
Divorcing Language Dependencies
from a Scientific Software Library

Gary Kumfert,
with

Scott Kohn, Jeff Painter, & Cal Ribbens

LLNL VaTech

GKK 2CASC

Language Interoperability Tool
♦ You specify “interfaces” in our language
♦ We generate glue code between application

and library

Part of a Component Framework
♦ Enables OOP in non-OOP languages
♦ Enables safe Dynamic Casting and

QueryInterface capabilities

GKK 3CASC

What I mean by
“Language Interoperability”

Simulation Framework
(C)

Scripting Driver
(Python)

Visualization System
(Java)

Solver Library
(C++)

Numerical Routines
(f90)

GKK 4CASC

Hand Coded Solutions
JNI

Native
SWIG

Platform Dependent

C

C++

f77

f90

Python

Java

GKK 5CASC

Objects, Virtual Functions, RMI &
Reference Counting: all from Babel

f77

Java

Babel
C f90

C++ Python

GKK 6CASC

Babel generates glue code

machine
configuration

database

f77

SIDL interface
description

parser analyzer backend
C

Python

C++

XML repository
interface

description

GKK 7CASC

Scientific Interface Definition
Language (SIDL)
version Hypre 0.5;
version ESI 1.0;

import ESI;

package Hypre {
interface Vector extends ESI.Vector {

double dot(in Vector y);
void axpy(in double a, in Vector y);

};
interface Matrix {

void apply(out Vector Ax, in Vector x);
};
class SparseMatrix implements Matrix, RowAddressable {

void apply(out Vector Ax, in Vector x);
};

};

class
exception
interface
package

GKK 8CASC

Software to be “divorced” from its
language dependence

Scalable parallel linear solvers and
preconditioners (LLNL)

Implemented in ANSI C using MPI

“Object Based”

GKK 9CASC

Collaboration Objectives
Babel side:
♦ demonstrate Babel technology
♦ feedback from library developers

Hypre side:
♦ Automatically create Fortran bindings
♦ Explore new designs
4Object-Oriented
4Component-Based

♦ Integrate other software
4C++ or F77

GKK 10CASC

Envisioned Architecture

F77 PythonC++

“official” hypre
interface (ANSI C)

MPI

GKK 11CASC

Approach

Identify minimal working subset of hypre
♦ Structured Solvers

Create SIDL description
Add base classes to create heirarchy
Tie generated code to existing hypre library
Iterate

GKK 12CASC

Problem: Creating wrong types

SIDL has 3 types of objects
♦ interfaces - no implementations (pure abstract)
♦ abstract classes - partial implementations
♦ concrete classes - full implementations

Users were creating
abstract classes when
they meant to create
concrete classes

interface Foo {
int doThis(in int i);
int doThat(in int i);

}

class Bar implements Foo {
int doThis(in int i);

};

class Grille implements Foo {
int doThis(in int i);
int doThat(in int i);

};

GKK 13CASC

Solution: Fix The Grammar

Added the “abstract” keyword
♦ Compiler issues error if a method is undefined and

class is not declared abstract
Added the “implements-all” keyword
♦ declares all

methods as
overridden

♦ saves user typing

interface Foo {
int doThis(in int i);
int doThat(in int i);

}

class Bar implements Foo {
int doThis(in int i);

};

class Grille implements Foo {
int doThis(in int i);
int doThat(in int i);

};

interface Foo {
int doThis(in int i);
int doThat(in int i);

}

abstract

class Grille implements-all Foo
// int doThis(in int i);
// int doThat(in int i);

class Bar implements Foo {
int doThis(in int i);

};

class Grille implements Foo {
int doThis(in int i);
int doThat(in int i);

};

interface Foo {
int doThis(in int i);
int doThat(in int i);

}

abstract class Bar implements Foo {
int doThis(in int i);

};

{

};

GKK 14CASC

Problem: Managing all the Files

Babel creates many source files

foo.sidl

foo.f

foo_ior.c

foo_ior.h foo_skel.h

foo_skel.cc

foo_impl.h

foo_impl.ccfoo_stub.c

foo_stub.h

one set for each
class & interface

GKK 15CASC

Solution: Babel Generates
Makefile Macros

A “babel.make” file is generated

Users include it into their own makefiles
♦ They control the build rules
♦ We provide the file names

IORSRCS = foo_ior.c \
bar_ior.c \
grille_ior.c

IORHDRS = foo_ior.h \
bar_ior.h \
grille_ior.h

GKK 16CASC

Problem: Incremental Development

Library Developer would do the following:
♦ write SIDL file
♦ run Babel to generate bindings
♦ hand edit “Impl” files to call their library code

