
NASA Technical Memorandum 100517

FLUCTUATING PRESSURE LOADS UNDER HIGH SPEED
BOUNDARY LAYERS

_NASA-T_-100517) FLUCTUATING PRESSURE LOADS

UNDER HIGH SPEED BOUNDARY LAYERS [NASA)

15 p Avail: NTIS HC A03/MF A01 CSCL 2OA

N88- 1.3962

Unclas

G3/71 0114108

William E. Zorumski

October 1987

NASA
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665





SUMMARY

Aeroacoustic fatigue is anticipated to control tlle design of significant portions of the

structures of advanced high-speed vehicles. This is due to contemplated long-duration

flights at high dynamic pressures and Mach numbers with related high skin tempera-

tures. Fluctuating pressure loads are comparatively small beneath attached turbulent

boundary layers, but become important in regions of flow separation such as compres-

sion and expansion corners on elevons and rudders. The most intense loads are due to

shock/boundary-layer interaction. These flows may occur in the engine-exhaust wall jet

and in flows over control surfaces. A brief review is given of available research in these

areas with a description of work underway at Langley.

INTRODUCTION

Aerothermal loads on hypersonic vehicles are largest during ttle low-altitude, turbulent

flow portion of the flight,.1 These conditions are also the conditions which yield the largest

aeroacoustic loads, that is, the fluctuating pressures under the turbulent layers. The

combined effects of aerotherrnal and aeroacoustic loads are anticipated to elevate sonic

fatigue to dominate the design of aft portions, such as elevons, rudders, and surfaces

exposed to engine exhaust, of hypersonic aircraft. These areas of the structure may be

exposed to separated flow and the interactions between shock waves and boundary layers,

which are high loading sources.

This paper discusses some recent research on fluctuating pressure loads under bound-

ary layers. It, is not intended as a review, but only to highlight some of the more recent and

significant research. The discussion here was prepared in support of a workshop on sonic

fatigue and hypersonic loads which was held at the AIAA llth Aeroacoustics Conference

at Sunnyvale, California, October 19-21, 1987.

The discussion below first, reviews some available prediction methods ..... the broad rules

used by designers. Then some recent research is considered in light of its possible impact

on these preditiou methods. Three general categories of boundary layer flow are used

for the purpose of discussion. These are (first) the attached turbulent boundary layer,

(second) the separating turbulent boundary layer, and (third) the turbulent boundary

layer with shock interaction. The latter category may experience separation due to the

concentrated pressure gradient in the vicinity of the shock foot. The discussion concludes

with a description of work in progress at Langley Research Center.



PREDICTION METHODS

Attached Turbulent Layer

Reviews of available prediction methods 2'3'4'5 indicate that the attached turbulent

layer has relatively small pressure fluctuations at the wall. The dynamic pressure q at the

edge of the boundary layer is frequently used as a scaling parameter for the overall root-

mean-square pressure Prrns. Lowson's formula 6 gives an estimate of the rms pressure as

shown in Fig. 1. The subsonic condition, where Mach number is small, gives Prms = 0.006q.

In the supersonic range (M < 5) the rms pressure decreases with the square of Mach

number.
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Fig. 1. Prediction methods for fluctuating pressures under high speed boundary layers.

The power spectrum for the attached boundary layer is often given as a function

of circular frequency w, scaled with the boundary layer displacement thickness 6" and

velocity at the edge of the boundary layer U. The magnitude of the power spectrum may

be scaled with the mean-squared pressure Pro,,, 6", and U. Tile Houbolt formula 7 shown

in Fig. 1 is a relatively _tccurate example of this scaling. This formula is readily integrated

to demonstrate its conformance with the usual constraint on power spectrum

p,._ .... ¢(_) dw
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The Houbolt formula has the properties that the power spectrum is flat at low frequencies

and decays as frequency-squared at high frequencies. Other empirical formulas have simi-

lar, but not tile same, characteristics. It will be seen later that recent data indicate that

the high- and low-frequency character of power spectra remains an open question.

Separated Turbulent Layers

Boundary layer separation may result from adverse streamwise pressure gradients.

