Survivability in Wireless Networks: A Case for Overhead Reduction

Axel Krings Computer Science Department University of Idaho

krings@cs.uidaho.edu http://www.cs.uidaho.edu/~krings/

CSIIRW 2007, Axel Krings

Outline

- Introduction
- Background and Definitions
- Wireless Network Model
- Increasing Path Reliability
- Overload Scheduling
- Reliability Analysis
- Conclusions

Introduction Problems include

- Security
 - broadcast, "everybody can see"
 - nodes may be captured/impersonated/... many flavors
- Reliability
 - nodes may be mobile
 - links and nodes have reliability/availability constraints
 - external interference, benign malicious

CSIIRW 2007, Axel Krings

Recovery needs Redundancy

- Time redundancy
- Information redundancy
- Spatial redundancy

e.g. if one considers *s* symmetric and *b* benign faults, then one needs N > 2s + b redundant units to mask the faults

Restrictions on Primaries

• Lemma 2 Given Lemma 1, if two backups Bk_i and Bk_j are overlapping on a link, i.e. $S(Bk_i) \cap S(Bk_j) \neq \Phi$, then Pr_i and Pr_j must be scheduled on different links, i.e. $L(Pr_i) \neq L(Pr_j)$. Conversely, if Pr_i and Pr_j are scheduled on the same link, then their backups must not overload.

19

CSIIRW 2007, Axel Krings

Unscheduling

Lemma 3 Given packet P_i , backup Bk_i can be deleted only if Pr_i is delivered successfully at $t_{ack}(Pr_i) \leq ack(Pr_i)$.

Fixed Packet Link AllocationBackup slots are striped

Permanent Value Fault

Lemma 4 Assume there is a source for permanent value faults. To avoid packet loss, the primary, secondary and backup of P_i must be scheduled on different links, i.e. $L(Pr_i) \neq L(Se_i) \neq L(Bk_i).$

27

CSIIRW 2007, Axel Krings

Assume Value Fault

Theorem 2 Assume that packets P_i are scheduled using backup overloading under a hybrid-SCP-TMR strategy. Furthermore, assume that at time t link L_k experiences permanent value faults. Then another fault can be tolerated at time $t' = \max\{t_1, t_2, t_3\}$, where

- $t_1 = \max\{t_{ack}(Bk_i), \forall Pr_i : L(Pr_i) = L_k\}$ $t_2 = \max\{t_{ack}(Bk_i), \forall Se_i : L(Se_i) = L_k\}$
- $t_3 = \max\{t_{ack}(Pr_i), t_{ack}(Se_i), \forall Pr_i, Se_i : L(Bk_i) = L_k\}$

If the exact time of $t_{ack}(Pr_i) \leq ack(Pr_i)$ is not known, $t_{ack}(Pr_i) = ack(Pr_i)$ must be assumed. The same holds for Se_i and Bk_i .

CSIIRW 2007, Axel Krings

Analytical Model

Unreliabilities

Communication scenario	Unreliability $F(t) = 1 - R(t)$
Single Path	$F(t) = 1 - e^{-\lambda t}$
PB	$F(t) = 1 - 2e^{-\lambda t} + e^{-2\lambda t}$
Hybrid SCP-TMR	$F(t) = 1 - 3e^{-2\lambda t} + 2e^{-3\lambda t}$
Hybrid with Benigns	$F(t) = 1 - 3e^{-\lambda t} + 3e^{-2\lambda t} - e^{-3\lambda t}$

Conclusions

- Reliability and survivability of wireless networks can be greatly improved by using cross-monitoring, i.e. GJG
- PB scheduling reduces overhead, increases network reliability and has potential to drastically reduce delays

e.g. RTO (Retransmission Timeout period) in TCP

Can be used to adapt network to the required level of reliability

CSIIRW 2007, Axel Krings

33