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Abstract. We propose a detailed model of evolution of exon-intron
structure of eukaryotic genes that takes into account gene-specific in-
tron gain and loss rates, branch-specific gain and loss coefficients, invari-
ant sites incapable of intron gain, and rate variability of both gain and
loss which is gamma-distributed across sites. We develop an expectation-
maximization algorithm to estimate the parameters of this model, and
study its performance using simulated data.

1 Introduction

Spliceosomal introns are one of the most prominent idiosyncrasies of eukaryotic
genomes. They are scattered all over the eukaryota superkingdom, including,
notably, species that are considered basal eukaryotes, such as Giardia lamblia [1].
This suggests that evolution of introns is intimately entangled with eukaryotic
evolution; thus, the study of evolution of exon-intron structure of eukaryotic
genes, apart from being interesting in its own right, might shed some light on the
still enigmatic rise of eukaryotes. For example, one of the notorious, long-lasting
unresolved issues in evolution of eukaryotic genomes is the intron-early versus
intron-late debate. Proponents of the intron-early hypothesis posit that introns
were prevalent at the earliest stages of cellular evolution and played a crucial
role in the formation of complex genes via the mechanism of exon shuffling [2].
These introns were inherited by early eukaryotes but have been eliminated from
prokaryotic genomes as a result of selective pressure for genome streamlining. By
contrast, proponents of the intron-late hypothesis hold the view that introns had
emerged, de novo, in early eukaryotes, and subsequent evolution of eukaryotes
involved extensive insertion of new introns (see, e.g., [3M4]).

Various anecdotal studies have demonstrated certain features of intron evo-
lution. But it was not until the accumulation of genomic information in the
recent years that large-scale analyses became feasible. Such analyses yielded at
least three different models of intron evolution. One model assumes parsimo-
nious evolution [5]; another assumes a simple gene-specific gain/loss model and
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analyzes it using Bayesian learning [6]; and yet another one assumes a sim-
ple branch-specific gain/loss model on three-species phylogenetic topology and
analyzes it using direct maximum likelihood [7]. It seems that none of these
models is sufficiently general, and each neglects different aspects of this complex
evolutionary process. This is reflected in the major contradictions between the
predictions laid out by the three models. For example, the gene-specific model
[6] predicts an intron-poor eukaryotic ancestor and a dominating intron gain
process; the branch-specific model [7] predicts an intron-rich eukaryotic ancestor
and a dominating loss process; while the parsimonious model [5] is somewhat in
between, predicting intermediate densities of introns in early eukaryotes, and a
gain-dominated kaleidoscope of gain and loss events.

Here, we introduce a model of evolution of exon-intron structure, which is
considerably more realistic than previously proposed models. The model ac-
counts for gene-specific intron gain/loss mechanisms, branch-specific gain/loss
mechanisms, invariant sites (a fraction of sites that are incapable of intron gain),
and rate distribution across sites of both intron-gain and intron-loss. Using data
from extant species, we follow the popular approach of estimating the model pa-
rameters by way of maximum likelihood. Direct maximization of the likelihood
is, however, intractable in this case due to a large number of hidden random
variables in the model. These are exactly the circumstances under which the
expectation-maximization (EM) algorithm for maximizing the likelihood might
prove itself useful. None of the software packages that we are aware of, either
using direct maximization or EM, can deal with our proposed model. Hence,
we devised an EM algorithm tailored to our particular model. As this model
is rather detailed, a variety of biologically-reasonable models can be derived as
special cases. For this reason, we anticipate a broad range of applicability to
our algorithm, beyond its original use. In the following we describe our model of
exon-intron structure evolution and an EM algorithm for learning its parameters.

2 The Evolutionary Model

Suppose that we have multiple alignments of G different genes from S eukaryotic
species, and let our observed data be the projection, upon the above alignments,
of a presence-absence intron map. That is, at every site in each species we can
observe either zero (absence of an intron), one (presence of an intron), or x
(missing value, indicating lack of knowledge about intron’s presence or absence).
Let us define a pattern as any column in an alignment, and let 2 < 3% be the
total number of unique observed patterns, indexed as wq,...,wp. We shall use
ngp to denote the number of patterns w, that are observed in gene g.