A typical experimental flow where this occurs is the compression corner at a ramp or a

cylinder-cone transition. The fluctuating pressure is about 2% of the dynamic pressure in

a compression corner. This value varies with Mach number, but the variation has not been

clearly defined with empirical formulas. The power spectrum developed by Robertson s

gives a fair representation for this load. This formula is similar to the tloubolt equation

except for the use of boundary layer thickness 8 instead of 6" and the fractional exponents.

Note that these exponents give an f-l.s3 variation instead of an f-2 variation at high

frequency.

Separation at an expansion corner is a source of significantly higher loads than in the

compression corner. As indicated in Fig. 1, these are 4--5% of the local dynamic pressure

at low Mach numbers. The M 2 term reduces these loads at higher Mach numbers. The

power spectrum for these loads is the same as for the compression corner loads.

Turbulent Layers with Shock Interaction

The fluctuating pressures resulting from separation due to shock/b¢)undary-layer in-

teraction produce tile largest loads of these flows. Chaump, Martellucci, and Montfort 2'3

developed the formula shown in Fig. 1 which gives a fluctuating rms presssure near 10%

of the dynamic pressure in the transonic range above Mach 1. The power spectrum for

SBLI loads is complicated by the fact that there are two contributing sources of the loads.

These are the oscillations of the shock wave about its mean position and the sources due

turbulence passing through the steep pressure gradients near the foot of the shock. Recent

research on these loads and their spectra is discussed below. The point here is that they

are the largest loads and, as mentioned earlier, that they occur in conjunction with high

aerothermal loads. This conjunction suggests that high-temperature acoustic fatigue may

be a significant design limitation for hypersonic aircraft.

ATTACHED BOUNDARY LAYERS

Fluctuating pressures under atta(hed turbulent layers depend on the wall temperature

as well as on the Mach number. Laganelli, Marteilucci, and Shaw m have developed a

prediction method which incorporates this effect through a compressibility factor eT. As

shown in Fig. 2, the compressibility factor depends on both the Mach number and the ratio

of the wall temperature Tw to the adiabatic wall temperature T,w. It also includes an effect

of the velocity profile, through the power law exponent n, and an effect of boundary layer

growth rate, through the viscous exponent m. In Fig. 2, n is 7, for the (y/_)1/7 velocity

profile, and m is 4/5, for the flat plate turbulent layer growth rate. The power spectra

in Fig. 2 are Houbolt curves scaled with the compressibility factor. The authors of this
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Fig. 2. Power spectrum of pressure fluctuation under an attached boundary layer.

From Laganelli, Martellucci, and Shaw, A1AA J., Vol. 21, No. 4, 1983, pp 495-502.

method have shown good correlations with the data of Laganelli ° and with the data of

several earlier investigators.

Instrumentation for fluctuating pressure measurement is still inadequate, as was shown

recently by Schewe. 11 Measurements were made in a very low speed flow, U = 6m/s, in a

nearly disturbance-free tunnel. Schewe developed a special lmm diameter transducer and

compared measurements to larger transducers having diameters of 2.1, 4, 9, and 18mm. It

was found that only the smallest transducer with dimensionless diameter (dUr/t/) = 19,

based on friction velocity and kinematic viscosity, could resolve the pressure fluctuations.

Extrapolation t_, an infinitesimal transducer size indicated that the resolution was within

4% of the actual value, which was slightly over 0.01q, nearly twice the "accepted" value

of 0.006q showr in Fig. 1. This careful study of a comparal;ively simple turbulent layer

illustrates the n,_.ed for further instrumentation development _tnd the need to repeat many

of the older exp _riments with modern instrumentation and data processing techniques.

Schewes re.,;ults for power spectrum show an f 7/3 high-frequency variation in accor-

dance with isotlopic turbulence theory. Since the model equation of Laganelli, Martellucci,

and Shaw 1° is integrable with arbitrary exponents, the isotropic characteristic could be

incorporated into their method. Of course, it would be necessary to support this change

with data from both subsonic and supersonic boundary layers.
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SEPARATED BOUNDARY LAYERS

Siml)s()n, (_hodl_ane, and Mc(;rath 14 use the maximum shear stress within the bound-

ary layer to scale wall pressure fluctuations in the vicinity of boundary layer separation.