#include “mylib.h”

int impl_Foo_doThis(Foo * self, const int i) {

return mylib_Foo_doThis(
(mylib_Foo*) self->userdata,
i
);

}

GKK 17CASC

Problem: Incremental Development (2)

Now assume this was done for 20 classes, each with
20 methods.
Now assume a class needed a 21st method
Babel would regenerate all files and wipe out
Developer’s edits
#include “mylib.h”

int impl_Foo_doThis(Foo * self, const int i) {

return mylib_Foo_doThis(
(mylib_Foo*) self->userdata,
i
);

}

GKK 18CASC

Solution: Code Splicing

Added preservation of developer’s edits
Code Splicer works line-by-line
♦ interleaves old code into new code
♦ looks for begin-end pairs embedded in comments
/* DO NOT DELETE splicer.begin(user-includes) */
#include “mylib.h”
/* DO NOT DELETE splicer.end(user-includes) */

int impl_Foo_doThis(Foo * self, const int i) {
/* DO NOT DELETE splicer.begin(Foo_doThis) */
return mylib_Foo_doThis(

(mylib_Foo*) self->userdata,
i
);

/* DO NOT DELETE splicer.end(Foo_doThis) */
}

GKK 19CASC

Results

Call hypre
♦from C, F77, or C++
♦on SPARC Solaris or DEC/OSF
♦(more languages & platforms coming)

No interference with MPI
Babel overhead within runtime noise

GKK 20CASC

Best Result: Change of Architecture

MPI

“official” hypre
interface (ANSI C)

F77 PythonC++ Python

MPI

F77 C++ANSI C

Babel Runtime

“official” interface

GKK 21CASC

Reasons for Change

Babel enforces
regularity in code
Liked automatic
reference counting
Excellent compromise
between:
♦ Wanting

polymorphism and
OO techniques

♦ Wanting all ANSI C
for maximum
portability

Liked using the tool
No Hand F77 bindings
♦ incompatible
♦ outdated

Preferred discussing
designs in SIDL
♦ easy for email
♦ impossible to mix

implementation &
interface

Convinced of Babel’s
longevity

GKK 22CASC

Current & Future Work

Language Support
♦ Current: C, C++, F77, Python (Client)
♦ Coming: Python(Server), Java, F90, Matlab

Platform Independence
♦ Implies RMI / Distributed Computing
♦ SOAP

Parallel Data Redistribution
Babelization efforts in LLNL
♦ hypre
♦ SAMRAI
♦ ALPS

GKK 23CASC

Our Website
http://www.llnl.gov/CASC/components
♦Alexandria (Component Repository)
♦Quorum (Online Voting)
♦Generic Parallel Redistribution

hypre
http://www.llnl.gov/CASC/hypre

GKK 24CASC

UCRL-VG-140349 Rev 1

Work performed under the auspices of the U. S. Department of Energy by Lawrence
Livermore National Laboratory under Contract W-7405-Eng-48

GKK 25CASC

Key to Babel’s Interoperability...

SIDL
Scientific Interface

Definition Language

IOR
Intermediate Object

Representation

XML
eXtensible Markup

Language

Human Compat

b Compatible

Compiler Compatible
ible

We

GKK 26CASC

CORBA
Language Independent
Wide Industry Acceptance
Primarily Remoting
Architecture

COM
Language Independent
Most Established
In Process Optimization
Network Transparent

Enterprise Java Beans (EJB)
Platform Independent
Runs wherever Java does

Business Component Frameworks

GKK 27CASC

Business Component Frameworks
Science

CORBA
Language Independent
Wide Industry Acceptance
Primarily Remoting
Architecture
Huge Standard
No In-Process Optimization

COM
Language Independent
Most Established
In Process Optimization
Network Transparent
not Microsoft Transparent
Relies on sophisticated
development tools

Enterprise Java Beans (EJB)
Platform Independent
Runs wherever Java does
Language Specific
Potentially highest
overhead

All The Above
No Complex Intrinsic
Datatype
No Dynamic
Multidimensional Arrays
No Fortran77/90/95
bindings
No Parallel Components
No Concept of SPMD
Programming

	Divorcing Language Dependencies from a Scientific Software Library
	What I mean by “Language Interoperability”
	Babel generates glue code
	Scientific Interface Definition Language (SIDL)
	Collaboration Objectives
	Envisioned Architecture
	Approach
	Problem: Creating wrong types
	Solution: Fix The Grammar
	Problem: Managing all the Files
	Solution: Babel Generates Makefile Macros
	Problem: Incremental Development
	Problem: Incremental Development (2)
	Solution: Code Splicing
	Results
	Best Result: Change of Architecture
	Reasons for Change
	Current & Future Work
	Key to Babel’s Interoperability...
	Business Component Frameworks
	Business Component Frameworks

