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Introduction
Wireless Networks have gained great popularity

Special focus

Ad hoc networks, MANETs

Sensor networks

Wireless has many potential problems w.r.t.

Security

Reliability

Mobility
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Introduction
Problems include

Security

broadcast, “everybody can see”

nodes may be captured/impersonated/... many flavors

Reliability

nodes may be mobile

links and nodes have reliability/availability constraints

external interference,  benign - malicious
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What are the assumptions about faults?

crash faults, omission faults, etc.

independence of faults

dependence of faults => common mode fault

recovery differs greatly depending on the fault model

Fault Models 
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Recovery needs Redundancy
Time redundancy

Information redundancy

Spatial redundancy

e.g. if one considers s symmetric and b benign faults, 

then one needs N > 2s + b redundant units to mask the 

faults

6



CSIIRW 2007, Axel Krings

Fault Assumptions
Faults are seen only in the context of their definition 

within the fault model under consideration

Many mechanisms from security & fault-tolerance

e.g. encryption, authentication, ... 

BUT in the end, their impact on the faults they can 

produce is what really counts
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Network Graph 
Network Graph G is a digraph
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Network Graph 
General Communication Model

Reliability considerations:

increase path reliability/security

utilize multipath approach
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Since this work relates to tolerance of faults of different
types under possibly pathological scenarios, we need to ex-
plore redundancy mechanisms. As such, any approach uti-
lizing multipath and multiflow communication could have
the potential for tolerating faults, if these concepts are ex-
ploited for reliability [28]. Many multipath and multiflow
approaches have been presented in the literature, but their
focus has not been on tolerating diverse faults but have
rather been limited to overcome benign link or node faults.
For example, the concept of multiflow has been used in [36]
in the context of QoS enhancement, however, the focus is on
transmission congestion. Multipath routing has been used
to increase end-to-end reliability, e.g. the MP-DSR proto-
col in [20] forwards outgoing packets along multiple paths
that are subject to a particular end-to-end reliability require-
ment, but the impact of faults as described here are not con-
sidered.

An approach actually considering the impact of topol-
ogy was shown in [21] where communication topology op-
timization is treated as a linear programing problem. How-
ever, there is no spatial information redundancy involved.
The impact of eavesdropping is considered in [19], where
a secret sharing approach is used. Whereas this addresses
confidentiality issues, it does not address tolerance of a
fault. In fact, more general data distribution schemes and
their impact on survivability have been extensively studied
within the PASIS project at CMU [38] and their suitability
to agent systems have been shown in [13].

An on-demand routing scheme called Split Multipath
Routing (SMR) was shown in [18]. The protocol estab-
lishes and utilizes multiple routes of maximally disjoint
paths to minimize route recovery and control message over-
head. Again omission faults are considered. Predicting fault
behavior has been advocated in [34], however this is ex-
tremely difficult even in the case of link failures for mali-
cious act. Similarly, intrusion detection may be unrealistic
due to the excessive resource constraints associated with in-
formation required by the IDS [27].

Primary and backup communication paths are consid-
ered in [22]. However, disjoint paths are not exploited for
data redundancy but discarded as unwanted overhead. In
their use of redundant disjoint paths the overhead to re-
silience tradeoff becomes unfavorable for a larger number
of paths [7, 24]. Rather than banking on multiple paths, ro-
bustness to node failures is addressed in [39] by using the
concept of reliable nodes and reliable paths. Whereas ro-
bustness is significantly increased, the gain is due to restric-
tions on faults of the reliable nodes.

An approach actually addressing fault-tolerance was pre-
sented in [25] where “misbehaving” nodes causing omis-
sion faults were detected by so-called “watchdogs”. The
impact of nodes that failed to relay packets was shown and
a method was presented that allows for tolerance of such

nodes. The concept was extended in [29] where collabo-
rating groups of malicious nodes were considered. In [5]
the effectiveness of various watchdog schemes was inves-
tigated. Their results suggest that watchdog schemes are
indeed able to detect a number of attacks such as omissions
and certain symmetric faults but exposes limitations, e.g.
fabrication of false route error messages. Wormhole attacks
were addressed in [31], where statistical analysis was used
for detection of nodes which launch them. Detection of ma-
licious behavior due to observation of monitoring nodes op-
erating in promiscuous mode was shown in [6].

Next, a network model is presented that combines a gen-
eralized version of the watchdog strategy above and a multi-
path approach to tolerate diverse faults.

2. Network Survivability Model

Before formulating the network survivability1 model the
basic philosophy will be described using Figure 1.

S Dprimary path

alternate path

alternate path

Figure 1. General Communication Model

In general, if a source node S wants to establish a com-
munication path with a destination node D, then the relia-
bility of the path S-D is clearly depending on the reliability
of the nodes and communication links along the path. To
tolerate faults, may they be of benign nature or maliciously
induced, one can chose to increase the survivability of the
primary communication path S-D, indicated in the figure as
a thick shaded path, or one can use a multi-path approach,
considering alternative paths under the assumption that a
certain threshold of “good” paths can mask faults.

The model below will address both approaches. First, a
method based on cross-monitoring is presented that takes
advantage of node proximity and cross-monitoring using
the wireless paradigm. In Figure 1 the participating nodes
are physically located in the shaded primary path. However,
these nodes, due to their relative proximity, become also
vulnerable to effects disrupting communication, e.g. jam-
ming or bad weather. As a result, disjoint communication
paths, taking advantage of spatial separation, may lessen
such effects. Each of these alternate paths may in turn
utilize the cross-monitoring scheme of the primary path.
However, the cost of multi-path routing, as has been re-
ferred to in Section 1, is high. Multiple paths need to be

1For our purposes, the term survivability and reliability may be inter-
changed. Survivability was elected to emphasize that the operating envi-
ronment may be malicious.
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Increasing Path Reliability
Two dimensional watchdog approach

Krings Axel and Zhanshan Ma, "Fault-Models in Wireless 
Communication: Towards Survivable Ad Hoc Networks",  
MILCOM 2006, 23-25 October, 7 pages, 2006.

Use neighborhood induced by general join graph (GJG)
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G′ denote the infrastructure graph.

General Join Graph: Now construct G as the network
graph between source vS and destination vD as follows:

1. A path between vS and vD defines the primary com-
munication path.

2. Let C1 be a clique of all vertices vi that is incident
from vS , i.e., for each vi ∈ C1 there exists eSi.

3. For each vj in the primary communication path de-
fine Cj as a clique of all vertices vi, for which there
exists an edge ehi from all vh ∈ Cj−1.

4. Let CD be a trivial clique containing only vD.

i j

S D
1 ... ...

Figure 5: General Join Graph

Figure 5 shows the general structure of G. Note that each
shaded oval is a clique containing one node of the prin-
ciple communication path. Furthermore, by the construc-
tion of the graph, there is an edge from each vertex in
Ci to each vertex in Cj . This makes the combined sub-
graph Ci∪Cj a join graph. Note that, if all edges between
Ci and Cj are bidirectional, then Ci ∪ Cj forms again a
clique.

Figure 6 shows a hypothetical join graph G that could
have resulted from the physical graph shown in Figure 4
if one were to increase broadcast power and make minor
node rearrangements. Note that in the context of [7] only
horizontal monitoring is possible, which allows for the
possible detection of nodes that do not forward, which
they refer to as “misbehaving nodes”.