Let the rooted phylogeny of the above S species be given by an N-node
binary tree, where S = (N 4+ 1)/2. Let qo,...,qn—1 be the nodes of this tree,
with the convention that g is the root node. We use the notations g%, ¢ and
q" to describe the left-descendant, right-descendant and parent, respectively, of
node ¢ (left and right are set arbitrarily). Also, let £(g) stand for the set of
terminal nodes (leaves) that are descendants of g. We index the branches of the
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tree by the node into which they lead, and use A, for the length of the branch (in
time units) leading into node g. Hereinafter, we assume that the tree topology,
as well as the branch lengths A;,..., Ay_1, are known.

Assume that the root node has a prior probability m; of being at state @
(i = 0,1), and that the transition matrix for gene g along branch t, AY;(¢;) =

P(q; = jlqgF = 1), is described by

_ — e~ NgA: (1 — e~ Mg A
A9 (qs) = <1 B ftl(i ¢t)e—egA)t (gl(i ¢t)e—9942> ) (1)

where 7, and 6, are gene-specific gain and loss rates, respectively, and & and ¢,
are branch-specific gain and loss coefficients, respectively.

The common practice in evolutionary studies is to incorporate rate distribu-
tion across sites by associating each site with a rate coefficient, r, which scales the
branch lengths of the corresponding phylogenetic tree, A; «— r - A;. This rate
coefficient is drawn from a probability distribution with non-negative domain
and unit mean, typically the unit-mean gamma distribution. Such an approach
is compatible with the notion that each site has a characteristic evolutionary
rate. This, however, should be modified for intron evolution, where the gain
and loss processes do not seem to be correlated. That is, sites that are fast to
gain introns are not necessarily fast to lose them, and vice versa. Therefore, we
model rate variation using two independent rate coefficients, 7 and r?, such
that n, < r7-n, and 0, < r? - §,. These rates are independently drawn from
the two distributions

' ~wvd(n) + (1 —v)(n; \) (2)
0~ T(0;\).

Here, I'(x;\) is the unit-mean gamma distribution of variable x with shape
parameter A, §(z) is the Dirac delta-function, and v is the fraction of sites
that are invariant to gain (i.e., sites that are incapable of gaining introns). Two
comments are in order with respect to these rate distributions. First, a site
can be invariant only with respect to gain, in accord with the proto-splice site
hypothesis that presumes preferential gain of introns at distinct sites [§]. In
contrast, once an intron is gained, it can always be lost. Second, we assumed the
same shape parameter for the gamma distributions of both gain and loss. This
is done solely to simplify the already complex model. At a later stage, we may
consider extending the model to include different shape parameters.

3 The EM Algorithm

Phylogenetic trees can be interpreted as Bayesian networks that depict an under-
lying evolutionary probabilistic model. Accordingly, the terminal nodes form the
observed random variables of the model, and the internal nodes form the hidden
random variables. Under this view, estimating the model parameters using EM
is natural. Indeed, different EM algorithms have been applied to phylogenetic
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trees with various purposes [9-11]. The algorithm that resembles the one de-
scribed here most closely was developed by Siepel & Haussler [12] and used for
branch length optimization and parameter estimation of time-continuous Marko-
vian processes. However, our model does not fit into any of the existing schemes
as it includes several unique properties, such as the branch-specific coefficients,
the gain-invariant sites, and the different treatment of rate variability across
sites. In the rest of this section, we develop the algorithm in the context of the
proposed model; we attempt to do so using notations that are as general as
possible, in order to allow the use of this algorithm with other models as well.

Denote by Ny = (nig,...,nng) the counts of all observed patterns in the
gth alignment, and by @ the set of model parameters. We will use, whenever
necessary, the decomposition © = (£,¥, A) where & = (51,...,5N_1) is the
set of branch-specific parameters, =; = (&, ®:) in our case, characterized by
not being affected by the rate variability; ¥ = (¥1,...,%¥s) is the set of gene-
specific variables, ¥, = (1,4, 64) in our case, characterized by being subject to rate
variability, and A = (v, \) is the set of rate variables. We assume independence
between genes and between sites, hence the likelihood function is

