta” values associated with ratios. The beta values are determined a priori using an
appropriate test deck and consist of regression coefficients under the model ¥ = B x. There can be as
many coefficients as there are implicit edits. The imputation methodology consists of first determining
an imputation range for a variable so that edits are satisfied. Within the range, the first choice of
imputation uses a reported variable that is not being imputed and the corresponding "beta” coefficient.
After the first choice, a hierarchy of defaults based on the imputation range is selected. Regression
imputation 15 only used when the appropriate beta coefficient is available and the variable being im-
puted is associated with a variable that is reported. By the Fellegi-Holt theory, any values of fields
chosen in the imputation range necessarily yield complete multivariate records that satisfy all edits.

The outputs from the second program consist of summary statistics, the file of edited (i.e., contain-
ing imputes) data, and a file giving details of each record that was changed. The details consists of the
failed edits, the minimum fields to impute, and the imputation methodology that was utilized for each
field.

Documentation

Three documents describe the overall SPEER methodology and capabilities. They are Greenberg
and Surdi (1994), Greenberg and Petkunas (1990), and Greenberg, Draper, and Petkunas (1990). The
documents do not describe details of the algorithms or how to create and run the system for specific data
bases. New computational algorithms (Winkler, 1995) eliminate much of the redundant computation of
earlier versions of the SPEER system. Major restructuring of the computer code makes the system
much easier to apply in new situations because only one FORTRAN FORMAT statement describing
locations of input fields in the file being edited must be changed. Winkler (1994) describes how 1o
develop and run a SPEER system.

Documentation related to the details of the software and how to run the software has been created
for the first time (Winkler, 1995). The main documentation consists of instructions on how to run the
example that is included on the disk with the software. Each program has internal documentation (in
comments at the end) describing the nature and structure of the inputs and the outputs. The internal
documentation should be sufficient to allow all but the most naive users to apply the software in a
variety of situations. The new source code is more easily understood because of its modular structure.
In most applications it is unlikely that source code (with the possible exception of two parameters that
determine that amount of allocated storage) will need modification.

Limitations

SPEER only deals with ratio edits, For a new user, the file of explicit edits may not be very easy to
develop. A statistical package should be used to determine those variables that are linearly related and
the associated regression ("beta”) coefficients. The regression model is y = B x. Those "beta" coeffi-
cients that are placed in an external file are used for the default imputations. If "beta” coefficients are
not available for two variables that are associated via a ratio edit, then the default imputation is based on

52

THe New SPEER Enir SysTEM
«» ===

allowable range that satisfies the edits. The best imputations require survey-specific modifications in
which the imputation module is replaced by special code.

The main output from spr3.for is a large print file that contains details of the failed edits, the error
localization, and the imputations that were made. The program spr3.for does not produce an output file
that has the same FORMAT as the main input file being edited and that has appropriate guantitative
data (missing or edit-deletes) replaced by imputations. This is not done due to the difficulty in writing
necessary generalized i/o routines, documenting the routines, and getting users to understand how to
carry and cutput additional information from the input file that does not pass through SPEER edils,
The program spr3.for does produce an output file EDITOUT that contains all the quantitative data
fields that pass through the edits and that contains the newly imputed values. It is output in a fixed
format and could be merged in with the original data that passes through the edits because it corre-
sponds on a line-by-line basis.

The program spr3.for does not impute values for variables in connected sers in which all values are
blank. A set of variables is connected if they are connected via ratio edits. Connected sets form a
natural partition of the entire set of variables being edited. If all variables in a connected set are
missing, then imputation cannot be based on ratios and must be determined via default procedures that
might possibly be based on data from a prior time period.

Strengths

The software is very easy to apply because only one format statement describing the locations and
sizes of the quantitative being edited needs to be changed (Winkler, 1995). In situations where storage
does not exceed the default storage of the program, the FORTRAN format statement can be read in
from an external file. Thus, the software does not need to be recompiled when it is used on different
data files. While the software will handle a moderately large number of variables (200+), the present
computational algorithms, with suitable modification, could allow it to handle more than 2,000 vari-
ables. The software is fast. For instance, to generate 272 pairs of implicit edit bounds in each of 546
industrial categories for the Census of Manufactures requires only 35 seconds on a Sparcstation 20.
Because ratio edits are basically simple, algorithms and associated source code are quite straightfor
ward to follow or modify. For most situations, source code should not need any maintenance or modi-
fication. All core edit algorithms are in debugged code that is reusable. Checking the logical consis-
tency of the set of edits (via gb3.for) does not require test data. Default imputations are guite straight-
forward to set up. A new software program cmpbeta3.for will compute the “beta” coefficients for all
pairs of variables (fields) that are associated via the ratio edits that are explicitly defined. The program
cmpbeta3 is approximately 30 times as fast as commercial software because it contains no diagnostics
or special features.