The orthogonal dimension allows for ”true” cross-
monitoring. This kind of monitoring is more powerful,
since it offers the potential to react to observed behavior.
As will be pointed out next, there is however a require-
ment that redundant packets overlap in the queues of the
participating nodes.
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Figure 6: Join Graph Example

3.5 Cross-monitoring Cost

In general, there is a temporal and space dimension asso-
ciated with cross-monitoring. Temporal relates to the fact
that cross-monitoring can only be performed as long as
the packet or event to be monitored is still in the queue or
event list respectively. Once the packet leaves the queue,
there is no frame of reference for the packet. This puts
a temporal constraint on the cross-monitoring nodes, i.e.,
the packet or event on any participating nodes must have
temporarily overlap in the respective queues. Obviously,
as the the difference in propagation delay between two
packets to be monitored grows, so must the queues of the
participating monitors. In the general model this is ad-
dressed by limiting cross-monitoring to a graph that is a
General Joint Graph. If one allows for more general graph
models then issues of larger variation in the overlap time
need to be considered. An example of this would be the
establishment of a slow communication link between v7

and vD in Figure 6.
The spatial dimension addresses overhead due to the

actual cross-monitoring and packet duplication. In the
horizontal dimension, where one node monitors the for-
warding of a packet of its neighbor in the primary com-
munication path, it induces overhead at the monitoring
node, but not the forwarding node. In the orthogonal di-
mension coss-monitoring implies data redundancy, i.e.,
packet redundancy. A node can only cross-monitor if it
contains the frame of reference, i.e., the packet it is verify-
ing against. Note that cross-monitoring for detection pur-
poses only does not require the packet to be present, since
it may suffice to have a signature, i.e., a hash, to verify the
consistency of the packet monitored. However, one does
not have to pay the cost of recovery by actually paying the
full cost of redundancy. It will be show later that redun-
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Example

shown in the top part of the figure. The undirected edges
along the routing path indicate bidirectional communi-
cation, the dashed edges indicate links capable of cross
monitoring1. Only nodes that are referred to later are la-
beled. The placement of the vertices in the graph relate
to the physical position of the nodes. The bottom of Fig-
ure 4 shows the logical graph, where vertices that can-
not contribute to cross-monitoring have been suppressed.
Let us denote the physical and logical graphs by GP and
GL respectively. Consider node vS in GP . All vj inci-
dent from vS can receive the packet. Node v1 can see
the packet, but is not capable of cross-monitoring with
any other node. Node vS can confirm that the packet was
received by v3 and can itself cross-monitor if the packet
was forwarded to v4. This was shown in [7] who called
the monitor “watchdog”. However, since vS cannot see
v4, it can only notice if v3 does not forward the packet
or falsifies it. Even if v3 appears to forward the packet
correctly, vS has no immediate way of knowing if v4 ac-
tually received it. These limitations were pointed out in
[7]. Node v2 adds no value in overcoming these problems
and could only be used as an alternate route in case eS3

would fail.

Next, consider node v4 in GL, whose packet sent to v5

is also seen by v6. Nodes v4 and v6 can verify that v5

received and forwarded the packet. However, only v6 can
actually verify if v7 actually received it. Thus, in the case
of a strictly omissive asymmetric fault, e.g. v5 does not
forward the packet to v7, then v6 can supply the packet.

In all cases of cross-monitoring it is required that the
packet is present in the monitor and the target node. As-
sume the case of v7 in GL who forwards the packet to-
wards vD. The packet could be forwarded via v8 or using
the lower path containing v9. Due to the different hop
counts in the upper and lower path, the packet may ar-
rive in v8 and v9 at different times. In order to be able
to cross-monitor, the packet would have to be in v9 when
v8 sends it to the final destination. This however may put
unrealistic constraints on queuing buffer sizes.

1There is no difference between an undirected edge and an edge with
two arrow heads. We simply omitted the heads to avoid visual clutter.
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Figure 4: Cross-monitoring in a Network

3.3 Two Dimensions
The previous subsection exposed that cross-monitoring
can occur in the direction of the network traffic, e.g. in
Figure 4 vS could be used to cross-monitor the packet for-
warded by v3 to v4. This cross-monitoring will referred
to as horizontal cross-monitoring. It can expose corrup-
tion and omissions but cannot verify actual delivery. The
watchdog monitoring scheme presented in [7] constitutes
horizontal cross-monitoring. More precisely, their moni-
toring is limited to the principle communication path.

On the other hand, it was shown that cross-monitoring
could also be orthogonal to the communication path, e.g.
v5 and v6 could cross-monitor each other to ensure that
the packet from v4 arrived correctly at v7. This dimension
of monitoring will be called orthogonal cross-monitoring.
It will be shown that, in general, horizontal monitoring
has the potential to detect faults, and that orthogonal mon-
itoring can detect and possibly correct faults, depending
on the fault type that is assume.

3.4 General Graph Model
We will now define the general graph model as a two-
timensional model, featuring a horizontal and orthogonal
plain. For two communicating nodes vS and vD a join-
graph will be derived from the infrastructure graph. Let

Assume nodes are moved to implement the GJG below

11

G′ denote the infrastructure graph.

General Join Graph: Now construct G as the network
graph between source vS and destination vD as follows:

1. A path between vS and vD defines the primary com-
munication path.

2. Let C1 be a clique of all vertices vi that is incident
from vS , i.e., for each vi ∈ C1 there exists eSi.

3. For each vj in the primary communication path de-
fine Cj as a clique of all vertices vi, for which there
exists an edge ehi from all vh ∈ Cj−1.

4. Let CD be a trivial clique containing only vD.

i j

S D
1 ... ...

Figure 5: General Join Graph

Figure 5 shows the general structure of G. Note that each
shaded oval is a clique containing one node of the prin-
ciple communication path. Furthermore, by the construc-
tion of the graph, there is an edge from each vertex in
Ci to each vertex in Cj . This makes the combined sub-
graph Ci∪Cj a join graph. Note that, if all edges between
Ci and Cj are bidirectional, then Ci ∪ Cj forms again a
clique.

Figure 6 shows a hypothetical join graph G that could
have resulted from the physical graph shown in Figure 4
if one were to increase broadcast power and make minor
node rearrangements. Note that in the context of [7] only
horizontal monitoring is possible, which allows for the
possible detection of nodes that do not forward, which
they refer to as “misbehaving nodes”.

The orthogonal dimension allows for ”true” cross-
monitoring. This kind of monitoring is more powerful,
since it offers the potential to react to observed behavior.
As will be pointed out next, there is however a require-
ment that redundant packets overlap in the queues of the
participating nodes.
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Figure 6: Join Graph Example

3.5 Cross-monitoring Cost

In general, there is a temporal and space dimension asso-
ciated with cross-monitoring. Temporal relates to the fact
that cross-monitoring can only be performed as long as
the packet or event to be monitored is still in the queue or
event list respectively. Once the packet leaves the queue,
there is no frame of reference for the packet. This puts
a temporal constraint on the cross-monitoring nodes, i.e.,
the packet or event on any participating nodes must have
temporarily overlap in the respective queues. Obviously,
as the the difference in propagation delay between two
packets to be monitored grows, so must the queues of the
participating monitors. In the general model this is ad-
dressed by limiting cross-monitoring to a graph that is a
General Joint Graph. If one allows for more general graph
models then issues of larger variation in the overlap time
need to be considered. An example of this would be the
establishment of a slow communication link between v7

and vD in Figure 6.
The spatial dimension addresses overhead due to the

actual cross-monitoring and packet duplication. In the
horizontal dimension, where one node monitors the for-
warding of a packet of its neighbor in the primary com-
munication path, it induces overhead at the monitoring
node, but not the forwarding node. In the orthogonal di-
mension coss-monitoring implies data redundancy, i.e.,
packet redundancy. A node can only cross-monitor if it
contains the frame of reference, i.e., the packet it is verify-
ing against. Note that cross-monitoring for detection pur-
poses only does not require the packet to be present, since
it may suffice to have a signature, i.e., a hash, to verify the
consistency of the packet monitored. However, one does
not have to pay the cost of recovery by actually paying the
full cost of redundancy. It will be show later that redun-
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Multi-Path Approach
Increased Reliability through Multi-path Routing