Recall that wall shear stress rw has been used as a scaling parameter for the fluctuating

pressure under attached boundary layers. The maximum shear stress, scaling introduces

the effect of boundary layer profile, as represented by displacement thickness 6" and mo-

mentum thickness 0, by estimating the maximum stress by

where p is the density. Data from 10 experiments indicate that

Prm8 : (1.5 :t: .07)TM

where the above variation is within one standard deviation. Correlations of the same data

based on wall shear stress show significantly larger variation than on the maximum shear

stress.
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Fig. 3. Power spectrum of pressure fluctuation under _Lseparating subsonic boundary layer.

From Simpson, Ghodbane, _nd McGrath, J. Fluid Mech., Vol. 177, 1987, pp 167-186.

The power spectrum upstream and downstream of separation is distinctly different,

as shown in Fig. 3. Upstream, where the attached layer has an adverse pressure gradient,
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the low-frequency spectrum varies as w -°'7 and the high-frequency spectrum varies as

w -3"°. Downstream, the low-frequency variation is w TM. This is folh)wed by a sprectrum

peak and the same high-frequency roll off. These data were taken by microphones under

0.74mm diameter pinholes, (dUr/u) < 43. The difference in transducer design and size

may account partially for the discrepancy between this high-frequency spectrum and the

data of Schewe. 11 Since tile flows are physically distinct, the spectral differences are more

probably real differences.
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Fig. 4. Pressure fluctuation under shock/boundary-layer interaction with flow separation.

From Dolling and Murphy, AIAA J., Vol. 21, No. 12, 1983, pp 1628-1634,

and from Dolling and Or, Experiments in Fluids, Vol. 3, 1985, pp 24-32.

Shock/boundary-layer interactions may occur in supersonic flow in compression cor-

ners. Fig. 4 shows a supersonic ramp flow studied by Settles. 15 The Mach number is

slightly less than 3 and shocks are observed with ramp angles between 12 and 24 degrees.

The point of separation S is 1 or 2 upstream boundary layer thicknesses from the corner.

Dolling and Murphy :6 have investigated the intermittent flow and shock unsteadiness near



this corner. They define the intermittency as the probability that the wall pressure will

exceed the upstream average pressure by three standard deviations. The upstream influ-

ence point UI is then defined by q - 0.04, which is essentially where the intermittent flow

begins. This intermittent region extends to about the point of separation. Dolling and

Or 17 measured the probability distribution of the fluctuating pressures at points within

this intermittent region. At the upstream influence point, the probability density is ap-

proximately Gaussian. Within the intermittent region, where "7 is fairly small, the density

function is skewed to the left because the fluctuations are dominated by upstream char-

acteristics. Further downstream, the density function b(,comes bimodal, representing the

intermittent upstream and downstream characteristics. [n this bimodal regime,the point

of peak rms pressure is between "_ -- 0.7 and "_ -- 0.8. Beyond the separation point, the

density function returns to a near-Gaussian form. These changes all occur within about

one boundary layer thickness.
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Fig. 5. Power spectrum of pressure fluctuation under shock/boundary-layer interaction.

From Dolling and Or, Experiments in Fluids, Voi. 3, 1985, Pl) 24-32.

The power spectrum w_xies rapidly with streamwise position within the intermittent

region. Fig. 5 shows the spectrum measured by Dolling and Or 17 with the pressure inter-

mittency as a parameter. The upstream spectrum, "/:: 0, is relatively small in magnitude



since it represented the attached boundary layer. The spectrum level rises rapidly with

increasing _ to a peak rms pressure at "/ -:: 0.72 and then to the separated flow spectrum

at -/::: 1. The curves of Fig. 5 do not show a frequency of peak pressure lluctuations. If a

peak exists, it might lie near flf/U = 10 -4, a small value when compared to the sub,'_onic

measurements of Simpson, Ghodbane, and McGrath. 14 The implication for sonic fatigue is

that the structure will be excited at low frequencies with high pressure levels spread over

a small surface area. There are comparatively few studies of fluctuating pressures under

three-dimensional shock/boundary-layer interactions. A recent exception is the work of

Tan, Tran, and Bogdonoff 18 on the interaction between a sharp-fin-generated shock and

a turbulent boundary layer. Pressure fluctuations under this interaction were relatively

small-- roughly twice those in the upstream attached boundary layer. The shock was more

steady than those in the compression corner, although some unsteadiness was observed.

