[image: image1.png]e COAGEEY

National Cancer Institute
Center for Bioinformatics
(NCICB)
caArray 2.0
Performance Test Plan

	Last Revised:
	10.17.2007

	Produced By:
	NCICB Development Team

	Version:
	0.4

Revision History

	Date
	Version
	Description
	Revised by

	10/15/2007
	0.1
	Initial Draft
	Bill Mason

	10/17/2007
	0.2
	Updated with details of workloads and test cases. Also reorganized document.
	Rashmi Srinivasa

	10/18/2007
	0.3
	Fleshed out the API and search test cases and cleaned up document.
	Rashmi Srinivasa

	11/19/2007
	0.4
	Added all remaining tests and revised the search and download tests.
	Rashmi Srinivasa

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

iv1.
Introduction

2.
Document Terminology
iv
2.1.1.
Load Testing and Stress Testing
iv
2.1.2.
Workload
iv
3.
Approach
iv
3.1.
Architecture and Test Environment
iv
3.2.
Baselining and Benchmarking the Tests
v
3.3.
Performance Metrics
v
3.4.
Performance Report
v
4.
Workloads
v
4.1.1.
CaArray Upload Workload
v
4.1.2.
CaArray Import Workload
vi
4.1.3.
CaArray Download Workload
vi
4.1.4.
CaArray Search Workload
vi
4.1.5.
CaArray API Download Workload
vii
4.1.6.
CaArray API Search Workload
vii
4.1.7.
CaArray Browse Workload
viii
4.1.8.
CaArray Browse Experiment Workload
viii
5.
Load Test Cases
viii
5.1.1.
CaArray Upload Test
viii
5.1.2.
CaArray Import Test
ix
5.1.3.
CaArray Download Test
ix
5.1.4.
CaArray Search Test
ix
5.1.5.
CaArray Remote Java API Download Test
x
5.1.6.
CaArray GRID API Download Test
x
5.1.7.
CaArray Remote Java API Search Test
xi
5.1.8.
CaArray GRID API Search Test
xi
5.1.9.
CaArray Browse Test
xi
5.1.10.
CaArray Browse Experiment Test
xii
6.
Stress Test Cases
xii
6.1.1.
CaArray Upload Stress Test
xii
6.1.2.
CaArray Import Stress Test
xiii
6.1.3.
CaArray Download Stress Test
xiii
6.1.4.
CaArray Search Stress Test
xiii
6.1.5.
CaArray Remote Java API Download Stress Test
xiv
6.1.6.
CaArray GRID API Download Stress Test
xiv
6.1.7.
CaArray Remote Java API Search Stress Test
xv
6.1.8.
CaArray GRID API Search Stress Test
xv
6.1.9.
CaArray Browse Stress Test
xv
6.1.10.
CaArray Browse Experiment Stress Test
xvi
6.1.11.
CaArray Heterogeneous Workload Stress Test
xvi

Performance Test Plan
1. Introduction

The goal of performance testing is not to find bugs, but to eliminate bottlenecks and establish a baseline for future regression testing. To conduct performance testing is to engage in a carefully controlled process of measurement and analysis.
2. Document Terminology

2.1.1. Load Testing and Stress Testing

· A load test is a simulation of real-life use of a Web application, performed to assess how the application will work under actual conditions of use. The test is performed under expected conditions both prior to application deployment and during the life cycle of the application.

· A stress test is designed to determine how heavy a load the Web application can handle. Stress testing does not aim to break the system by overwhelming it, but instead tries to keep the system constantly humming like a well-oiled machine. Stress testing will expose bugs that do not surface in cursory testing, such as memory management bugs, memory leaks, buffer overflows etc.

2.1.2. Workload

A workload needs to be established before testing begins. A workload is the total burden of activity placed on the Web application to be tested. This burden consists of a certain number of virtual users who process a defined set of transactions in a specified time period. Assigning a proper workload is the crux of performance testing.
3. Approach
3.1. Architecture and Test Environment
Before choosing the right model for performance tests, it is important for us to understand the architecture. Testing in an environment that does not mimic production provides wrong results. It is crucial to know the specifications of the web server, databases, or any other external dependencies the application might have. Building the test environment as close as possible to production is the key to providing accurate results. Currently, the Dev and QA environments are using VMware in a shared environment. Each application is given an execution priority, which will have a significant impact on performance testing. It is planned to get a dedicated VMware box to perform these tests.

