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1 Algorithm Overview

The SeaWinds on QuikSCAT scatterometer (QSCAT) was developed by NASA JPL to

measure the speed and direction of ocean surface winds. End-to-end simulations performed

to estimate the performance of the QSCAT prior to its launch indicated that the directional

accuracy of the wind vectors varies across the swath. Post-launch comparisons between

scatterometer data and analytical wind �elds (e.g., NCEP and ECMWF �elds) support

this conclusion, as does visual inspection of the scatterometer wind �elds. The accuracy

of the majority of the swath, and the size of the swath are such that QSCAT meets its

science requirements despite shortcomings at certain cross track positions. Nonetheless, it

is desirable to modify the baseline processing in order to improve the quality of the less

accurate portions of the swath, in particular near the far swath and nadir 1. Two disparate

problems have been identi�ed for far swath and nadir. At far swath, ambiguity removal

skill is degraded due to the absence of inner beam measurements, limited azimuth diversity,

and boundary e�ects. Near nadir, due to nonoptimal measurement geometry, (fore and aft

looking measurement azimuths approximately 180o apart) there is a marked decrease in

directional accuracy even when ambiguity removal works correctly. Two algorithms were

developed, direction interval retrieval (DIR) to address the nadir performance issue, and

thresholded nudging (TN) to improve ambiguity removal at far swath. The two algorithms

work independently, and need not be used together. However, both were used to obtain

this special wind vector product.

DIR is a set theoretic estimation technique [1]. It is similar to the conventional (NSCAT)

wind retrieval technique in that �rst a set of wind vectors are determined which are consis-

tent with the data (solution set), then median �ltering is used (spatial information incorpo-

rated) to select a solution vector from this set. DIR di�ers from the conventional method

in that the solution set is not a �nite set of vectors, but rather a set of disjoint 1-D curves

in the 2-D space of wind speed and direction. The range of wind direction spanned by each

of these curves is determined by a probabilistic analysis of the noise on the measurements

and its e�ect on the directional discrimination information available. (See section 2.)

TN is a technique for optimizing the manner in which the ambiguity removal is initial-

ized. In the baseline wind retrieval algorithm, the closest of the two most likely ambiguities

to a co-located numerical weather product (NWP) wind vector is used to initialize the me-

dian �lter. With TN, the number of ambiguities available for initialization is not limited

1In this context, nadir is taken to mean along the ground track of the satellite. Clearly the antenna is

never actually pointed perpendicular to the ground.
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to two, instead it is determined by thresholding the likelihood values associated with the

ambiguities. In this manner, fewer ambiguities are considered in regions of high instrument

skill, and thus the impact of the NWP �eld is lessened. On the other hand, in regions of

lower instrument skill, more ambiguities are considered and the impact of the NWP �eld

is heightened. (See section 3.)

The impact of the two techniques was studied in simulation and found to signi�cantly

improve wind direction accuracy. Improvements in RMS direction error were observed

across the entire range of swath positions and wind speeds. Improvements as large as 10

degrees were obtained for low wind speeds and cross track positions near nadir. After

launch similar studies were performed on real data, using ECMWF wind �elds as truth,

and similar results were obtained.

2 Direction Interval Retrieval

In order to discuss the DIR technique, some background information about the baseline

wind retrieval algorithm is required. The baseline algorithm is composed of two parts: a

pointwise maximum likelihood estimator to calculate a set of likely wind vectors and a

median �lter to select the best vector from the set. The maximum likelihood step has been

shown to be insu�cient to choose a unique wind vector [2]. For a small set of measurement

azimuth angles, multiple wind vectors may yield the same set of �0 values. Even if there are

enough measurements from enough di�erent azimuth angles to preclude this possibility, the

addition of noise can still lead to multiple solutions of signi�cant likelihood. For this reason,

the wind retrieval algortihm was designed to produce a discrete set of feasible solutions

rather than a single solution. The solution set is the set of local maxima in the likelihood

function. For NSCAT, this solution set resulted in acceptable directional accuracy. The

likelihood function dropped o� quickly in the neighborhood of the local maxima, so that

the chance of the true wind vector being far away from every vector in the solution set was

small. For QuikSCAT the rate at which the likelihood value drops o� from the maxima

varies with cross track distance. For wind vector cells near nadir, there are large ranges

of direction over which the likelihood value is relatively similar, and it is inaccurate to

represent the set of likely wind vectors by the maxima alone. The DIR method addresses

this problem by calculating a solution set for each wind vector cell which includes a range

of wind directions around each likelihood maxima. The extent of the ranges is determined