single path (even if GJG) may be subject to local disturbance

alternate paths can serve as multi-path option

multi-path is not a new concept, but this is different

what about the overhead....?
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Since this work relates to tolerance of faults of different
types under possibly pathological scenarios, we need to ex-
plore redundancy mechanisms. As such, any approach uti-
lizing multipath and multiflow communication could have
the potential for tolerating faults, if these concepts are ex-
ploited for reliability [28]. Many multipath and multiflow
approaches have been presented in the literature, but their
focus has not been on tolerating diverse faults but have
rather been limited to overcome benign link or node faults.
For example, the concept of multiflow has been used in [36]
in the context of QoS enhancement, however, the focus is on
transmission congestion. Multipath routing has been used
to increase end-to-end reliability, e.g. the MP-DSR proto-
col in [20] forwards outgoing packets along multiple paths
that are subject to a particular end-to-end reliability require-
ment, but the impact of faults as described here are not con-
sidered.

An approach actually considering the impact of topol-
ogy was shown in [21] where communication topology op-
timization is treated as a linear programing problem. How-
ever, there is no spatial information redundancy involved.
The impact of eavesdropping is considered in [19], where
a secret sharing approach is used. Whereas this addresses
confidentiality issues, it does not address tolerance of a
fault. In fact, more general data distribution schemes and
their impact on survivability have been extensively studied
within the PASIS project at CMU [38] and their suitability
to agent systems have been shown in [13].

An on-demand routing scheme called Split Multipath
Routing (SMR) was shown in [18]. The protocol estab-
lishes and utilizes multiple routes of maximally disjoint
paths to minimize route recovery and control message over-
head. Again omission faults are considered. Predicting fault
behavior has been advocated in [34], however this is ex-
tremely difficult even in the case of link failures for mali-
cious act. Similarly, intrusion detection may be unrealistic
due to the excessive resource constraints associated with in-
formation required by the IDS [27].

Primary and backup communication paths are consid-
ered in [22]. However, disjoint paths are not exploited for
data redundancy but discarded as unwanted overhead. In
their use of redundant disjoint paths the overhead to re-
silience tradeoff becomes unfavorable for a larger number
of paths [7, 24]. Rather than banking on multiple paths, ro-
bustness to node failures is addressed in [39] by using the
concept of reliable nodes and reliable paths. Whereas ro-
bustness is significantly increased, the gain is due to restric-
tions on faults of the reliable nodes.

An approach actually addressing fault-tolerance was pre-
sented in [25] where “misbehaving” nodes causing omis-
sion faults were detected by so-called “watchdogs”. The
impact of nodes that failed to relay packets was shown and
a method was presented that allows for tolerance of such

nodes. The concept was extended in [29] where collabo-
rating groups of malicious nodes were considered. In [5]
the effectiveness of various watchdog schemes was inves-
tigated. Their results suggest that watchdog schemes are
indeed able to detect a number of attacks such as omissions
and certain symmetric faults but exposes limitations, e.g.
fabrication of false route error messages. Wormhole attacks
were addressed in [31], where statistical analysis was used
for detection of nodes which launch them. Detection of ma-
licious behavior due to observation of monitoring nodes op-
erating in promiscuous mode was shown in [6].

Next, a network model is presented that combines a gen-
eralized version of the watchdog strategy above and a multi-
path approach to tolerate diverse faults.

2. Network Survivability Model

Before formulating the network survivability1 model the
basic philosophy will be described using Figure 1.

S Dprimary path

alternate path

alternate path

Figure 1. General Communication Model

In general, if a source node S wants to establish a com-
munication path with a destination node D, then the relia-
bility of the path S-D is clearly depending on the reliability
of the nodes and communication links along the path. To
tolerate faults, may they be of benign nature or maliciously
induced, one can chose to increase the survivability of the
primary communication path S-D, indicated in the figure as
a thick shaded path, or one can use a multi-path approach,
considering alternative paths under the assumption that a
certain threshold of “good” paths can mask faults.

The model below will address both approaches. First, a
method based on cross-monitoring is presented that takes
advantage of node proximity and cross-monitoring using
the wireless paradigm. In Figure 1 the participating nodes
are physically located in the shaded primary path. However,
these nodes, due to their relative proximity, become also
vulnerable to effects disrupting communication, e.g. jam-
ming or bad weather. As a result, disjoint communication
paths, taking advantage of spatial separation, may lessen
such effects. Each of these alternate paths may in turn
utilize the cross-monitoring scheme of the primary path.
However, the cost of multi-path routing, as has been re-
ferred to in Section 1, is high. Multiple paths need to be

1For our purposes, the term survivability and reliability may be inter-
changed. Survivability was elected to emphasize that the operating envi-
ronment may be malicious.
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Simple Overlay Scheduling 
Used in Real-time Multi-processor Systems

Ghosh [1994], Tsuchiya [1995], Ghosh [1997], Manimaran 
[1998], Al-Omari [2004],...

Primary-backup scheduling 

overhead is negligibly small in the fault-free case

non-preemptive task consists of primary and backup 

accept new task into system if feasibility test guaranteed that 
task can be scheduled to meet it deadline

uses backup overloading to avoid unnecessary overhead

13
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Conceptual Network Node
Node is viewed as having 

input queue(s)

output queues/links

This makes sense in fixed network, but what about 

wireless nodes?

MIMO

CDMA

TDMA
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There are similarities between this scheme and networks, where connections or
packets are accepted if QoS requirements can be satisfied. Essentially, this enforces
QoS guarantees and rejected traffic needs to reapply and inform the upper layer if al-
ternatives need to be found. Another argument is network performance if many packets
are lost, or links fail, and timeout mechanisms are used to detect the omission.

4.1 Scheduling Model
Whereas multiprocessor scheduling considers schedules tasks onto processors, we are
concerned with scheduling packets onto communication links. As such, a communi-
cation link, which in wireless networks can be interpreted as a channel or the entire
broadcast domain, is the analogous of a processor. Data packets are analogous to com-
putational tasks.

...
in-queue(s)

queue M

queue 1

queue 2

...

link 1

link 2

link M

Figure 7: Conceptual Network Node

To make the analogy between links and processors some justification is necessary.
We view a network node as having separate links, i.e., channels, as shown in Figure 7.
Packets are received into one or more input queues and scheduled on links via their
associated output queues. This makes perfect sense in fixed networks, but in wire-
less nodes this view is only conceptual. Only in the case of MIMO (multiple-input-
multiple-output), where dual-array multiple-antenna systems are used, is this represen-
tation apparent. However, in the absence of MIMO, we can still justify this view using
multiplexing. For example, consider code division multiple access (CDMA). Multi-
ple channels are multiplexed without dividing up the channel by time, thus logically
implementing the concept of Figure 7. Time division multiple access (TDMA) allows
multiple links to be emulated by sharing the link in a time-division scheme. Again,
assuming the time slots are relatively small, the concept in the figure is preserved.

Next, we introduce notation for scheduling packets on links, or practically, their
associated queues. Given the abstraction of a wireless node above, let Lj denote link
j. We will speak of “scheduling packets on links”, which actually means that packets
are scheduled in the respective queues.

