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Characterize particle transport, compare with theory

3. Magnetic transport

High β suggests larger magnetic perturbations.  True?

4. Momentum transport

Ultimate limit on tokamak confinement?

5. Novel wave-particle interactions

Collisionless heating & reconnection btw ρi & ρe scales

Drift-cyclotron coupling (ETG + ion cyclotron = IBW?)
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Short Wavelength Turbulence

• GK analysis of existing data suggests ETG modes dominant

• Low field improves detectability of ETG modes

• Strong shaping improves detectability of ETG modes

• Nonlinear simulations predict fluctuation spectra in detail;

   excellent opportunity for test of theory

• Investigate stabilization of ETG: broadly applicable

• Investigate β scaling of Qe ; is χe independent of magnetic

   field?
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Long Wavelength Turbulence

• GK analysis of existing data suggests long wavelength growth

  rates very small

• Compare with theory, esp. as parameters vary (e.g., α &Ti/Te)

• In presence of instabilities, diagnose ρ∗ effects (strong!),

  compare with theory

• Rosenbluth-Hinton flows enhanced by high trapped fraction;

  suggests NSTX should have unique opportunity to study Dimits

  shift

• Particle transport likely dominated by long wavelength

  instabilities; trapped particle dynamics critical, unique in

  NSTX because of strong B variation along field line
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Electromagnetic Transport

• Microinstabilities at high β predicted to induce magnetic

   stochasticity (multiple mechanisms)

• Magnetic stochasticity induces radial transport with unique

   ratios of transport coefficients.  Good opportunity for

   experimental guidance

• Suggests fast particle and momentum transport studies



Momentum Transport



Momentum Transport

• Turbulence sometimes generates zonal flows



Momentum Transport

• Turbulence sometimes generates zonal flows

• Zonal flows can quench turbulence: Dimits shift



Momentum Transport

• Turbulence sometimes generates zonal flows

• Zonal flows can quench turbulence: Dimits shift

• Zonal flows damped by ion-ion collisions (Rosenbluth, Lin, et al.)



Momentum Transport

• Turbulence sometimes generates zonal flows

• Zonal flows can quench turbulence: Dimits shift

• Zonal flows damped by ion-ion collisions (Rosenbluth, Lin, et al.)

• Zonal flows damped by collisionless tertiary (Dorland, Rogers)



Momentum Transport

• Turbulence sometimes generates zonal flows

• Zonal flows can quench turbulence: Dimits shift

• Zonal flows damped by ion-ion collisions (Rosenbluth, Lin, et al.)

• Zonal flows damped by collisionless tertiary (Dorland, Rogers)

• Whatever is limiting zonal flows is limiting confinement in

  conventional tokamaks: viscosity is key concept.



Momentum Transport

• Turbulence sometimes generates zonal flows

• Zonal flows can quench turbulence: Dimits shift

• Zonal flows damped by ion-ion collisions (Rosenbluth, Lin, et al.)

• Zonal flows damped by collisionless tertiary (Dorland, Rogers)

• Whatever is limiting zonal flows is limiting confinement in

  conventional tokamaks: viscosity is key concept.

• Is viscosity in the ST anomalous or not?  Key question, with

  broad implications.  Should be one focus of NSTX diagnostic

  deployments.
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Nonlinear Physics Benchmarked

Against Theoretical Predictions

High β Alfvenic turbulence in

homogeneous, stirred

plasma shows predicted

perpendicular spectrum

(and anisotropy, not shown).

Here, β = 8  (i.e., 800%).

W Dorland, S C Cowley,

G W Hammett and E Quataert



Parasitic Instability Model

 Equilibrium unstable to primary (linear) instabilities

 Primaries unstable to secondary instabilities

-----------------------------------------------------------------------------------------------------

 Some secondary instabilities have zonal flow component

 Zonal flows unstable to tertiary instabilities

Key references: 

S C Cowley, R M Kulsrud, R Sudan, PF B, (3:2767:1991)

J F Drake, et al., PF B, (4:488:1992)

M N Rosenbluth, F Hinton, PRL (80:724:1998)

B N Rogers, W Dorland, M Kotschenreuther, PRL, (85:5536:2000)

W Dorland, F Jenko, M Kotschenreuther, B N Rogers, PRL, (85:5579:2000)