LANGLEY HIGH-TEMPERATURE TUNNEL EXPERIMENT

LANGLEY 8-FOOT HIGH TEMPERATURE TUNNEL

METHANE/AIR COMBUSTION GASES

MACH NUMBER 5.8-7.3

REYNOLDS NUMBER 1-7.5x 106 m-1

TOTAL TEMPERATURE 1300-2000K

FLUCTUATING PRESSURE MEASUREMENTS

5.8 < M < 7.3
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Fig. 6. Flat Plate boundary layer survey. Langley High Temperature Structures Tunnel

C. W. Albertson, aerothermal investigator, and T. L. Parrott, aeroacoustic investigator.
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The emergingpossibility of hypersonic flight has stimulated interest in boundary layer

loads research at Langley. One facility which will be used for this research is the 8-Foot

High Temperature Structures Tunnel. This tunnel has a methane/air combustion chamber

which exhausts through a supersonic nozzle to an open-jet test section. Some test section

parameters are listed in Fig. 6. The Mach number is around 6 and the total temperature

may be varied from 1300K to 2000K. A flat plate experiment is planned as a tunnel

calibration. Boundary layer flow data, aerothermal loads, and aeroacoustic loads will be

measured over the range of tunnel operating conditions. These data will be compared

to available theory and data from other investigations. Raman m,_° has measured the

fluctuating pressures on a plate with hypersonic flow speeds and reservoir temperatures
between 700 and 1200K. These data were taken with 0.5ram transducers and should provide

a good comparison for the planned experiment.

The fluctuating pressure measurements will be made with commercial 2.3ram piezore-

sistive transducers in linear streamwise and cross-stream arrays. These transducers will be

recessed 75#m and the recess will be filled with an silicone rubber insulator to form a flush

surface. The installed transducers will be calibrated relative to a condenser microphone

by placing a small waveguide over each array. A broadband noise source will send waves

past the condenser mi(rophone and the installed transducers to an anechoic termination,

providing the calibration. Fluctuating pressure data will be acquired with digital instru-

ments and data reduction systems. Fluctuating pressure statistics and correlations will be

developed from the digital data.

Combustion noise radiated downstream is a concern, due to direct contamination of

the aeroacoustic data and due to its possible influence on the boundary layer. Another

problem with working in this environment is the temperature variation on the plate. After

the tunnel is started, the plate is inserted into the jet. There is a large heat flux at this time

and the plate temperature rises quickly. The plate is withdrawn before the transducers

are destroyed. The data are taken during the time of high heat flux and variable surface

temperature. This procedure, while unavoidable, (:omplicates comparisons to data taken

under stable conditions.

(',ONCLUSIONS

High-temperature sonic fatigue may control the design of many structural compo-

nents of hypersonic aircraft. These aircraft will fly at high dynamic pressures and skin

temperatures for long periods of time, which may lead to fatigue limits within a few mis-

sions. Aeroacoustic loads are largest where aerothermal loads are large--in regions of

shock/boundary-layer interaction. There are no prediction methods for these loads that

have been shown to be valid for the planned flight conditions. They must be defined by

small-scale model experiments for each structural (:omponent where high loads are likely.

Instrumentation for measuring fluctuating pressure loads is inadequate. Transducers

less than lmm diameter are needed which can operate at temperatures up to 2000K.

Because of the small model sizes, it will be necessary to take digital data at speeds up to

200kHz.

Most older experiments should I)e repeate(t with more modern instrumentation and

data reduction methods in order to provide an improved basis for parametric studies of



flow effectson loads. There is a needfor many experiments with an orderly variation
of flow parameters. Theseparametric studies can be expected to lead to more general
prediction methods.

Separating flows and shock/boundary-layer interaction are the sourceof the largest
fluctuating pressureloads. Aerodynamic designsshould therefore attempt to avoid these
flows, especially flows that are essentiallytwo-dimensionalor axisymmetric. Where they
areunavoidable,detailed modelstudiesshouldbeconductedto defineboth the aerothermal
and aeroacousticloads. High-temperature fatigue resistant structures must be developed
for theseenvironments.
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