Associated with each data packet Pi are the attributes arrival time, ai, i.e., the time
at which Pi enters the in-queue of the node, the ready time, ri, which is the time the
packet is ready to be moved to the outgoing link queue, the start time, si, the time the
packet is starting to be transmitted, transmission time, li, which is the time it takes to
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Packet Attributes

15

A Packet Pj  is scheduled on link Li

Packet attributes

aj        arrival time

rj      ready time

sj      start time (of transmission)

lj      transmission time (depends on length and line speed)

 fj     finish time  

dj      deadline

CSIIRW 2007, Axel Krings

Primary-Backup
A packet Pi consists of two parts

Primary  Pri    

Backup copy Bki 

Bki serves as backup if primary fails

If Pri  is delivered successfully,  Bki is “unscheduled”

16



CSIIRW 2007, Axel Krings

Primary-Backup
Acknowledge time

constitutes the maximum time up to which one can wait for an 
acknowledge

Actual acknowledge time 

actual time when Pri  is acknowledged

alpha is a constant affecting how sensitive the fault detection is

ta is the expected time to acknowledge Pri  

17

...
in-queue(s)

queue M

queue 1

queue 2

...

link 1

link 2

link M

Figure 2: Conceptual Network Node

we can still justify this view using multiplexing. For example, consider code divi-
sion multiple access (CDMA). In CDMA multiple channels are multiplexed with-
out dividing up the channel by time, thus logically implementing the concept of
Figure 2. Time division multiple access (TDMA), on the other hand, allows mul-
tiple links to be emulated by sharing the link in a time-division scheme. Again,
assuming the time slots are relatively small, the concept in the figure is preserved.

Next, we introduce notation for scheduling packets on links, or practically,
their associated queues. Given the abstraction of a wireless node above, let Lj

denote link j. We will speak of “scheduling packets on links”, which actually
means that packets are scheduled in the respective queues.

Associated with each data packet Pi are the attributes arrival time ai, i.e. the
time at which Pi enters the in-queue of the node, the ready time ri, which is the
time the packet is ready to be moved to the outgoing link queue, the start time
si, the time the packet is starting to be transmitted, transmission time li, which is
the time it takes to send out the packet of size l, the finish time fi, the time the
last bit of the packet has left the link, and the deadline di, which defines the latest
deliver time as needed to guarantee QoS. Note that li = fi − si. With respect to
the realtime task scheduling models of [1, 7, 8, 12, 16], Lj , Pi, ai, ri, si, li, fi

and di are analogous to processor j, task i, its arrival time, ready time, start time,
computation time, finish time and deadline respectively.

For each packet Pi a primary Pri and a backup copy Bki are defined. The pur-
pose of Bki is that, if the transmission of Pri fails, it will serve as a backup. The
deadline for the acknowledgment of the primary’s delivery in the fault-free case is
called acknowledge time, ack(Pri). Thus ack(Pri) constitutes the maximal time
up to which one can wait for an acknowledgment. The actual time when Pri is
acknowledged is denoted by tack(Pri), with tack(Pri) ≤ ack(Pri) in the fault-
free case. Thus, if an acknowledge of delivery has not been received by ack(Pri),

5

it is assumed that a fault has occurred. However, if Pri is successfully delivered,
which would be confirmed at tack(Pri) ≤ ack(Pri), then Bki can be discarded
from the queue. Thus, the backup only requires link resources if the primary fails.
Otherwise, the only penalty for utilizing the backup is the overhead associated
with queue management. From a practical point of view, the value for ack(Pri)
is chosen based on the expected transmission time in the no-fault scenario. If the
expected time it takes to acknowledge Pri is ta, then

ack(Pri) = s(Pri) + αta

where α ≥ 1 is a constant affecting how sensitive the fault detection is. This
should be only an expected (pessimistic) value, and thus high accuracy in a mini-
mal ack(Pri) may not be meaningful1.

An acknowledge tack(Pri) of a packet Pi addresses the round-trip delay of the
packet, i.e. the time to deliver the packet plus the time it takes to send and deliver
the acknowledge back to the sender. Whereas it is easy to measure the roundtrip
delay of a packet transmission and its respective acknowledge, it is difficult to
determine how much of the time was spent on which leg of the roundtrip [5]. As
a result we will assume that the only way we can practically expect that a packet
is delivered is at the time of its acknowledge tack(Pri) ≤ ack(Pri). This way
we avoid the issues associated with the case where faults occur during the time
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expected transmission time in the absence of faults. This should not be confused
with timeout parameters of the transport control protocol, e.g. TCP.
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This addresses the fact that at most one fault is assumed for packet Pi. It should be
noted that tack(Bki) ≤ ack(Bki) is always implied. We now state the following
fundamental lemma:

1Readers interested in details on timing are referred to articles such as [4].
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The same packet attributes defined for Pi above will be used for Pri and Bki

as well, e.g., s(Pri) is the primary’s starting time or f(Bki) the finishing time of
the backup. We now state several assumptions associated with primary-backup
scheduling.

Assumption 1 The timing relationship between Pri and Bki is

ri ≤ s(Pri) < f(Pri) ≤ ack(Pri) ≤ s(Bki) < f(Bki) ≤ di.

Note that acknowledgment is only relevant with respect to the primary, i.e., ack(Pri),
since it is defined for the fault free case. Also note, that confirmation in the case
of an omission would never happen.

Assumption 2 The primary and backup of Pi cannot be scheduled on the same
link, i.e., L(Pri) "= L(Bki).

This reflects the avoidance of common-mode faults, and thus prevents the loss of
primary and backup due to a single link failure.

Assumption 3 If Pri fails, then backup Bki will succeed.

This addresses that fact that at most one fault is assumed for Pi.

4.2 Backup Overloading
Figure 8, shows the concept of backup overloading, which is the principle behind
reducing overhead in primary-backup scheduling. Packet P1 has its primary Pr1

scheduled on link L1 and its backup Bk1 on L2. Similarly, P2 has Pr2 scheduled
on L3 with its backup Bk2 on L2, thus overloading L2 during the interval indicated
by ∆t. This has consequences for the assumptions about faults.

Assumption 4 If two backups Bki and Bkj are overlapping on a link Lk, then
Pri and Prj must be scheduled on different links, i.e., L(Pri) "= L(Prj).

Conversely, if Pri and Prj are scheduled on the same link, then their backups
shall not overload. Without this assumption the failure of the link that schedules
both primaries would cause one packet to be lost. Note, that L(Pri) "= Lk and
L(Prj) "= Lk follow directly from Assumption 2.

Upon successful delivery of Pri, which is indicated by ack(Pri), the backup
Bki can be deleted. Thus, if ack(Pr1) arrives in ∆t1 of Figure 8, Bk1 is deleted
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packet plus the time it takes to send and deliver the acknowl-
edge back to the sender. We will assume that the only way
we can practically expect that a packet is delivered is at the
time of its acknowledge tack(Pri) ≤ ack(Pri). This way
we avoid the issues associated with the case where faults oc-
cur during the time of transmission or acknowledge. Note
that ack(Pri) is a parameter reflecting the expected trans-
mission time in the absence of faults. This should not be
confused with timeout parameters of the transport control
protocol, e.g. TCP.

The packet attributes defined for Pi above will be used
for Pri and Bki as well, e.g. s(Pri) is the primary’s
starting time or f(Bki) the finishing time of the backup.
We now state several assumptions associated with primary-
backup scheduling.

We assume that in the schedule of packet Pi the timing
relationship between Pri and Bki is

ai ≤ ri ≤ s(Pri) < f(Pri) ≤ ack(Pri)

≤ s(Bki) < f(Bki) < tack(Bki) ≤ di.

Furthermore, we assume that if Pri fails, then backup Bki

will succeed. Thus, at most one fault is assumed for packet
Pi. Later we shall see that this can be extended to multiple
faults. We now state the following fundamental lemma:

Lemma 1 The primary and backup of Pi cannot be sched-
uled on the same link, i.e. L(Pri) "= L(Bki).