II Developing and Running A SPEER Edit System

This section provides an overview of how to create and run the SPEER edit system. It describes
some of the non-SPEER components that must be used in addition to the SPEER components. It also
gives the type of personnel that are useful as an edit team developing a system.

53

WinkLER AND Drarer m

Developing an Edit System Using SPEER
There are three facets to the development:

O analysis of the data using statistical and other packages,

O development of a pre-edit system, and

O development of a SPEER system. If data from a prior time period are not available, then data
obtained during the collection can be used.

Stage 1 proceeds with a variety of steps. The analyst would begin by running various tabulations on
the data to determine means, variances, ranges, and other values. Next the analyst would run a regres-
sion package to determine which continuous variables are linearly related and to get a variety of diag-
nostics. The pairs of variables that are linearly related and the associated "beta" coefficients from the
regression need to be stored. When data from a prior time period is available, then analysts often have
much of this information already.

Stage 2 consists of preliminary edits that often do not require sophisticated rules. These can involve
checking whether a State code takes a value within a set of correct values, a variable takes a value in a
specified range, and a group of variables adds to a desired sum,

Stage 3 begins with determining the edit bounds for ratios, To facilitate the process, we have a
software tool, D-MASO, developed by David Paletz, that delineates potential bounds and a variety of
diagnostics. The analysts can then quickly determine bounds, SPEER software consists of two compo-
nents. The first, gb3.for, generates the logically implied edit bounds and checks the consistency of the
entire edit system. It does not require test data. The second component consists of the SPEER edit,
spri.for. It determines edit failures, the minimum number of fields (variables) that must be changed so
that the record satisfics edits, and then does imputation. The first program only needs the set of explicit
edit bounds as input. The second program needs the set of implicit edit bounds from the first program,
the set of "beta” coefficients from the regressions, and the data file that is being edited. A new program
empbetal.for will compute the "beta” cocfficients for all pairs of variables that are connected via ratio
edits. The program requires the file of explicit ratio edits, the main file being edited, the FORTRAN
format of the quantitative data in the file being edited, and the number of variables (fields) being edited.
It computes beta coefficients for all pairs of variables that can be associated via implicit ratio edits.

Maintenance of SPEER Code

The code may not require any maintenance. If larger data structures are needed, then the two
parameters at the beginning of the code should be changed and the program recompiled. If the imputa-
tion medule is changed or a new one is developed, then updating merely involves substituting the new
subroutine for the old.

The code is very modular and contains much internal documentation. In particular, comments at the
end of the code give details related to running the programs.

Other Maintenance of a SPEER System

The analyst must document how the "beta” coefficients from the regressions are obtained. The
program cmpbeta3.for can quickly produce the set of "beta” coefficients.

&« Tue New SPEER Epr SvsTEm

Edit Team

An edit team is most useful when it consists of at least one individual in each of the following
categories: methodologist, analyst, and programmer. Development of an edit system is primarily a
programming project once subject-matter and analytic needs are identified. The methodologist could be
an economist, demographer, or statistician who is familiar with the Fellegi-Haolt theary and ean facilitate
the programming of the system. The methodologist can provide an important focal point if the method-
ologist can make sure that programmers are given knowledgable information about system require-
ments and understands details of programming such as how long it takes programmers ta develop new
difficult skills. The analyst is a subject-matter specialist who is familiar with the industries for which
data are being edited. Often analysts and programmers have worked together successfully on other
projects. Teams often start slowly because of the time needed to develop common terminology and
communication skills. Once team members are working closely together, however, final products are
often better because individuals are stimulated by detailed knowledge provided by other team members.

|| Example

The example basically shows what the inputs and outputs from running the two programs of the
SPEER system look like. The first program generates all the implied edits that are needed for error
localization and checks the logical consistency of the entire edit system. An edit system is inconsistent
when no data records can satisfy all edits. The second program uses the entire set of edits that are
produced by the first program and edits data records. For each edit-failing record, it determines the
minimum number of fields (variable values) to change to make the record consistent.