3.2. Baselining and Benchmarking the Tests
A benchmark test is conducted to profile performance for different software releases. Benchmarking helps us to run tests under similar conditions in order to compare results for different software, to verify that new features and functions do not impact response times of the Web application under test, and to find system bottlenecks. Defining what each virtual user does and measuring response times for a single virtual user performing a certain transaction is what baselining is all about. Once we have data for a single user or workload, we can then ramp up the number of users linearly to "n" users and measure the response times to look for deviations.
3.3. Performance Metrics
Most performance tools measure round-trip response times. "Round trip" can be defined as the time taken between the request being sent from the client and the response received from the server. Round-trip time includes the network time that is not a constant depending on the environment in which the test is conducted, the external dependencies on databases, and network latency. Hence, round-trip response times are not an accurate indicator of the performance of the application. We will measure the server-side response times from the server logs and compare them with the round-trip times to see how the response times vary depending on the network traffic.

3.4. Performance Report

Performance numbers are typically reported as average, minimum, and maximum response times. We will run the performance tests for a specified time, and the average response time will be the most important indicator of performance. We will report maximum and minimum response times to provide a means to investigate why a certain transaction with a certain input indicated a good or bad response time.

4. Workloads
The following are the basic workloads that will be used by the test cases.
4.1.1. CaArray Upload Workload

· Description: One user uploads files for an experiment through the CaArray UI.

· Setup
· User logs in.

· User creates and opens an experiment.

· Steps:

· User uploads one or more files (total size of data = 1KB-4GB).

4.1.2. CaArray Import Workload

· Description: One user imports already-uploaded files into an experiment through the CaArray UI. This workload exercises the validation functionality and the import of the data into the database.
· Setup

· User logs in.

· User creates and opens an experiment.

· User uploads one or more files (total size of data = 1KB-4GB).

· Steps:

· User imports the uploaded files.

4.1.3. CaArray Download Workload

· Description: One user downloads array data files through the CaArray UI.

· Setup:
· An experiment with appropriate size of hybridization data files exists and is viewable by the user.

· User logs in.

· User opens an experiment with data files.

· Steps:

· User downloads array data files from an Experiment (size of uncompressed data = 1KB-10GB):
4.1.4. CaArray Search Workload

· Description: One user executes an experiment search through the CaArray UI.

· Setup:
· The appropriate experiments matching the search criteria exist and are viewable by the user.

· Steps:

· User enters search criteria which will match 5-30% of the total number of experiments in caArray.
· The experiments resulting from the search are returned.

· The above steps are repeated for different database sizes (100-4000 experiments).

4.1.5. CaArray API Download Workload

· Description: One external user downloads array data using the Remote Java API or the GRID API.

· Setup:

· An experiment with the appropriate size of hybridization data files exists and is viewable by the user.

· User connects to the CaArray server and logs on (either through the remote Java API or through the CaArray Grid Service).

· User selects the hybridization(s) and quantitation type(s) for an experiment.
· Steps:

· User downloads array data for the selected hybridization(s) and quantitation type(s) (size of data = 1KB-4GB).
· Repeat the above step for all types of arrays:

· Affymetrix raw data (.cel)

· Affymetrix derived data (.chp)

· Illumina raw data

· Illumina derived data

· Genepix
4.1.6. CaArray API Search Workload

· Description: One external user executes an experiment search using the Remote Java API or the GRID API.

· Setup:

· The appropriate experiments matching the search criteria exist and are viewable by the user.

· User connects to the CaArray server (either through the remote Java API or through the CaArray Grid Service).

· Steps:

· User enters search criteria which will match 5-30% of the total number of experiments in caArray.

· The experiments resulting from the search are returned.

· The above steps are repeated for different database sizes (100-4000 experiments).

· The above steps are repeated for the following search APIs:
· CQL search

· Search by example

4.1.7. CaArray Browse Workload

· Description: One user browses through public experiments in the CaArray UI.

· Setup:

· The appropriate number of experiments exists, and the experiments are viewable by the user.

· Steps:

· User browses to the public experiments page in caArray.

· User clicks on a few pages of the paginated results.

· The above steps are repeated for different database sizes (100-4000 experiments).

4.1.8. CaArray Browse Experiment Workload

· Description: One user browses through the details of a single experiment in the CaArray UI.

· Setup:

· An experiment exists and is viewable by the user.

· Steps:

· User clicks on an experiment in caArray.

· User clicks on a few tabs describing the annotations and data files associated with the experiment.

· The above steps are repeated for different database sizes (100-4000 experiments).