The proof of the lemma is trivial. Essentially, if Pri and
Bki are scheduled on the same link Lk, then a permanent
link fault on Lk causes the loss of Pi.

4.2. Backup Overloading

Backup overloading is the main mechanism for overhead
reduction in primary-backup scheduling. Figure 8 shows
the concept. Packet P1 has its primary Pr1 scheduled on
link L1 and its backup Bk1 on L2. Similarly, P2 has Pr2

scheduled on L3 with its backup Bk2 on L2, thus overload-
ing L2 from s(Bk2) to f(Bk1). This has consequences for
the assumptions about faults.

In the figure both backup packets overlap. Formally, we
say that two packets overlap if S(Bki) ∩ S(Bkj) "= Φ,
where S() denotes the time slot during which the packet (in
its argument) is scheduled on the link.

Lemma 2 Given Lemma 1, if two backups Bki and Bkj

are overlapping on a link, i.e. S(Bki) ∩ S(Bkj) "= Φ,
then Pri and Prj must be scheduled on different links, i.e.
L(Pri) "= L(Prj). Conversely, if Pri and Prj are sched-
uled on the same link, then their backups must not overload.
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Figure 8. Backup Overloading

The proof of this lemma follows directly from the fact that,
if both primaries were scheduled on the same link Lk, then
a permanent link fault on Lk would imply that both packets
must rely on their backups. This however is not feasible,
if the respective backups overlap. Without this lemma the
failure of Lk would result in packet loss.

The following lemma will be used to reduce the overhead
associated backup packets.

Lemma 3 Given packet Pi, backup Bki can be deleted
only if Pri is delivered successfully at tack(Pri) ≤
ack(Pri).

Deleting Bki during any time in the interval [f(Pri),
tack(Pri)), i.e. before its acknowledgment tack(Pri) ≤
ack(Pri), will cause the loss of Pi in the case where no
acknowledge is received. In Figure 8 a successful delivery
of Pr1 will be known if an acknowledgment tack(Pr1) is
received in ∆t1.

Let the Time to Second Fault (TTSF) be the time at which
a second fault can occur without risking the loss of a packet
due to overloading. TTSF(Li) indicates the time to second
fault with respect to link Li. Note that the smaller TTSF
is, the more resilient the system becomes to second faults.
In Figure 9 link L1 experiences a link failure, indicated by

Bk1

Pr1

Pr2

L1

L2

L3

Bk2

timeack(Pr2)

tack(Pr2)
fault

TTSF(L2)

TTSF(L3)

tack(Bk1)

Figure 9. TTSF after link fault

the star. Then one cannot tolerate another fault on L2 un-
til tack(Bk1), i.e. TTSF(L2) = tack(Bk1) ≤ ack(Bk1),
and on L3 until tack(Pr2), i.e. TTSF(L3) = tack(Pr2) ≤
ack(Pr2). Thus, TTSF = max{TTSF(L2), TTSF(L3)}.
This leads to the following theorem.
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Note: at tack(Pr1)  packet 
Pr2 may or may not have 
been sent out, but 
acknowledgment may 
not arrive until ack(Pr2)
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packet plus the time it takes to send and deliver the acknowl-
edge back to the sender. We will assume that the only way
we can practically expect that a packet is delivered is at the
time of its acknowledge tack(Pri) ≤ ack(Pri). This way
we avoid the issues associated with the case where faults oc-
cur during the time of transmission or acknowledge. Note
that ack(Pri) is a parameter reflecting the expected trans-
mission time in the absence of faults. This should not be
confused with timeout parameters of the transport control
protocol, e.g. TCP.

The packet attributes defined for Pi above will be used
for Pri and Bki as well, e.g. s(Pri) is the primary’s
starting time or f(Bki) the finishing time of the backup.
We now state several assumptions associated with primary-
backup scheduling.

We assume that in the schedule of packet Pi the timing
relationship between Pri and Bki is

ai ≤ ri ≤ s(Pri) < f(Pri) ≤ ack(Pri)

≤ s(Bki) < f(Bki) < tack(Bki) ≤ di.

Furthermore, we assume that if Pri fails, then backup Bki

will succeed. Thus, at most one fault is assumed for packet
Pi. Later we shall see that this can be extended to multiple
faults. We now state the following fundamental lemma:

Lemma 1 The primary and backup of Pi cannot be sched-
uled on the same link, i.e. L(Pri) "= L(Bki).

The proof of the lemma is trivial. Essentially, if Pri and
Bki are scheduled on the same link Lk, then a permanent
link fault on Lk causes the loss of Pi.

4.2. Backup Overloading

Backup overloading is the main mechanism for overhead
reduction in primary-backup scheduling. Figure 8 shows
the concept. Packet P1 has its primary Pr1 scheduled on
link L1 and its backup Bk1 on L2. Similarly, P2 has Pr2

scheduled on L3 with its backup Bk2 on L2, thus overload-
ing L2 from s(Bk2) to f(Bk1). This has consequences for
the assumptions about faults.

In the figure both backup packets overlap. Formally, we
say that two packets overlap if S(Bki) ∩ S(Bkj) "= Φ,
where S() denotes the time slot during which the packet (in
its argument) is scheduled on the link.

Lemma 2 Given Lemma 1, if two backups Bki and Bkj

are overlapping on a link, i.e. S(Bki) ∩ S(Bkj) "= Φ,
then Pri and Prj must be scheduled on different links, i.e.
L(Pri) "= L(Prj). Conversely, if Pri and Prj are sched-
uled on the same link, then their backups must not overload.
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The proof of this lemma follows directly from the fact that,
if both primaries were scheduled on the same link Lk, then
a permanent link fault on Lk would imply that both packets
must rely on their backups. This however is not feasible,
if the respective backups overlap. Without this lemma the
failure of Lk would result in packet loss.

The following lemma will be used to reduce the overhead
associated backup packets.

Lemma 3 Given packet Pi, backup Bki can be deleted
only if Pri is delivered successfully at tack(Pri) ≤
ack(Pri).

Deleting Bki during any time in the interval [f(Pri),
tack(Pri)), i.e. before its acknowledgment tack(Pri) ≤
ack(Pri), will cause the loss of Pi in the case where no
acknowledge is received. In Figure 8 a successful delivery
of Pr1 will be known if an acknowledgment tack(Pr1) is
received in ∆t1.

Let the Time to Second Fault (TTSF) be the time at which
a second fault can occur without risking the loss of a packet
due to overloading. TTSF(Li) indicates the time to second
fault with respect to link Li. Note that the smaller TTSF
is, the more resilient the system becomes to second faults.
In Figure 9 link L1 experiences a link failure, indicated by
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Figure 9. TTSF after link fault

the star. Then one cannot tolerate another fault on L2 un-
til tack(Bk1), i.e. TTSF(L2) = tack(Bk1) ≤ ack(Bk1),
and on L3 until tack(Pr2), i.e. TTSF(L3) = tack(Pr2) ≤
ack(Pr2). Thus, TTSF = max{TTSF(L2), TTSF(L3)}.
This leads to the following theorem.
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ack(Pr2), i.e., TTSF(L3) = tack(Pr2) ≤ ack(Pr2). This leads to the following
theorem.

Theorem 1 Assume that packets are scheduled using backup overloading. Fur-
thermore, assume that at time t link Li experiences a permanent fault. Then an-
other fault can be tolerated at time t′, where

t′ > maxj{TTSF (Lj)}

TTSF (Lj) = max{tack(Prj) : L(Bkj) = Li, f(Bkj) : L(Prj) = Li}.