G G 0
L(Nla" NG|9 = H /\/;]|E,Wg,/l)=HHL(WME,W!],A)TL“’, (3)
g=1 g=1p=1
and the log-likelihood is just
G
1ogL(N1,...,Ng|@):ZanplogL wp| =, Wy, A). (4)

g=1p=1

To make the rate distributions (2] amenable to in silico manipulations, we
rendered them discrete as was done previously by Yang [I3], using K cate-
gories for the gamma distribution, and an additional category for the invariant
sites. For the time being, we will keep our notations general and will not spec-
ify the rendering technique, and in particular, will not assume equi-probable

categories. Accordingly, r? can take the values (r¢,...,r%) with probabilities
(f,..., f%), and r" can take the values (r] = 0,74, ... ,T'%1) With probabili-
ties (f) = v, fy, ..., fir41)- Introducing rate variability across sites is equivalent

to transforming the model into a mixture model, with the rates determining the
mixture coefficients. Consequently, we will associate with each site two discrete
random variables, p}} and pg, indicating the rate category of n and 6, respec-
tively. According to the EM paradigm, we are guaranteed to climb up-hill in
log L(wy| =, ¥,, A), if we maximize the auxiliary function

Q!]P(‘—‘aw A,:O,WO AO) (5)

= > P(o,pl, plwp, 0,09, A°) log P(wy, 0, p}l, p3| =, ¥y, A) =

n
9,Pp »Pz
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= Z P(U ppvpp|wp7‘—‘ 7LDO AO)
a,0p 09
K+l K
. Z Z 1{pZ:k}1{p2:k’} [logf,? + log £}, +logP(wp,U|E,ngk/)] .
k=1 k'=1

Here, o is any realization of the internal nodes of the tree, 1;,—;} is a function
that takes the value 1 when p = k and takes the value zero otherwise, and ¥y is
the set of effective gene-specific rates which, in our model, is Yyrr = (Ngk, Ok ),
where we have introduced the notations g, = 7} - 7y and Ogp = rz, ~fg. If we
now use

P(o,pll =k, p) = K |wp, 20,0, A°) = (6)
=P(py =k Pp = k'lwp, Z°, Wo ,A%) - (U|wp»50»W§kk')
in (@), we get
Qup(E, ¥y, A, Z°,02, A°) = (7)
K+1 K

Z Z Z pp’pph"?’“ Wy, A%) Lipn=kyL{po=r'}

k=1 k'=1 | pf,p8

> P(olwp, 0, W) [log [+ log f{ +log P(wy, 0|5, Worr )]

o

Denoting by wgprr and Qgpri the first and second square brackets, respectively,
the auxiliary function maximization of which assures increasing the likelihood is

K
Z TgpWapkk! Qgphk’ - (8)

3.1 The E-Step

Here is how we compute wgprrs and Qgpris for the current estimate OY of the
model parameters.

Wypkk! = Z P(ppvpph‘upv‘ﬁ 7LD A )l{p;’:k}l{/)ﬁ:k’} = (9)
P27P§
=P(pp=k pp*k|wp,”0 WO ,AY) =
P(pp = k|Z°, 09, A%) - P(py = K|Z°, 9], A) - Plwp| 2%, W5y)
~ S Plon = |~0 w9, A%) - P(pf = 1|20, W0, A°) - P(wp| =0, ¥y,)
(f)°(F2)°P(wp|=° »qukf)
Zh w ()0 (f )OP(wp|:0aLpghh’)




40 L. Carmel et al.

The function P(w,|Z°,¥5,,,) is the likelihood of the tree that we rapidly com-
pute using a variant of Felsenstein’s pruning algorithm [14]. To this end, let us
define y9P¥* (q) = P(L(q)|q", =9, W), which is the probability of observing
those terminal nodes that are descendants of ¢, for a given state of the parent of
g. Omitting the superscripts for clarity, this function is initialized at all terminal

nodes ¢q; € L(qo) by
( 1— & (1 — e mokae) )
. . gk’At St = 0
e =4 Y B (10)

where s; is the value observed at ¢;. Then, v is computed at all internal nodes
(except for the root) using the inward-recursion

1

vilar) =D A% (ae)7s(ar), (11)

Jj=0

where 7;(q) is an abbreviation for 7;(¢%)vy;(¢®). The likelihood of the tree is
then

P("‘}P'H ) gkk’ sz'yz q0 (12)

Using this in (@) allows us to compute the coefficients wgprss . In order to com-
pute the coefficients Qgprir We need a complementary recursion to the above
~y-recursion. To this end, let us define a9P**’ (g,¢") = P(q,qP|wp,EO,W§kk,).
Again, omitting the superscripts, this function can be initialized on the two
descendants of the root by

7070(q%) Af(q) O _
ﬂflif(%gégg ?€ Lla). s=0
0 mov0(q%) A, (g _
a(q,q0) = W 0 m71(q%) AT, (q) 4€Llgo), =1
“rl=" o) | mov0(a%)30(0) Al (g >wO~yo<qS>-y1<q>Agl<q>>
m71(¢%)%0(9) A% () m171(¢%)71(9) AT, (9)
q & L(qo)-