5. Load Test Cases
Using JMeter, tests will be run to simulate 10 concurrent users exercising the basic workloads.
5.1.1. CaArray Upload Test

· Description: This tests concurrent users uploading files into experiments using the CaArray UI. The basic CaArray Upload workload is exercised by 10 concurrent users. The total file size being uploaded is varied from 1KB to 4GB. The response time is captured.
· Steps:

· 10 concurrent users run the CaArray Upload workload.

· The above step is repeated for a total file size varying from 1KB to 4GB.

· Expected Results

· The upload response time does not degrade unacceptably as the file size increases.

5.1.2. CaArray Import Test

· Description: This tests concurrent users importing already-uploaded files into experiments using the CaArray UI. It exercises the validation functionality and the import of the data into the database. The basic CaArray Import workload is exercised by 10 concurrent users. The total file size being uploaded is varied from 1KB to 4GB. The response time is captured.

· Steps:

· 10 concurrent users run the CaArray Import workload.

· The above step is repeated for a total file size varying from 1KB to 4GB.

· Expected Results

· The import response time does not degrade unacceptably as the file size increases.

5.1.3. CaArray Download Test

· Description: This tests concurrent users downloading array data from experiments using the CaArray UI. The basic CaArray Download workload is exercised by 10 concurrent users. The total data size being downloaded is varied from 1KB to 10GB. The response time is captured.

· Steps:

· 10 concurrent users run the CaArray Download workload.

· The above step is repeated for a total data size varying from 1KB to 10GB.

· The test is run for all the alternatives described in the CaArray Download workload (number of hybridizations, number of quantitation types, different array types).
· Expected Results

· The download time does not degrade unacceptably as the data size increases.

5.1.4. CaArray Search Test

· Description: This tests concurrent users searching for experiments using the CaArray UI. The basic CaArray Search workload is exercised by 10 concurrent users. The size of the database (number of experiments) is varied from 100 to 4000. The response time is captured.

· Steps:

· 10 concurrent users run the CaArray Search workload.

· The above step is repeated for a database size of 100, 500, 1000, 2000 and 4000 experiments.
· Expected Results

· The response time does not degrade unacceptably as the database size increases.

5.1.5. CaArray Remote Java API Download Test

· Description: This tests concurrent users downloading array data from experiments using the CaArray Remote Java API. The basic CaArray API Download workload is exercised by 10 concurrent users connecting through the remote Java API. The total data size being downloaded is varied from 1KB to 4GB. The response time is captured.

· Steps:

· 10 concurrent users connect through the remote Java API and run the CaArray API Download workload.

· The above step is repeated for a total data size varying from 1KB to 4GB.

· The test is run for all the array types described in the CaArray API Download workload.
· Expected Results

· The download time does not degrade unacceptably as the data size increases.

5.1.6. CaArray GRID API Download Test

· Description: This tests concurrent users downloading array data from experiments through the CaArray GRID Service. The basic CaArray API Download workload is exercised by 10 concurrent users connecting through the CaArray GRID Service. The total data size being downloaded is varied from 1KB to 4GB. The response time is captured.

· Steps:

· 10 concurrent users connect through the CaArray GRID Service and run the CaArray API Download workload.

· The above step is repeated for a total data size varying from 1KB to 4GB.
· The test is run for all the array types described in the CaArray API Download workload.
· Expected Results

· The download time does not degrade unacceptably as the data size increases.

5.1.7. CaArray Remote Java API Search Test

· Description: This tests concurrent users searching for experiments using the CaArray Remote Java API. The basic CaArray API Search workload is exercised by 10 concurrent users connecting through the remote Java API. The size of the database (number of experiments) is varied from 100 to 4000. The response time is captured.

· Steps:

· 10 concurrent users connect through the remote Java API and run the CaArray API Search workload.

· The above step is repeated for a database size of 100, 500, 1000, 2000 and 4000 experiments.

· The test is run for the two search types described in the CaArray API Search workload (CQL search and search by example).

· Expected Results

· The response time does not degrade unacceptably as the database size increases.

5.1.8. CaArray GRID API Search Test

· Description: This tests concurrent users searching for experiments through the CaArray GRID Service. The basic CaArray API Search workload is exercised by 10 concurrent users connecting through the CaArray GRID Service. The size of the database (number of experiments) is varied from 100 to 4000. The response time is captured.

· Steps:

· 10 concurrent users connect through the CaArray GRID Service and run the CaArray API Search workload using a CQL query.