If the exact time of tack(Prj) is not known, tack(Prj) = ack(Prj) must be as-
sumed.

The proof of the theorem follows the general argument of Theorem 1 in [7] for
the special case where tack(Prj) = f(Prj).

4.2.1 Fixed packet link allocation

If we assume that all packets have the same size, then the general link schedul-
ing patter shown in Figure 10 can be used. Analogous to [7], if there are m
links, L1, L2, ..., Lm, then slots for backup packets are reserved in such a fashion
that logically one “reservation” link is striped over the m links. Let Sp(Pri) and
Sq(Bki) denote time slots p and q in which the primary and backup of Pi are
scheduled. Then, each link reserves every mth slot as a backup slot and if asdf
asdf asdf
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Figure 10: Backup Overloading

Show standard schedule using tiling. Unlike the processor environment of [?]
now the delay needs to be added, i.e. the Gantt chard and utilization formulas
need to be adjusted.

ack(Pr2), i.e., TTSF(L3) = tack(Pr2) ≤ ack(Pr2).
Thus, TTSF = max{TTSF(L2), TTSF(L3)}. This leads to the following theorem.

Theorem 1 Assume that packets are scheduled using backup overloading. Fur-
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packet plus the time it takes to send and deliver the acknowl-
edge back to the sender. We will assume that the only way
we can practically expect that a packet is delivered is at the
time of its acknowledge tack(Pri) ≤ ack(Pri). This way
we avoid the issues associated with the case where faults oc-
cur during the time of transmission or acknowledge. Note
that ack(Pri) is a parameter reflecting the expected trans-
mission time in the absence of faults. This should not be
confused with timeout parameters of the transport control
protocol, e.g. TCP.

The packet attributes defined for Pi above will be used
for Pri and Bki as well, e.g. s(Pri) is the primary’s
starting time or f(Bki) the finishing time of the backup.
We now state several assumptions associated with primary-
backup scheduling.

We assume that in the schedule of packet Pi the timing
relationship between Pri and Bki is

ai ≤ ri ≤ s(Pri) < f(Pri) ≤ ack(Pri)

≤ s(Bki) < f(Bki) < tack(Bki) ≤ di.

Furthermore, we assume that if Pri fails, then backup Bki

will succeed. Thus, at most one fault is assumed for packet
Pi. Later we shall see that this can be extended to multiple
faults. We now state the following fundamental lemma:

Lemma 1 The primary and backup of Pi cannot be sched-
uled on the same link, i.e. L(Pri) "= L(Bki).

The proof of the lemma is trivial. Essentially, if Pri and
Bki are scheduled on the same link Lk, then a permanent
link fault on Lk causes the loss of Pi.

4.2. Backup Overloading

Backup overloading is the main mechanism for overhead
reduction in primary-backup scheduling. Figure 8 shows
the concept. Packet P1 has its primary Pr1 scheduled on
link L1 and its backup Bk1 on L2. Similarly, P2 has Pr2

scheduled on L3 with its backup Bk2 on L2, thus overload-
ing L2 from s(Bk2) to f(Bk1). This has consequences for
the assumptions about faults.

In the figure both backup packets overlap. Formally, we
say that two packets overlap if S(Bki) ∩ S(Bkj) "= Φ,
where S() denotes the time slot during which the packet (in
its argument) is scheduled on the link.

Lemma 2 Given Lemma 1, if two backups Bki and Bkj

are overlapping on a link, i.e. S(Bki) ∩ S(Bkj) "= Φ,
then Pri and Prj must be scheduled on different links, i.e.
L(Pri) "= L(Prj). Conversely, if Pri and Prj are sched-
uled on the same link, then their backups must not overload.
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Figure 8. Backup Overloading

The proof of this lemma follows directly from the fact that,
if both primaries were scheduled on the same link Lk, then
a permanent link fault on Lk would imply that both packets
must rely on their backups. This however is not feasible,
if the respective backups overlap. Without this lemma the
failure of Lk would result in packet loss.

The following lemma will be used to reduce the overhead
associated backup packets.

Lemma 3 Given packet Pi, backup Bki can be deleted
only if Pri is delivered successfully at tack(Pri) ≤
ack(Pri).

Deleting Bki during any time in the interval [f(Pri),
tack(Pri)), i.e. before its acknowledgment tack(Pri) ≤
ack(Pri), will cause the loss of Pi in the case where no
acknowledge is received. In Figure 8 a successful delivery
of Pr1 will be known if an acknowledgment tack(Pr1) is
received in ∆t1.

Let the Time to Second Fault (TTSF) be the time at which
a second fault can occur without risking the loss of a packet
due to overloading. TTSF(Li) indicates the time to second
fault with respect to link Li. Note that the smaller TTSF
is, the more resilient the system becomes to second faults.
In Figure 9 link L1 experiences a link failure, indicated by
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Figure 9. TTSF after link fault

the star. Then one cannot tolerate another fault on L2 un-
til tack(Bk1), i.e. TTSF(L2) = tack(Bk1) ≤ ack(Bk1),
and on L3 until tack(Pr2), i.e. TTSF(L3) = tack(Pr2) ≤
ack(Pr2). Thus, TTSF = max{TTSF(L2), TTSF(L3)}.
This leads to the following theorem.
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The proof of this lemma follows directly from the fact that,
if both primaries were scheduled on the same link Lk, then
a permanent link fault on Lk would imply that both packets
must rely on their backups. This however is not feasible,
if the respective backups overlap. Without this lemma the
failure of Lk would result in packet loss.

The following lemma will be used to reduce the overhead
associated backup packets.

Lemma 3 Given packet Pi, backup Bki can be deleted
only if Pri is delivered successfully at tack(Pri) ≤
ack(Pri).

Deleting Bki during any time in the interval [f(Pri),
tack(Pri)), i.e. before its acknowledgment tack(Pri) ≤
ack(Pri), will cause the loss of Pi in the case where no
acknowledge is received. In Figure 8 a successful delivery
of Pr1 will be known if an acknowledgment tack(Pr1) is
received in ∆t1.
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fault with respect to link Li. Note that the smaller TTSF
is, the more resilient the system becomes to second faults.
In Figure 9 link L1 experiences a link failure, indicated by

Bk1

Pr1

Pr2

L1

L2

L3

Bk2

timeack(Pr2)

tack(Pr2)
fault

TTSF(L2)

TTSF(L3)

tack(Bk1)

Figure 9. TTSF after link fault

the star. Then one cannot tolerate another fault on L2 un-
til tack(Bk1), i.e. TTSF(L2) = tack(Bk1) ≤ ack(Bk1),
and on L3 until tack(Pr2), i.e. TTSF(L3) = tack(Pr2) ≤
ack(Pr2). Thus, TTSF = max{TTSF(L2), TTSF(L3)}.
This leads to the following theorem.
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Fixed Packet Link Allocation

Backup slots are striped
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Figure 10: Backup Overloading

5 Overlay Scheduling for Hybrid Fault Models
Describe how the ”FERT” mechanisms can be added, e.g. TMR, however, within
the joint graphs TMRs can be implemented much simpler, as will be shown below.

5.1 BB Scheduling for Symmetric Faults

5.2 PB Scheduling for Symmetric Faults

5.3 TMR at no-TMR cost
Show how one can get TMR behavior at the cost of one packet transfer with
cross-monitoring. Essentially, one node takes action and the others cross-monitor.
If something wrong is sent, the monitors catch it. A tie can be resolved by the 3rd
”processor”. If two different packets are received, then a 3rd is requested. This
can deal with symmetric faults. Asymmetric faults do not exist ??? Check on this,
i.e. transmissive and omissive.

