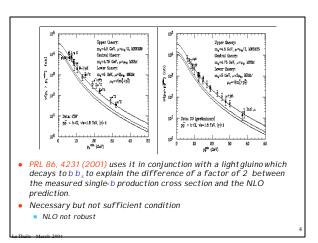
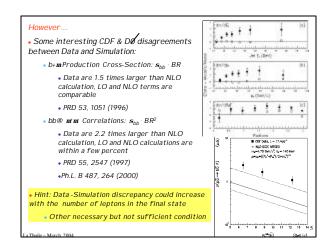
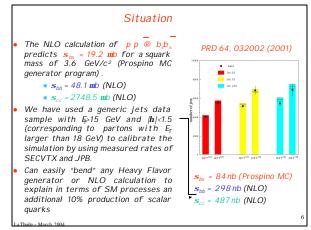
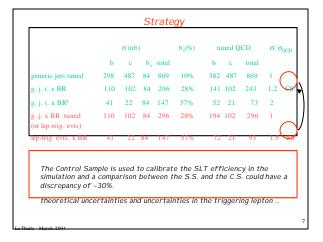

Anomalies in Heavy Flavor jets in pp interactions at **Ö**s=1.8 TeV

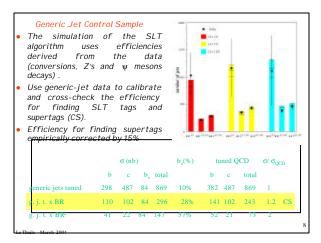
G. Apollinari - Fermilab

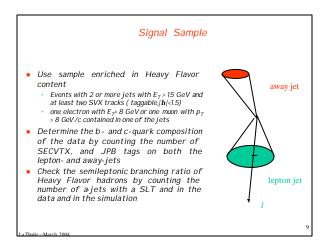

For the CDF Collaboration

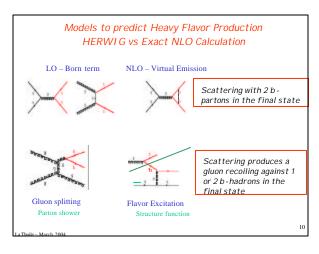

Les Rencontres de Physique de la Vallee d'Aoste LaThuile March 1-6th,2004

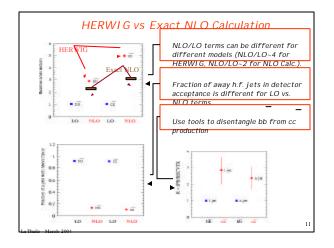

I a Thuile - March 200

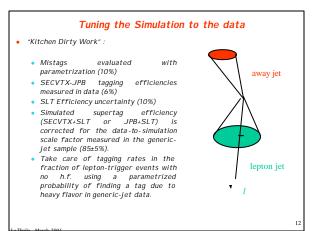


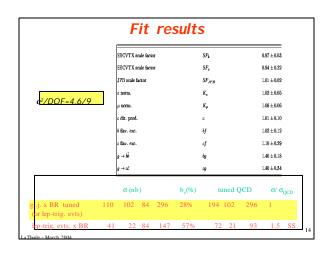

- The kinematic of the anomalous W+2,3 jets events has a 10-6 probability of being consistent with the SM simulation - PRD 65, 032004 (2002)
- Superjets modeled by postulating a low mass, strong interacting object which decays with a semileptonic branching ratio of -1 and a lifetime of -1ps - hep-ph/0109020
- No limit on the existence of a charge -1/3 scalar quark with mass smaller than 7 GeV/c² (the supersymmetric partner of the bottom quark, b_g is a potential candidate) - PRL 86, 4463 (2001)
- hep-ph/0007318 and hep-ph/0401034 use it to resolve the discrepancy between the measured and predicted values of R for 5 < Ös < 10 GeV and for 20 < Ös < 209 GeV at e⁺ e colliders
- If light $b_{\rm s}$ existed, Run I has produced 10° pairs; why we did't see them?