(13)
Here, ¢ is a descendent of the root (either ¢ff or ¢f), and ¢” is its sibling. For
any other internal node, « is computed using the outward-recursion

alg.q”) = Zﬁggiﬁo(qP)Ago(Q) ”lgqiﬁ 0(¢") A8, (a)
’ 25" Al () 5B AL (a) )

(14)

where (3(q) = P(qlwp, E° ngk,) = qu a(q,q%) is computed for each node
subsequently to the computation of a. Finally, for each terminal node that is
not a descendant of the root,
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e

0

O[(qqu) = 0 BO(qP) o (15)
06:(¢")) "

This inward-outward recursion is the phylogenetic equivalent of the backward-
forward recursion known from hidden Markov models, and other versions of it
have already been developed, see, e.g., [9[12]. We shall now see how the a’s and
B’s allow us to compute the coefficients Qgprr. Notice that, if we use the state
variables as indices, we can replace the function log P(wp, 0=, Wgrr) in ([@) by

1 1

N-1
log P(wp, 0|E, Ygpi ) = Z(qo) logm; + Z Z at); ()i log A7;(q¢).  (16)

=0 3,j=0 t=1

Denote the expectation over P(olwy, =% ¥, ) by E,. Applying it to (I8) we
get

Eq [log P(wp, 0] =, Yo )] = (17)
1 1 N-1
= Zlogﬂ'iEcr[(QO)i] + Z Z log A, ( Ey[(a);(at )i)-
i=0 1,5=0 t=1

But, E,[(g0)i] = P(go = ilwp, 2% ¥91r) = Bi(qo), and similarly Ey[(g:);(q/ )i] =
@ij(qe,qf’), so that Qgprir can be finally written as

Qgpkkr = Z P<U|wp’ 50’ Lpgkk’) ) (18)

- [log f! + log 12 4 log P(wy,0|Z, Wgir)] =
1 1 N-1
=log fil +log fl, + > Bi(go)logmi + > Y avij(ar, qf ) log AZ (gr).-
i=0 1,j=0 t=1
One of the appealing features of EM is that is allows, in many cases, to treat

missing data fairly easily. In our case, two simple modifications are required for
this. Firstly, we have to add to the ~-recursion initialization ([I{]) an option

1
s = (1) = (19)
Secondly, we have to add to the a-recursion finalization ([3]) an option

_ ( Bolat)Ao(ar) Bolar’)Ad: (ar) .
wto) = (e b oAt o)) = 20)
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3.2 The M-Step

Substituting the expressions for wgprr and Qgprry in (@), we obtain the final
form of the function to be maximized at each iteration. Explicitly, this is

G 2 K+1 K

Q= ZZ Z Z NgpWypkk (l0g f}] + 1ng]f’) + (21)

g=1p=1 k=1 k'=1
G 2 K+1 K , ,
FDD DD napaph [ﬁgpkk (q0) log 7o + B{"™* (qo) log m} +
g=1p=1 k=1 k'=1
K+1 N-1

NgpWypkk! O‘ggkk (q¢) log [1 =& (1 - eingkAt)] +
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It is well-known that any increase in () suffices to climb up-hill in the like-
lihood, and therefore it is not of utmost importance to maximize it precisely.
Hence, we do not invest too much in finding precise maximum, but rather use
low-tolerance maximization with respect to each of the parameters individually.
Since it is easy to differentiate @) twice with respect to all the parameters (except
for A), we use the Newton-Raphson zero-finding algorithm for the maximization.
Due to space limitations and because the derivation is, essentially, trivial, we do
not present them here.

We must, however, devote a few words to the maximization of Q with respect
to A. In (ZI) we kept the rate distributions general, but [2)) imposes the con-
straints 7§ = Ty 41 Furthermore, in rendering the gamma distribution discrete,
we assume equi-probable categories, thus

g Vv—1

fla =W =0fi=—F k=1,...,K. (22)

Therefore, Q depends on A through 7 and r?, making analytic differentiation
impossible. Thus, in this case, we used Brent’s maximization algorithm that does
not require derivatives.