6 Reliability Model
Describe the general reliability model, given G′ which contains everything.

1. Describe how one can find a subgraph G based on two strategies

(a) one building block are join graphs

(b) other is disjoint paths
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Overlay Scheduling for 
Hybrid Fault Models

The concept can be extended to include extensions, 

analogous to the alternatives in FERTstones 

[Bondavalli, Stankovic, Strigini 1993]

TMR, hybrid-selfchecking-TMR, k-of-N
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Hybrid-selfchecking-TMR
The concept is essentially equivalent to
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3.3 Primary Backup (PB) Scheduling
The previous discussion on backup overloading can be extended to consider primary-
backup (PB) scheduling. Due to space considerations this will not be elaborated
on. However, just as was done in the case of backup overloading, one can take
approaches shown in real-time scheduling and perform the reasoning above to
consider PB scheduling.

4 Overlay Scheduling for Hybrid Fault Models
Describe how the ”FERT” mechanisms can be added, e.g. TMR, however, within
the joint graphs TMRs can be implemented much simpler, as will be shown below.

4.1 BB Scheduling for Symmetric Faults
If one wants to detect symmetric fault behavior using primary-backup scheduling
one has to extend the concept to include two primary copies and a backup. Thus,
for packet Pi we consider primary Pri, secondary Sei and backup Bki. The
relationship between primaries and backup is shown in Figure 13. Without loss
of generality, we call the instance of packet Pi that is scheduled first the primary,
and the instance that is scheduled second the secondary. Thus we always have
s(Pri) ≤ s(Sei).

Bk1

Pr1

Se1

L1

L2

L3
time

!t1

ack(Pr1)

∬

Figure 13: Scheduling for detection of symmetric faults

Concurrent scheduling of primary and secondary allows for correction in the
case of a benign and omission fault and for detection for symmetric faults. In
the latter case, the possible tie between packets can be resolved with the backup
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Permanent Value Fault

Theorem 1 Assume that packets Pi are scheduled and at
time t link Lk experiences a permanent fault. Then another
fault can be tolerated at time t′, where

t′ > max
j

{TTSF (Lj)}

and TTSF (Lj) =

max{tack(Pri) : L(Bki) = Lk, tack(Bki) : L(Pri) = Lk}.

If the exact time of tack(Pri) and tack(Bki) are not
known, tack(Pri) = ack(Pri) and tack(Bki) = ack(Bki)
must be assumed respectively.

The proof follows the general arguments of Theorem 1 in
[10], which in this context represents the special case where
tack(Pri) = ack(Pri) = f(Pri).

4.3. Scheduling for Value Faults

Whereas the previous discussion considered benign and
omission faults, we now turn to the impact of value faults,
i.e. the case where the content of a packet is manipulated.
To tolerate k such faults, by definition, one needs 2k +1 re-
dundant packets, which will guarantee that the good pack-
ets are in the majority. This should not be confused with
the Byzantine majority of asymmetric faults in distributed
agreement [17].

If one wants to detect a single value fault using primary-
backup scheduling one can extend the concept to include
two primary copies and a backup. Thus, for packet Pi we
consider primary Pri, secondary Sei and backup Bki. The
deadline for the acknowledge of both Pri and Sei is as-
sumed to be ack(Pri). Upon acknowledgment of both Pri

and Sei the backup Bki is unscheduled. Conversely, if ei-
ther Pri or Sei fail to acknowledge, Bki is required. It
should be noted that in principle scheduling of a primary
and a secondary on disjoint links allows for correction in
the case of a benign and omission fault and for detection
of a value fault. In the latter case, the possible tie between
packets can be resolved with the backup packet, constitut-
ing fault recovery. Thus, logically this scheme corresponds
to the so-called hybrid-SCP-TMR [8], where in the case
of real-time multi-processor scheduling two copies execute
first, implemented as a Self Checking Pair (SCP). If the out-
puts do not agree, the third copy is scheduled to break the
tie, thus implementing Triple Modular Redundancy (TMR).

In the context of link scheduling, the detection mech-
anism of the hybrid-SCP-TMR requires further explana-
tion. Note, that by the definition of this configuration the
detection of a value fault requires that a difference in the
packet content must be observed. In the multiprocessor
case of [8] this is done by a comparator, e.g. a voting task,
which detects that the results of the two tasks differ. In the

network protocol stack the detection of differences in the
packet content can be observed by the receiver of the pack-
ets, e.g. by the observation that the signatures (or frame
check sequences) of the primary and secondary packets do
not match.

If the receiving node detects that the content of Pri

and Sei do not match, then an explicit or implicit message
rejecti is issued. An explicit reject message identifies the
mismatch of the packet content between the two copies of
Pi. Alternatively, an implicit reject is realized by simply
not acknowledging a packet, thus triggering a timeout at
ack(Pri). In both cases backup Bki is sent to break the tie.

Next, we want to establish the timing relationships of the
packets. Assuming s(Pri) ≤ s(Sei), the timing relation-
ship between Pri, Sei and Bki is

r(Pi) ≤ s(Pri) ≤ s(Sei) < ack(Pri)

≤ s(Bki) < f(Bki) < tack(Bki) ≤ di.

Furthermore, we have f(Pri) ≤ ack(Pri) and f(Sei) ≤
ack(Pri).

Lemma 4 Assume there is a source for permanent value
faults. To avoid packet loss, the primary, secondary and
backup of Pi must be scheduled on different links, i.e.
L(Pri) "= L(Sei) "= L(Bki).

The proof of the lemma follows directly from the function
of a TMR, which can handle exactly one value fault under
the assumption of independence of faults. Scheduling two
or more copies of the packet on the same link would violate
this independence assumption.

As in simple PB scheduling we assume that if Pri or
Sei fail, i.e. one packet content is corrupted, then backup
Bki will succeed. We can now state the following theorem:

Theorem 2 Assume that packets Pi are scheduled using
backup overloading under a hybrid-SCP-TMR strategy.
Furthermore, assume that at time t link Lk experiences per-
manent value faults. Then another fault can be tolerated at
time t′ = max{t1, t2, t3}, where

t1 = max{tack(Bki), ∀Pri : L(Pri) = Lk}

t2 = max{tack(Bki), ∀Sei : L(Sei) = Lk}

t3 = max{tack(Pri), tack(Sei), ∀Pri, Sei :
L(Bki) = Lk}

If the exact time of tack(Pri) ≤ ack(Pri) is not known,
tack(Pri) = ack(Pri) must be assumed. The same holds
for Sei and Bki.

The theorem is an extension of Theorem 1 and the proof
is derived by extending the arguments in the proof of that
theorem to include the secondary packet.
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Assume Value Fault
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Theorem 1 Assume that packets Pi are scheduled and at
time t link Lk experiences a permanent fault. Then another
fault can be tolerated at time t′, where

t′ > max
j

{TTSF (Lj)}

and TTSF (Lj) =

max{tack(Pri) : L(Bki) = Lk, tack(Bki) : L(Pri) = Lk}.

If the exact time of tack(Pri) and tack(Bki) are not
known, tack(Pri) = ack(Pri) and tack(Bki) = ack(Bki)
must be assumed respectively.

The proof follows the general arguments of Theorem 1 in
[10], which in this context represents the special case where
tack(Pri) = ack(Pri) = f(Pri).

4.3. Scheduling for Value Faults

Whereas the previous discussion considered benign and
omission faults, we now turn to the impact of value faults,
i.e. the case where the content of a packet is manipulated.
To tolerate k such faults, by definition, one needs 2k +1 re-
dundant packets, which will guarantee that the good pack-
ets are in the majority. This should not be confused with
the Byzantine majority of asymmetric faults in distributed
agreement [17].

