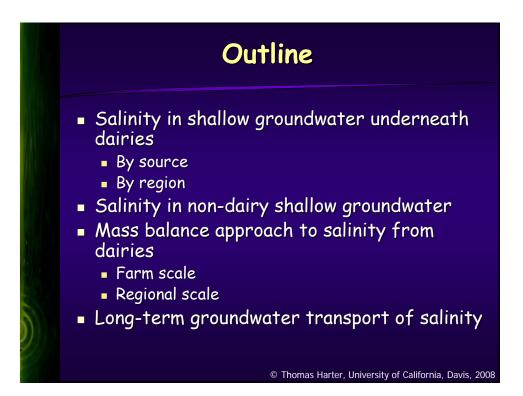
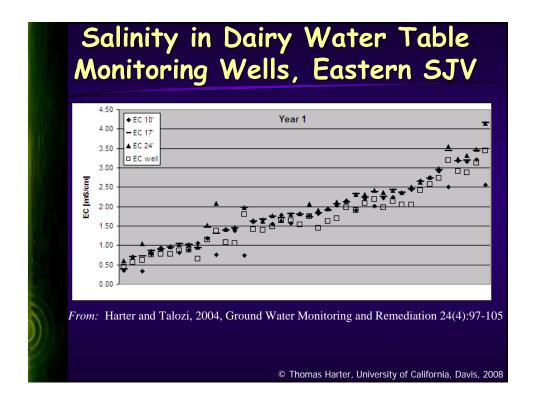
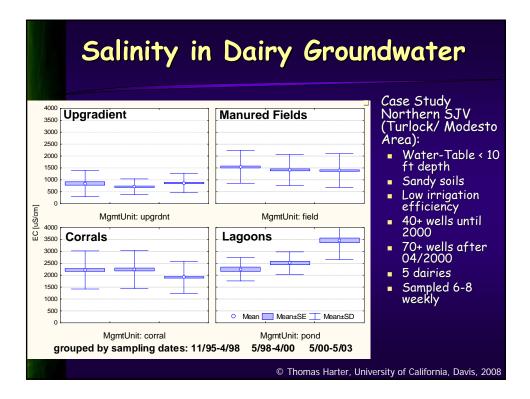
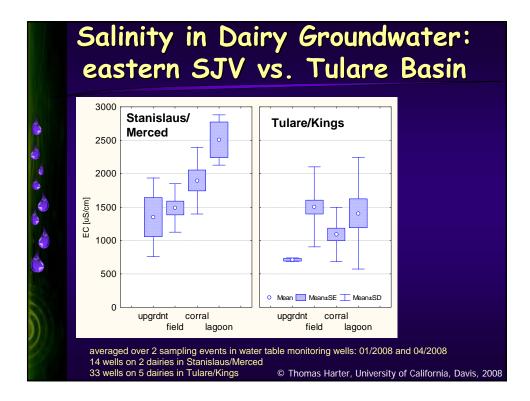

A Regional Salinity Perspective on the San Joaquin Valley with an Emphasis on Dairy Contributions

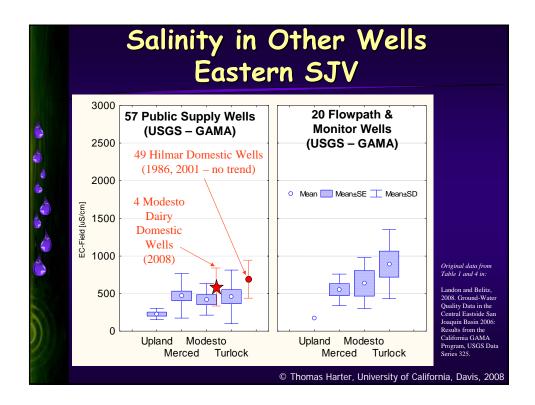
> Thomas Harter, University of California, Davis