Implicit Edit Generation

The first program, gh3.for, takes a set of explicit edits and generates a set of logically derived edits.
The edits consist of the lower and upper bounds on the ratios of the pairs of variables. Two tasks must
be performed. The first is to create an input file of explicit ratio bounds. The bounds are generally
created by subject-matter analysts who are familiar with the survey. An example is given in Table 1.
The eight fields of the input file are: form number, edit-within-form-number, variable number of nu-
merator, variable number of denominator, lower bound on ratio, upper bound on ratio, an intermediate
value between the lower and upper bounds, and the four-character names of the variables. The form
number describes the industry to which the edit refers. With U.S. Bureau of the Census surveys, the
same form may be sent to all companies over a broad range of industrial classification categories. Sepa-
rate ratio bounds need to be developed for each industrial classification.

Table 1.--Example of Explicit Ratio Bound Input File

11 2 0212400 LO711125 0369900 EMPI/AFPRI

2 2 3 15369120 6.8853623 3.2590401 APRZ/QPR3
1o 3 3 2 1670480 5273000 068400 QPR3I/APR2

4 4 2 0202880 2717625 0929800 FBR4/APR3

WINKLER AND DRAPER “

The second field refers to the edit number. It is primarily for the benefit of the analysts and is not
used by gb3.for. The next two fields are the variable numbers of the fields in the ratio and the following
two are the lower and upper bounds created by the analysts. The final two fields are not used by gh3.for
but can be used by the analyst. The next-to-last field is possibly an average or median value that the
analyst enters in the input file. The last field is a character representation that helps the analyst remem-
ber the variables. For instance, QPR3 might refer to "quarterly payroll” and APR? might refer to "an-
nual payroll."

The second task is only needed if default storage allocations are not sufficient. The task requires
changing a parameter statement at the beginning of the program and recompiling the program. The
statement has the form

PARAMETER (BFLD=45).

BFLD refers to the upper bound on the number of variables (here 45) being ratio edited. The number of
variables being edited is assumed to be the same in every industry if more than one industry is edited.
For the example, the output file primarily contains the ratio bounds (implicit edits) for the six pairs of
the four variables.

Error Localization

The main edit program, spr3.for, takes three inputs. The first is the set of implicit edit ratios pro-
duced by gb3.for. The second is a set of "beta” coefficients that are created by a regression package that
the analyst has used. The third input is the file being edited. A FORTRAN FORMAT statement that
describes the locations of the input variables in the third file must be modified and placed in an external
file. A parameter statement at the beginning of the program

PARAMETER(BFLD=45,BCAT=3,NCENV L=BFLD,NFLAGS=%N_FLG=100,
+ NEDIT=BFLD*(BFL.D-1)/2 MATSIZ=BFLD)

must also be changed. BFLD and BCAT are upper bounds on the amount of storage that is allocated.
NFLAGS and N_FLG are upper bounds on storage for errors for a single record. In many sitations, the
default values of these parameters will be sufficient. If they are not, then parameter values will need to
be increased and the program must be recompiled. Comments at the end of the source code give many
details of setting up and running the program.

Two output files are produced. The first consists of summary statistics. The second (see Table 2)
contains details of the edits, blank fields, and imputations for each edit-failing record. The output shows
what edit has failed, the minimum number of fields that must be imputed, the imputation method that
was adopted, and the revised and reported values of the record.

The program spr3.for is set up so that a more sophisticated imputation can easily be substituted for
the existing one. Basically, analysts would have to do more modelling and determine a hierarchy of
imputations that would be coded in a subroutinc. The imputation subroutine would be added to the code
and the eight lines associated with the existing (default) imputation would be replaced by a call to the
subroutine. Documentation in the code clearly shows where the substitution should be made and what
data must be passed to and from the imputation subroutine.

