Population Genetics: Practical Applications

Lynn B. Jorde Department of Human Genetics University of Utah School of Medicine

Allele frequencies in populations			
Population	SNP 1	SNP 2	SNP 3
1	0.588	0.890	0.880
2	0.671	0.559	0.528
3	0.792	0.790	0.828

"Race" and genetic variation among individuals (and why does race matter?)

- Prevalence of many diseases varies by population (hypertension, prostate cancer)
- Some common disease-predisposing variants vary among populations
 - Factor V Leiden variant: 5% of Europeans, < 1% of Africans and Asians
- Responses to some drugs may vary among populations
 - African-Americans may be, on average, less responsive to ACE inhibitors, beta-blockers
- Race is commonly used to design forensic databases (e.g., "Caucasian", African-American, Hispanic)

Tabulation of DNA sequence						
differences among individuals						
	TTGCAGCTCTCC TTGCAGCTCTCC					
•/			Bush	McCain	Clinton	Dean
25 11	TTGCAGCTCTCC	Bush	0		-	
	McCain	2	0	-		
		Clinton	5	3	0	
	ATGCAGCTCTCG	Dean	6	4	1	0
	ATG¢TGCTCTCG					
	ATGCTGCTCTCG ATGCTGCTCTCG					

Frequencies of SNPs associated with response to anti-hypertensives

	CYP11B2	AGTR1	ADD	GNB3
Africa	.20	.02	.07	.28
Asia	.33	.05	.48	.57
Europe	.43	.29	.21	.66

Gefitinib (Iressa) and non-small cell lung cancer

- Gefitinib inhibits epidermal growth factor receptor (EGFR) kinase activity
- Effective in 10% of Europeans, 30% of Asians (Japanese, Chinese, Koreans)
- Somatic mutations in EGFR found in 10% of Europeans, 30% of Japanese
- 80% of those with mutations respond to gefitinib; 10% of those without mutations respond

Johnson and Jänne, 2005, Cancer Res. 65: 7525-9

Microarrays and "personalized medicine"

Hundreds of thousands of different DNA sequences can be placed on a single array

These sequences are compared with DNA from a patient to test for mutations

Signals are rapidly processed by a computer

SNPs, haplotypes, linkage disequilibrium, and gene mapping

- A SNP with minor allele frequency (MAF) > 1% is found, on average, at 1/300 bp (roughly 10 million total)
- A "common" SNP (MAF > 5%) is found at about 1/600 bp (roughly 5 million total)
- SNPs have low mutation rates and can be typed by automated methods

Whole-genome association: the cost problem

- A whole-genome association study seeks any SNP allele that is found with elevated frequency in disease cases
- At \$.001 per SNP, genotyping 5 million SNPs costs \$5,000 per person
- A study involving 1,000 cases and 1,000 controls would cost \$10,000,000
- Will SNP association reveal disease genes, and do we need to test all of these SNPs?

Potential advantages of linkage disequilibrium (LD)

- Family-based linkage studies of complex diseases often yield large candidate regions (~10-20 million base pairs)
- Association studies (linkage disequilibrium) can incorporate many past generations of recombination to narrow the candidate region
- Family data are *not* necessarily needed

- Chromosome location
 - Telomeric vs. centromeric
 - Intragenic vs. extragenic
- DNA sequence patterns (GC content)
- Recombination hotspots (1 every 50-100 kb)
- Evolutionary factors
 - Natural selection
 - Gene flow
 - Mutation, gene conversion
 - Genetic drift

- Continental variation patterns affect stratification and admixture LD mapping design
- Greater "age" of African populations: LD persists over shorter physical distances
- Greater divergence of African populations: LD patterns more likely to differ from other populations: African-American populations especially useful for admixture LD mapping
- Common alleles and haplotypes are likely to be shared across populations: association patterns may be shared

In search of a better map: The International Haplotype Map Project

- 600,000 SNPs (1 per 5 kb) genotyped in 270 individuals
 - 90 CEPH Utah individuals (30 trios)
 - 90 Yoruban from Nigeria (30 trios)
 - 90 East Asians (45 Chinese, 45 Japanese)
- Evaluate patterns of linkage disequilibrium and haplotype structure
 - Variation in different genomic regions
 - Variation in different populations
- Encyclopedia of DNA Elements (ENCODE)
 - 10 500 kb regions completely resequenced in 16 members of each of 3 HapMap populations; then genotyped in complete sample

Some of the issues surrounding HapMap

- Choice of populations
 - How best to sample human diversity
 - · Families vs. unrelated individuals
 - Sample size
- SNP ascertainment and density
- ELSI
 - Informed consent (individual consent and community consultation)
 - Avoidance of stigmatization

Portability of HapMap patterns to other populations			
HapMap population	Comparative population	Reference	
Asian	Chinese, Japanese, Korean	Lim, 2006, Genomics	
European	Australian	Stankovich, 2006, Hum. Genet.	
European	Finnish	Willer, 2006, Genet. Epidemiol.	
European	Estonian	Montpetit, 2006, PLOS Genetics	
European	Spanish	Ribas, 2006, Hum. Genet.	
European	Other European	Mueller, 2005, AJHG	

Examples of genes in which elevated LD indicates recent natural selection

Gene	Phenotype
G6PD	Malaria protection
Hemochromatosis	Iron absorption
CYP3A5	Sodium retention
Lactase	Lactose tolerance
SLC24A5	Skin pigmentation
Alcohol dehydrogenase	Ethanol metabolism
ASPM and microcephalin	Brain development (?)

Voight et al., 2006, PLOS Biology 4: 446-458

Linkage disequilibrium and single-gene diseases: many successes

- Cystic fibrosis
- Hemochromatosis
- Wilson disease
- Friedreich's ataxia
- Bloom syndrome
- Werner syndrome
- Progressive myoclonus epilepsy
- Torsion dystonia
- Diastrophic dysplasia (and many other "Finnish" diseases)

Linkage disequilibrium and complex diseases: some recent successes

- NOD2 (CARD15) and Crohn's disease
- ADAM33, GPRA, and asthma
- Neuregulin and schizophrenia
- Complement factor H and age-related macular degeneration
 - HapMap data used to define a 41 kb block to focus mutation search