independently for each wind vector cell according to the speci�c shape of the likelihood

function for that cell.
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The DIR technique is a set theoretic estimation technique [1] which incorporates infor-

mation from the �0 measurements and a model of the noise on those measurements in order

to construct the solution set. Allowing the technique to consider all possible sets of wind

vectors would be time prohibitive, so a simplifying assumption must be made regarding

the types of sets to be considered. For each wind direction � there is a wind speed u(�)

which maximizes the likelihood function. We refer to the curve thus de�ned as the best

speed ridge. In the baseline technique, solution sets are four or fewer points on the best

speed ridge corresponding to local likelihood maxima. In DIR, solution sets are generalized

to four or fewer segments of the best speed ridge, with each segment including a local

maxima. This choice of solution set is justi�ed by the observations that likelihood drops o�

sharply for speeds away from the best speed ridge, and that whenever the wind direction

is determined accurately the wind speed is as well.

The endpoints of the segments are determined by estimating error bounds in a manner

similar to techniques described in [3] and [4]. These techniques estimate probability dis-

tributions (and con�dence intervals) for each measurement then combine information by

intersecting solution sets derived from con�dence intervals on each measurement. The DIR

technique instead estimates a joint probability distribution for all the measurements and

then directly computes the solution set, yielding a more accurate result. This technique is

seldom employed due to computational e�ciency concerns, but since most of the informa-

tion needed for the calculation is already available from the maximum likelihood estimator

and the search space is limited to one dimension (by the best speed ridge assumption)

e�ciency is not a problem.

We assume the noise on the measurements is mutually independent and Gaussian. The

means and variance of the Gaussian noise used in the maximum likelihood estimator can

be used to compute the conditional probability density of obtaining the �0 measurements

given a wind vector represented by speed and direction (u; �), P (f�0igju; �). In fact the

conditional probability is related to the likelihood estimate f(u; �) by:

P (f�0igju; �) = k exp(f(u; �)=2) (1)

for some constant k. However, since the the purpose of wind retrieval is to �nd the most

likely wind vector for a given set of �0 values rather than vice versa, a more relevant

probability density function is P (u; �jf�0ig), the probability density of wind vectors given

an observed set of �0 values. This function when integrated over any region in wind vector

space yields the probability that a wind vector within that region has occurred given the
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observed data. The two probability density functions are related by Bayes' Theorem,

P (u; �jf�0ig) =
P (f�0igju; �)P (u; �)

P (f�0ig)
(2)

where P (u; �) is the a priori probability density of wind vectors and P (f�0ig) is the a

priori probability density of �0 observations. For a given set of measurements, P (f�0ig) is

a constant.

In order to restrict the solution space to the best speed ridge as discussed earlier we let

P (u; �) = 1=2� for (u; �) on the best speed ridge and 0 everywhere else. This choice also

assumes that there are no wind directions which are preferred a priori.

By combining equations 1 and 2 and limiting consideration to wind vectors on the best

speed ridge we get

P (�jf�0ig) = c exp(f(u(�); �)=2)

for which the constant c is chosen to satisfy the probabilistic identity

Z
2�

0

P (�jf�0ig)d� = 1:

Now that the estimation of the probability density function (pdf) has been obtained,

the solution set segments are determined by thresholding the probability. Given a threshold

T , a set of directional intervals around each of the local maxima is selected such that the

sum of the widths of the intervals is minimized and the integral of the pdf over the intervals

is T .

The choice of the threshold T is an important consideration. A value that is too

low i.e., 0:1, results in an a solution set which is too small to su�ciently represent the

uncertainty in the measurements. In such a case the DIR technique will not go far enough

in reducing the near nadir directional error. In fact, the baseline technique is identical to

DIR with T = 0. A value which is too high i.e., 0:95, overestimates the uncertainty in the

measurements allowing the ambiguity removal step to oversmooth the data. In simulation,

T = 0:8, the value used in producing this product, was found to be a reasonable value.

Performance was found to be insensitive to small changes in T . The chose of threshold

T deserves further study because the simulation studies and model �eld comparisons are

insu�cient to determine its impact on mesoscale phenomena. Depending on how well

mesoscale phenomena are preserved in the current product, T may be decreased to reduce

smoothing or increased to improve noise removal.

Once the solution set has been calculated for each wind vector. Ambiguity removal is

performed to select a unique solution vector from each solution set. A two step procedure
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is employed. First one of the disjoint segments which composes each solution set is selected

by performing ambiguity removal in the usual manner 2. Ambiguity removal is performed

on the local likelihood maximas and the segment which encloses the selected maxima is

chosen. Next, a unique vector within the chosen segment is selected by iteratively choosing

the vector which is closest in direction to the median vector of the surrounding 7 x 7

window.3 Each wind vector cell is initialized by the maxima within the selected segment.