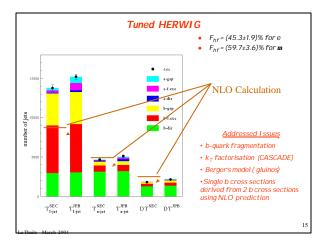


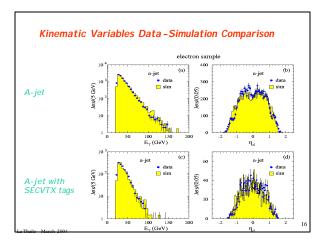


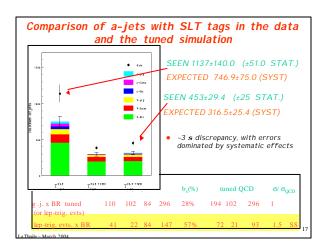


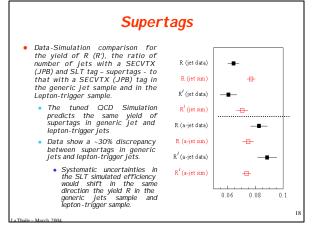











		Fit parameters	Constraints	Error
SECVTX	lepton side	c dir norm	b dir/c dir »1	14%
SECVIX	·	b flav exc norm	b/c »0.5	28%
	away side	c flavexcnorm		
	Both	b gluon split norm	1.40	0.19
		c gluon split norm	1.35	0.36
JPB	lepton side	Ke norm		
	away side	Km norm		
	,	SECVTX scale factor, b	1.0	6%
	Both	SECVTX scale factor, c	1.0	28%
		JPB scale factor	1.0	6%
and gl b- and • K _e and	uon ['] splitting prod c-quarks d K _m account for th	rresponding to the direct, duction cross sections evaluate the luminosity and b-direct c, cf, cq account for the re	uated by Herwig production	for

Uncertainty on Mistags and SLT Tagging Efficiency on Heavy Flavors SLT mistags and tagging efficiency have been determined historically on data (PRD D - 64, 032002) with conservative errors of 10%. The availability of a tuned simulation can be used to reduce the previous estimate of the SLT mistags and tagging efficiency systematic errors. Fit observed rates of SLT tags in generic jets with P_f x fakes +P_{hf} x h.f. The fit returns $P_{\rm f}$ =1.017±0.013 and $P_{\rm hf}$ =0.981±0.045, ${\bf r}$ = -0.77 Using this result the SLT expectation in in the SS away-jets is 1362±28 whereas 1757±104 are observed (3.8 s) This discrepancy cannot come from obvious prediction deficiencies observed pred, fakes, pred, h.f. 18885 15570±1557 3102 ±403 SLT's in g. jets SLT's in g. jets with SECVTX 1451 999 ±60 508 ±51 SLT's in g. jets with JPB 2023 856 ±86 1175 ±71 SLT 's in a-jets (lep -trig.) 1757 619 ±62 747 ± 75

Conclusions

- We have measured the heavy flavor content of the inclusive lepton sample by comparing rates of SECVTX and JPB tags in the data and the simulation
- We find good agreement between the data and the simulation tuned within the experimental and theoretical uncertainties
- We find a 50% excess of a-jets with SLT tags due to heavy flavor with respect to the simulation; the discrepancy is a 3s systematic effect due to the uncertainty of the SLT efficiency and background subtraction. However, comparisons of analogous tagging rates in generic-jet data and their simulation do not support any increase of the efficiency or background subtraction beyond the quoted systematic uncertainties

20

Conclusions

- A discrepancy of this kind and size is expected, and was the motivation for this study, if pairs of light scalar quarks with a 100% semileptonic branching ratio were produced at the Tevatron
- The data cannot exclude alternate explanations for this discrepancy
- Previously published measurements support the possibility, born out of the present work, that approximately 30% of the presumed semileptonic decays of heavy flavor hadrons produced at the Tevatron are due to unconventional sources

La Thuile - March 20

21