· The above step is repeated for a database size of 100, 500, 1000, 2000 and 4000 experiments.

· Expected Results

· The response time does not degrade unacceptably as the database size increases.

5.1.9. CaArray Browse Test

· Description: This tests concurrent users browsing through experiments using the CaArray UI. The basic CaArray Browse workload is exercised by 10 concurrent users. The size of the database (number of experiments) is varied from 100 to 4000. The response time is captured.

· Steps:

· 10 concurrent users run the CaArray Browse workload.

· The above step is repeated for a database size of 100, 500, 1000, 2000 and 4000 experiments.

· Expected Results

· The response time does not degrade unacceptably as the database size increases.

5.1.10. CaArray Browse Experiment Test

· Description: This tests concurrent users browsing through the details of a single experiment using the CaArray UI. The basic CaArray Browse Experiment workload is exercised by 10 concurrent users. The size of the database (number of experiments) is varied from 100 to 4000. The response time is captured.

· Steps:

· 10 concurrent users run the CaArray Browse Experiment workload.

· The above step is repeated for a database size of 100, 500, 1000, 2000 and 4000 experiments.

· Expected Results

· The response time does not degrade unacceptably as the database size increases.

6. Stress Test Cases

Using JMeter, tests will be run to simulate 10 concurrent users exercising the basic workloads with the highest load or largest data set. The number of concurrent users will then be escalated to find the maximum user load under which the application still performs acceptably well.
6.1.1. CaArray Upload Stress Test

· Description: This tests concurrent users uploading files into experiments using the CaArray UI. The basic CaArray Upload workload is exercised with a file size of 4GB (maximum) by 10 concurrent users. The number of concurrent users is increased progressively until the response time becomes unacceptably high.

· Steps:

· 10 concurrent users run the CaArray Upload workload with a file size of 4GB.

· The above step is repeated with a progressively-increasing number of concurrent users until the response time becomes unacceptably high.

· Expected Results

· The maximum number of concurrent users uploading files that can be supported by CaArray.

6.1.2. CaArray Import Stress Test

· Description: This tests concurrent users importing already-uploaded files into experiments using the CaArray UI. It exercises the validation functionality and the import of the data into the database. The basic CaArray Import workload is exercised with a file size of 4GB (maximum) by 10 concurrent users. The number of concurrent users is increased progressively until the response time becomes unacceptably high.

· Steps:

· 10 concurrent users run the CaArray Import workload with a file size of 4GB.

· The above step is repeated with a progressively-increasing number of concurrent users until the response time becomes unacceptably high.

· Expected Results

· The maximum number of concurrent users importing files that can be supported by CaArray.

6.1.3. CaArray Download Stress Test

· Description: This tests concurrent users downloading array data files from experiments using the CaArray UI. The basic CaArray Download workload is exercised with a total data size of 10GB (maximum) by 10 concurrent users. The number of concurrent users is increased progressively until the response time becomes unacceptably high.

· Steps:

· 10 concurrent users run the CaArray Download workload with a data size of 10GB.

· The above step is repeated with a progressively-increasing number of concurrent users until the response time becomes unacceptably high.
· Expected Results

· The maximum number of concurrent users downloading files that can be supported by CaArray through the UI.

6.1.4. CaArray Search Stress Test

· Description: This tests concurrent users searching for experiments using the CaArray UI. The basic CaArray Search workload is exercised with a database size of 4000 experiments (maximum) by 10 concurrent users. The number of concurrent users is increased progressively until the response time becomes unacceptably high.

· Steps:

· 10 concurrent users run the CaArray Search workload with a database size of 4000 experiments.

· The above step is repeated with a progressively-increasing number of concurrent users until the response time becomes unacceptably high.

· Expected Results

· The maximum number of concurrent users searching for experiments that can be supported by CaArray through the UI.

6.1.5. CaArray Remote Java API Download Stress Test

· Description: This tests concurrent users downloading array data from experiments using the CaArray Remote Java API. The basic CaArray API Download workload is exercised with a total data size of 4GB (maximum) by 10 concurrent users connecting through the Remote Java API. The number of concurrent users is increased progressively until the response time becomes unacceptably high.

· Steps:

· 10 concurrent users connect through the CaArray Remote Java API and run the CaArray API Download workload with a data size of 4GB.

· The above step is repeated with a progressively-increasing number of concurrent users until the response time becomes unacceptably high.

· The test is run for all the array types described in the CaArray API Download workload.
· Expected Results

· The maximum number of concurrent users downloading files that can be supported by CaArray through the Remote Java API.