“«o Tue New SPEER Enit SvsTem

Table 2.--Example of Edit-Failing Record in Main Output fom SPR3.FOR

Record # 1
Failed edits:
1.8964540 <« APR? / OPR3 < 50863010

Deleted fields: 3. QPR3
Imputation range for QFR3 : Lo = 3.3410 Up = 10.5460
QPR3 imputed using QPR3 / EMPI1 ratio

Fields Revised Reported Lower Upper
EMPFI 1.000 1.000 425 1.422
APR2 20,000 20.000 14.062 34207
QPR3 5.714 13.000 3.341 10.546
FER4 3,000 3.000 A06 5435
Record# 5
Fuiled edits:

0402807 « EMPI1 / QPR3 < A257010
1.8964540 = APR2 / QPR3 < 59863030

Deleted fields: 3. QPR3
Imputation range for QPR3 : Lo= 6.6819 Up= 21.0920
QPR3 imputed using QPR3 / EMPI ratio

Fields Revised Reported Lower Upper
EMPI 2,000 2.000 850 --Z-.-B-‘ﬁ
APR2 40.000 40.000 28.124 68415

|| Application

SPEER is currently being used in two large interactive applications. These applications are the
Annual Survey of Manufactures and the Census of Manufactures and Mineral Industries. The applied
system, named LRPIES (Late Receipts Processing and Interactive Edit System), is used primarily for
hasic data entry and editing, editing of late receipts, and processing establishment adds. The current
version has features that facilitate analysts' review and correction of data records. Analysts in Washing-
ton can now enter and correct late receipts that arrive after the central data processing center in
leffersonville, Indiana has shut down. Previously, late data were entered but generally left unedited.
Analysts can also perform additonal review of the non-late data that were previously edited at the
Jeffersonville location.

The SPEER application (LRPIES) involves the largest U.S. surveys of industry and manufacturing,
As much analyst review of data is needed, custom software modifications that provide assistance and
review capability have been added. The modifications are specific to Digital VAXes and the large

a7

WinkLER AND DRaAPER “

screen display capabilities of the types of VAX terminals in use. Records that have failed edits and that
require imputation to make them consistent with the set of edits can be retrieved and processed interac-
tively. For each edit-failing record, a number of values are displayed that facilitate the analysts' review
and correction. The values are current values, a prior time period's corresponding values if available,
suggested impute values, and ranges in which values can be imputed that are consistent with the set of
edits. Analysts -- possibly after a call-back -- have the capability of entering a flag that canses an edit-
failing value to be accepted. The custom code in LRPIES associated with the interactive edits is the
majority of the code. The main SPEER subroutines merely need to be called and do not need to be
modified.

The LRPIES application needs edit parameters and information for 546 SIC (Standard Industrial
Classification) codes. The main edit parameters are the lower and upper bounds associated with the
ratios being edited. Bounds from a prior year are often used as the starting point in producing the bounds
for the current year's edits. Edit bounds and information can vary substantially across SIC codes. The
specific parameters and information are the implicit edits for the current year and the prior yeag the
industry average value, and the beta coefficients obtained from regressing one of the variables (fields) in
a ratio against the other variable. While the basic SPEER imputation merely uses a regression imputa-
tion, the L.RPIES application uses a hierarchy of imputations based on the existence of prior data. The
exact types of imputations and the hierarchy are determined by analysts familiar with the data.

|| Summary

The SPEER system is a Fellegi-Holt edit system for ratios of linearly related data. It is written in
pertable FORTRAN, easily applied, and very fast. Applications of SPEER include some of the largest
U. S. economic surveys.

[I References

Greenberg, B. G.; Draper, Lisa; and Petkunas, Thomas (1990). "On-Line Capabilities of SPEER," pre-
sented at the Statistics Canada Symposium.

Greenberg, B. G. and Surdi, Rita (1984). "A Flexible and Interactive Edit and Imputation System for
Ratio Edits,” SRD report RR-84/18, U.S. Bureau of the Census, Washington, D.C., USA.

Greenberg, B. G. and Petkunas, Thomas (1990). "Overview of the SPEER System," SRD report RR-90/
13, U.5. Bureau of the Census, Washington, D.C., USA.

Winkler, W. E. (1994). "How to Develop and Run a SPEER Edit System," unpublished document, Sta-
tistical Research Division, U.S. Bureau of the Census, Washington, D.C., USA.

Winkler, W. E. (1995). "SPEER Edit System," computer system and unpublished documentation, Statistical
Research Division, U.S. Bureau of the Census, Washington, D.C., USA. =