4 Validation

We intend to apply the algorithm to real data, namely, an amended version of the
data set from [5], which consists of multiple alignments of over 700 orthologous
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genes from 8 eukaryotic species. However, prior to its application to real data,
the algorithm must be carefully validated against simulated data. Thus, we have
written simulation software that performs three tasks. Firstly, given the number
of extant species, it builds a random phylogeny. Secondly, it assigns random
lengths to the branches based on the exponential distribution (keeping the tree
balanced). Thirdly, it draws the model parameters subject to some biologically
plausible constraints. Given the phylogenetic tree and the model parameters,
we then simulate any desired number of evolutionary scenarios, collecting the
observations on the terminal nodes.

While EM algorithms always converge to a maximum of the likelihood, they
are not guaranteed to find the global maximum. In practice, however, we have
strong indications that our EM algorithm is highly effective in finding the global
maximum. We cannot provide a proof for this, but at least it is clear that it
always estimates model parameters that give a higher likelihood than the true
model parameters, see Figure [l

—0.2} ® i
®
-0.4F -
—0.6F 4
En v ®
- %
o
£ - 1
2 &
)
&-1.2f 6 1
g ®
—1.4} 4
*
()
—1.6F 4
—1.8F 4
0 1 2 3 7 8 9 10

4 5 6
Simulation Number

Fig. 1. Summary of 9 independent simulations. For each simulation, a 4 species ran-
dom phylogeny spanning 400 million years and a set of model parameters were drawn
randomly. Intron evolution was simulated for four multigenes of mean length of 5000
AA, with no rate variation. Parameters were estimated using tolerance of 1072, The
dots indicate log-likelihood values computed for the true model parameters, and the
pentagons indicate log-likelihood values computed for the estimated parameters. Note
that the log-likelihood of the estimated parameters is always greater than that of the
true parameters.

A well known property of maximum likelihood estimators is that they are
not guaranteed to be unbiased for any finite sample size. In our model, and
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Fig. 2. Estimated mp versus true mo.Each dot is the mean of three simulations of six-
species random phylogeny spanning 300 million years. In each simulation, we assumed
four multigenes of mean length of 50,000 AA, with no rate variation.

probably in other phylogenetic models, the bias might be significant, mainly
due to the small number of species and to the paucity of informative patterns.
An example is shown in Figure 2] where the probability 7y of the root node is
estimated. This problem can be less severe when a monotonic relation between
the true parameter and the estimated one holds (Figure 2l). We are currently
investigating different approaches to map this bias more accurately.

5 Discussion

We describe here an algorithm that allows for parameter estimation of an evo-
lutionary model for exon-intron structure of eukaryotic genes. Once estimated,
these parameters could help resolving the current debate regarding evolution of
introns, in particular, with regard to the relative contributions of intron loss and
gain in different eukaryotic lineages.

Some of the assumptions of our model are worth discussion. Specifically, in
Equations ([B) and @), we assumed that different sites evolve (i.e., gain and lose
introns) independently. However, several observations show that such indepen-
dence is only an approximation. First, introns in intron-poor species tend to
cluster near the 5’ end of the gene [I5/I6]. Second, adjacent introns tend to be
lost in concert [T6/I7]. Nevertheless, it seems that such site-dependence of gain
and loss is a secondary factor in intron evolution. First, non-homogeneous spatial
distribution of introns along the gene is pronounced only in species with a low
number of introns. Second, some anecdotal studies could not find any preference
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of adjacent introns to be lost together (e.g., [I8].) Should subsequent studies
indicate that the dependence between sites is more important than we currently
envisage, our model probably can be extended using the context-dependent ideas
developed in [12].

Similarly, in Equations @) and (@), we assumed that different genes gain and
lose introns independently. Currently, we are unaware of any strong evidence
for such dependence, but if it is discovered, it can be easily accounted for in
our model by concatenating genes with similar evolutionary trends and treating
them as a single multigene.

Additionally, we assumed the same shape parameter for the gamma distri-
bution of intron gain and loss rates. As mentioned above, this assumption was
taken out of convenience, and due to the general impression that the exact shape
of the gamma distribution is not a primary factor. However, our model can be
rather easily extended to incorporate different shape parameters for gain and
loss.

The computational complexity of the algorithm is, in the worst case, O(G -
S - K2.3%). The exponential dependency arises because the number of unique
patterns, {2, is exponential with the number of species. However, if W is the
total number of sites in all the alignments, it bounds 2 by 2 < min(W,3%),
thus keeping us, in practice, far away off the worst case.

The current Matlab® code is too slow to handle efficiently the real data
(over two million sites) and the massive simulations. Therefore, we are in the
process of writing the code in C++, allowing for its application to large data
sets. The C++ software will be made available as soon as it is ready.
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