If one wants to detect a single value fault using primary-
backup scheduling one can extend the concept to include
two primary copies and a backup. Thus, for packet Pi we
consider primary Pri, secondary Sei and backup Bki. The
deadline for the acknowledge of both Pri and Sei is as-
sumed to be ack(Pri). Upon acknowledgment of both Pri

and Sei the backup Bki is unscheduled. Conversely, if ei-
ther Pri or Sei fail to acknowledge, Bki is required. It
should be noted that in principle scheduling of a primary
and a secondary on disjoint links allows for correction in
the case of a benign and omission fault and for detection
of a value fault. In the latter case, the possible tie between
packets can be resolved with the backup packet, constitut-
ing fault recovery. Thus, logically this scheme corresponds
to the so-called hybrid-SCP-TMR [8], where in the case
of real-time multi-processor scheduling two copies execute
first, implemented as a Self Checking Pair (SCP). If the out-
puts do not agree, the third copy is scheduled to break the
tie, thus implementing Triple Modular Redundancy (TMR).

In the context of link scheduling, the detection mech-
anism of the hybrid-SCP-TMR requires further explana-
tion. Note, that by the definition of this configuration the
detection of a value fault requires that a difference in the
packet content must be observed. In the multiprocessor
case of [8] this is done by a comparator, e.g. a voting task,
which detects that the results of the two tasks differ. In the

network protocol stack the detection of differences in the
packet content can be observed by the receiver of the pack-
ets, e.g. by the observation that the signatures (or frame
check sequences) of the primary and secondary packets do
not match.

If the receiving node detects that the content of Pri

and Sei do not match, then an explicit or implicit message
rejecti is issued. An explicit reject message identifies the
mismatch of the packet content between the two copies of
Pi. Alternatively, an implicit reject is realized by simply
not acknowledging a packet, thus triggering a timeout at
ack(Pri). In both cases backup Bki is sent to break the tie.

Next, we want to establish the timing relationships of the
packets. Assuming s(Pri) ≤ s(Sei), the timing relation-
ship between Pri, Sei and Bki is

r(Pi) ≤ s(Pri) ≤ s(Sei) < ack(Pri)

≤ s(Bki) < f(Bki) < tack(Bki) ≤ di.

Furthermore, we have f(Pri) ≤ ack(Pri) and f(Sei) ≤
ack(Pri).

Lemma 4 Assume there is a source for permanent value
faults. To avoid packet loss, the primary, secondary and
backup of Pi must be scheduled on different links, i.e.
L(Pri) "= L(Sei) "= L(Bki).

The proof of the lemma follows directly from the function
of a TMR, which can handle exactly one value fault under
the assumption of independence of faults. Scheduling two
or more copies of the packet on the same link would violate
this independence assumption.

As in simple PB scheduling we assume that if Pri or
Sei fail, i.e. one packet content is corrupted, then backup
Bki will succeed. We can now state the following theorem:

Theorem 2 Assume that packets Pi are scheduled using
backup overloading under a hybrid-SCP-TMR strategy.
Furthermore, assume that at time t link Lk experiences per-
manent value faults. Then another fault can be tolerated at
time t′ = max{t1, t2, t3}, where

t1 = max{tack(Bki), ∀Pri : L(Pri) = Lk}

t2 = max{tack(Bki), ∀Sei : L(Sei) = Lk}

t3 = max{tack(Pri), tack(Sei), ∀Pri, Sei :
L(Bki) = Lk}

If the exact time of tack(Pri) ≤ ack(Pri) is not known,
tack(Pri) = ack(Pri) must be assumed. The same holds
for Sei and Bki.

The theorem is an extension of Theorem 1 and the proof
is derived by extending the arguments in the proof of that
theorem to include the secondary packet.

8
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Reliability of PB Scheduling

Consider again previous example

Four scheduling approaches

Single Path

PB Scheduling

Hybrid SCP-TMR Scheduling (for value faults)

Hybrid with benign faults only
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Analytical Model

Unreliabilities
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Communication scenario Unreliability F (t) = 1−R(t)

Single Path F (t) = 1− e−λt

PB F (t) = 1− 2e−λt + e−2λt

Hybrid SCP-TMR F (t) = 1− 3e−2λt + 2e−3λt

Hybrid with Benigns F (t) = 1− 3e−λt + 3e−2λt − e−3λt

Table 1: Unreliabilities

liability of a larger number of links (compared to the Single Path and PB), while
still only capable of dealing with a single fault (the value fault), overshadows the
benefits at the point where the two graphs intersect.

5 Conclusions
A new model for primary backup (PB) scheduling has been defined. The for-
malisms and primitive lemmas and theorems have been introduced that allow for
the expansion of earlier results from multiprocessor scheduling to link scheduling,
requiring to consider communication delays. The fault model of the PB approach
has been extended. Whereas only crash faults were considered in multiprocessor
systems, we addressed benign, omission and value faults in systems with multi-
ple communication links. Whereas scheduling has only been considered for the
aforementioned fault type, the general principle can be extended to include any
hybrid fault model.
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specifications during the entire time-interval [0, t] [9]. In the context of a commu-
nication channel we consider the reliability of packet transmission. Let λ be the
packet error rate.
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Figure 7: Communication link Unreliability - 100 seconds

In the analysis of the scheduling algorithms we will consider four different sce-
narios. In order to eliminate the impact of re-transmission in the data link layer of
the protocol stack, we consider simple datagram service. Recall that the acknowl-
edge deadline ack(Pri) was considered significantly shorter than the transport
layer’s timeout, e.g. the TCP timeout is measured in seconds. First, we consider
a Single Path, i.e. a communication path without packet redundancy. Second,
we will consider simple PB scheduling, however, we will relax the assumptions
about a guarantee of the backup packet, i.e. Assumption 2, since in a real system
no such guarantee can be given. Thus, the results shown are more realistic, but at
the same time more pessimistic. Third, we consider Hybrid SCP-TMR scheduling
for value faults under the relaxation of Assumption 5 for the same reason given
above. Fourth, we use the previous scheme, but only consider benign faults. This
effectively changes the hybrid SCP-TMR into a 1-of-3 system.
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Figure 8: Communication link Unreliability - 1000 seconds

The results of the four different approaches are shown in Figure 7 and 8, where
the graphs are labeled as Single Path, PB, Hybrid SCP-TMR and Hybrid with Be-
nigns respectively. It should be noted that the approaches obey the unreliabilities
shown in Table 1. The packet fail rate is assumed as λ = 1/1000s. Note that in ad
hoc or sensor networks this rather high fail rate may even be optimistic. Similarly,
the short times of observation reflect the link volatility of the target networks. It
can be seen in Figure 7 and 8 that PB scheduling shows significant improvements
in reliability. As expected, the Single Path scenario shows the least favorable un-
reliability, whereas PB and the Hybrid w. Benigns are significantly less unreliable.
It may be observed that the Hybrid SCP-TMR shows behavior that does not fol-
low the trend of the other graphs in Figure 8, i.e. the Single Path and Hybrid
SCP-TMR cross. The reason is that it is the only scenario that includes recov-
ery from value faults, whereas the others consider only benign or omission faults.
Since the Hybrid SCP-TMR is effectively a 2-of-3 configuration, the higher unre-
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Conclusions
Reliability and survivability of wireless networks can be 

greatly improved by using cross-monitoring, i.e. GJG

PB scheduling reduces overhead, increases network 

reliability and has potential to drastically reduce delays 

e.g.  RTO (Retransmission Timeout period) in TCP

Can be used to adapt network to the required level of 

reliability 
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