Wind vectors are not updated until after each median �ltering pass is complete. Passes

continue until no wind vectors change by more than a threshold amount (5 degrees) or a

maximum number of passes (100) is exceeded. The author is unaware of the maximum

number of passes ever being exceeded, and typically the vast majority of the wind vectors

are determined by the fourth pass.

3 Thresholded Nudging

The baseline nudging algorithm, which is the same as that used for NSCAT, chooses an

ambiguity to initialize the median �lter. Currently, that algorithm only allows one of the

two most likely ambiguities to be chosen. The rationale for that limit is based on NSCAT

experience, where we assume that the scatterometer can choose the correct streamline, and

want the nudging �eld to select the proper ambiguity from that line. The other reason for

limiting to two the number of ambiguities from which the nudging �eld can choose is to

limit the inuence of the nudging �eld, and to use as much scatterometer information as

possible. If all ambiguities are allowed to be selected by the nudging �eld, the retrieved

wind �eld would be very close to the nudged wind �eld, defeating the point of making the

measurement.

The QSCAT situation is somewhat di�erent from the NSCAT situation. In the outer

swath, the scatterometer can not always select the correct streamline. A signi�cant per-

centage of the time (10-15 percent in simulation) the ambiguity closest to the truth is the

third or fourth ranked ambiguity. Given that situation, one method that suggests itself is

to use more ambiguities for nudging in the outer swath.

The likelihood function can be converted into an estimate of probability. (see previ-

ous section) Using equation 1 we calculate relative likelihood a quantity proportional to

2with the exception that the median �lter is initialized using thresholded nudging. See next section for

more detail.
3The window size was chosen to correspond to the size used by the baseline median �ltering algorithm.

Additional window sizes deserve further study both for DIR and the standard algorithm.
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P (f�0igju; �) normalized so that the relative likelihood of the �rst ranked ambiguity is

one. The method by which we set the maximum rank for nudging is based on choosing

the number of ambiguities above a certain threshold, M in relative likelihood. The thresh-

old itself should be a function of the quality of the nudge �eld. The value used in this

product, M = 0:2, was found to be an acceptable value in simulation and has been ver-

i�ed somewhat post-launch by comparisons of SeaWinds data with ECMWF wind �elds.

Thresholded nudging with M = 0:2 was found to outperform a number of other schemes

for improving ambiguity removal.

4 Data Format and Guidelines for Use

The format of the data is the same as that of the o�cial L2B Wind Vector Data Product,

with the following exception: The last ambiguity in each wind vector cell is the solution

vector obtained by using DIR and TN, and the selected index is set to point to this ambigu-

ity. For wind vector cells which originally had less than 4 ambiguities, an extra ambiguity

is added (the number of ambiguities value is incremented) to hold the DIRTH solution

vector. For wind vector cells which already had all four ambiguities, the fourth ambiguity

is overwritten by the solution vector. The overwriting was done, because there are only

four slots available for ambiguities in the L2B format. The special product was designed

to match that format in order to avoid requiring users to obtain or write new data reading

routines. If the DIR or TN techniques are later incorporated into the o�cial product, a

new data set will be created to store the solution vector, while maintaining the original

ambiguities and selected index.
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5 Points of Contact

Questions concerning data distribution should be directed to PO.DAAC. Issues related to

data quality or processing should be directed to Bryan Stiles. Speci�c contact information

is listed below. Please note that e-mail is always the preferred means of communication.

PO.DAAC: Data Distribution Issues

JPL PO.DAAC User Services O�ce

Jet Propulsion Laboratory

Mail Stop Raytheon-299

4800 Oak Grove Drive

Pasadena, CA 91109, U.S.A.

Telephone: (626) 744-5508

FAX: (626) 744-5506

e-mail: qscat@podaac.jpl.nasa.gov

Home Page: http://podaac.jpl.nasa.gov/quikscat

FTP: ftp://podaac.jpl.nasa.gov

Technical and Algorithmic Issues; Corrections and Updates to this Product Description

Dr. Bryan W. Stiles e-mail: bstiles@acid.jpl.nasa.gov

Jet Propulsion Laboratory, MS 300-319 Telephone: (818) 354-5329

4800 Oak Grove Drive FAX: (818) 393-5184

Pasadena, CA 91109, U.S.A.
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