6.1.6. CaArray GRID API Download Stress Test

· Description: This tests concurrent users downloading array data from experiments using the CaArray GRID Service. The basic CaArray API Download workload is exercised with a total data size of 4GB (maximum) by 10 concurrent users connecting through the CaArray GRID Service. The number of concurrent users is increased progressively until the response time becomes unacceptably high.

· Steps:

· 10 concurrent users connect through the CaArray GRID Service and run the CaArray API Download workload with a data size of 4GB.

· The above step is repeated with a progressively-increasing number of concurrent users until the response time becomes unacceptably high.

· The test is run for all the array types described in the CaArray API Download workload.

· Expected Results

· The maximum number of concurrent users downloading files that can be supported by the CaArray GRID Service.

6.1.7. CaArray Remote Java API Search Stress Test

· Description: This tests concurrent users searching for experiments through the CaArray Remote Java API. The basic CaArray API Search workload is exercised with a database size of 4000 experiments (maximum) by 10 concurrent users connecting through the CaArray Remote Java API. The number of concurrent users is increased progressively until the response time becomes unacceptably high.

· Steps:

· 10 concurrent users connect through the CaArray Remote Java API and run the CaArray API Search workload with a database size of 4000 experiments.

· The above step is repeated with a progressively-increasing number of concurrent users until the response time becomes unacceptably high.

· The test is run for the two search types described in the CaArray API Search workload (CQL search and search by example).

· Expected Results

· The maximum number of concurrent users searching for experiments that can be supported by CaArray through the Remote Java API.

6.1.8. CaArray GRID API Search Stress Test

· Description: This tests concurrent users searching for experiments through the CaArray GRID Service. The basic CaArray API Search workload is exercised with a database size of 4000 experiments (maximum) by 10 concurrent users connecting through the CaArray GRID Service. The number of concurrent users is increased progressively until the response time becomes unacceptably high.

· Steps:

· 10 concurrent users connect through the CaArray GRID Service and run the CaArray API Search workload (CQL query) with a database size of 4000 experiments.

· The above step is repeated with a progressively-increasing number of concurrent users until the response time becomes unacceptably high.

· Expected Results

· The maximum number of concurrent users searching for experiments that can be supported by the CaArray GRID Service.

6.1.9. CaArray Browse Stress Test

· Description: This tests concurrent users browsing through experiments using the CaArray UI. The basic CaArray Browse workload is exercised with a database size of 4000 experiments (maximum) by 10 concurrent users. The number of concurrent users is increased progressively until the response time becomes unacceptably high.

· Steps:

· 10 concurrent users run the CaArray Browse workload with a database size of 4000 experiments.

· The above step is repeated with a progressively-increasing number of concurrent users until the response time becomes unacceptably high.

· Expected Results

· The maximum number of concurrent users browsing through experiments that can be supported by CaArray through the UI.

6.1.10. CaArray Browse Experiment Stress Test

· Description: This tests concurrent users browsing through the details of a single experiment using the CaArray UI. The basic CaArray Browse Experiment workload is exercised with a database size of 4000 experiments (maximum) by 10 concurrent users. The number of concurrent users is increased progressively until the response time becomes unacceptably high.

· Steps:

· 10 concurrent users run the CaArray Browse Experiment workload with a database size of 4000 experiments.

· The above step is repeated with a progressively-increasing number of concurrent users until the response time becomes unacceptably high.

· Expected Results

· The maximum number of concurrent browsing through the details of an experiment that can be supported by CaArray through the UI.

6.1.11. CaArray Heterogeneous Workload Stress Test

· Description: This tests concurrent users running a heterogeneous workload using the CaArray UI and API. Each basic CaArray workload is exercised with the largest load possible by 1 user, and all workloads are exercised concurrently. The number of concurrent users is increased progressively until the response time becomes unacceptably high.

· Steps:

· The basic CaArray workloads are run concurrently with the largest load by 1 user each. In other words, 1 user runs the CaArray Upload/Import workload, 1 user runs the CaArray Download workload, 1 user runs the CaArray Search workload, 1 user runs the CaArray API Download workload, 1 user runs the CaArray API Search workload, 1 user runs the CaArray Browse workload, and 1 user runs the CaArray Browse Experiment workload.
· The above step is repeated with a progressively-increasing number of concurrent users until the response time becomes unacceptably high.

· Expected Results

· The maximum number of concurrent users executing a heterogeneous workload that can be supported by CaArray.
PAGE

[image: image1.png]