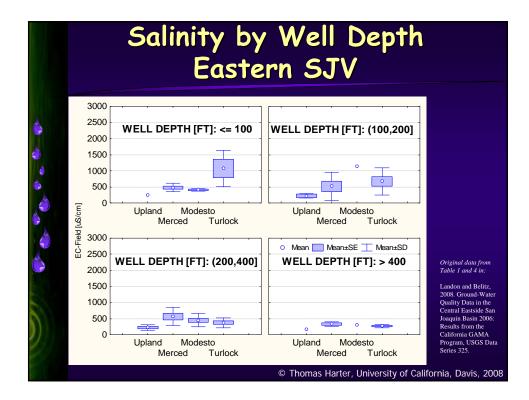

Acknowledgments

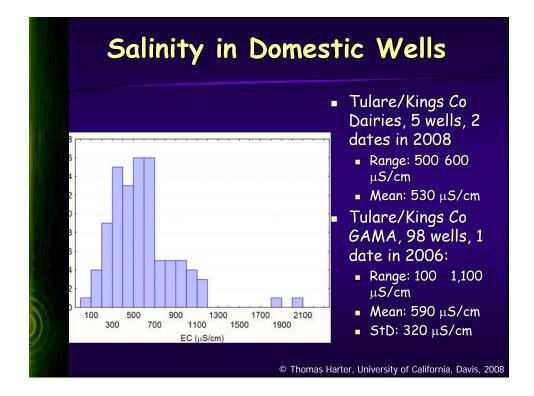

- Brian Bergamaschi, USGS
- Rob Atwill, UC Davis
- Carol Kendall, USGS
- Hua Zhang, UC Davis
- Marsha Campbell-Mathews, UC Coop. Ext.
- Roland D. Meyer, UC Davis
- Andrew Chang, UC Riverside


FUNDING PROVIDED THROUGH:


- Calfed Bay-Delta Authority / SWRCB / RB5
- California Dairy Research Foundation
- University of California Salinity & Drainage Program


© Thomas Harter, University of California, Davis, 2008





			,		tegories for monitoring ce-water sites sample			
uin Valley, Cali		ipieu ironi octobel z	uus ulluugii sulle	2003, and for Suna	se-water sites sample	u ili reviualy aliu (Julie 2005, ili Moue	siu, edsiei
s reported as ran	ges with median values	in parentheses unless sp	ecified otherwise. Ca	aCO3, calcium carbona	te; mg/L, milligrams per li	ter; °C, degrees Celsi	us; μS/cm, microsieme	ns per centii
public supply we	ell; na, not applicable]				_			
Site type or pth category	Depth to top of screened interval (screen length) (meter)	Water-level elevation at time of sampling (meter)	Number of wells/samples	Temperature, °C	Specific conductance, µS/cm @ 25°C	Dissolved oxygen, mg/L	pH, standard units	Alkal disso mg/L as
ce-water chem	'							
basin	surface sample	surface sample	3	12-13 (13)	54-463 (59)	4.9–10.2 (8.4)	7.0–7.6 (7.0)	17-11
ıd-water chem	istrv							
-table	85-117(15)	18.9-21.8 (20.5)	9/9	19.8-23.2 (22.4)	529-1060 (886)	1.8-6.6 (4.8)	6.8-7.4 (7.1)	208-47
9W	29.0-35.1 (1.5)	18.8-19.8 (19.2)	3/3	20.3-21.0 (20.8)	704-1080 (784)	3.6-5.0 (3.9)	7.1-7.4 (7.4)	285-38
	50.6-65.5 (1.5)	16.1-19.8 (17.5)	7/7	20.6-22.4 (21.6)	288-492 (334)	3.4-5.4 (5.0)	7.4-7.8 (7.6)	110-18
nohate	20.0-07.7 (3.7)						7 4 9 4 (9 4)	70.10
te	100.0-105.8 (1.5)	16.6-17.6 (17.1)	4/4	22.7-23.0 (23.0)	175-329 (20	2.2-3.0 (2.7)	7.4-8.1 (8.1)	79-13

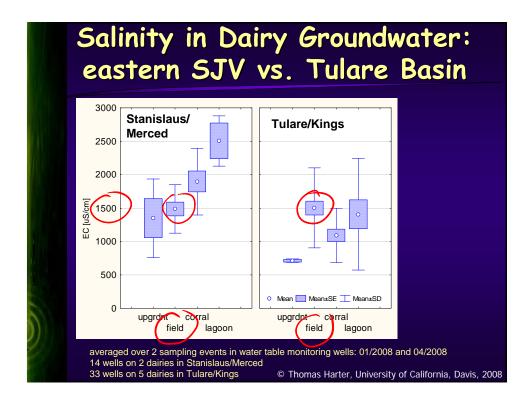
	Annual Crop N Uptake, kg ha ⁻¹ yr ⁻¹						
	300	400	500	600	700		
N excretion, kg/ha/year	540-990	720-1320	900-1650	1080-1980	1260-2310		
Salt excretion, kg/ha/year	690- 1260	910-1680	1140-2100	1370-2520	1600-2940		
Lactating plus Dry Cows equivalent head/ha	3.5 - 6.5	4.7 - 8.6	5.9-10.8	7.0 - 12.9	8.2 – 15.1		

© Thomas Harter, University of California, Davis, 2008

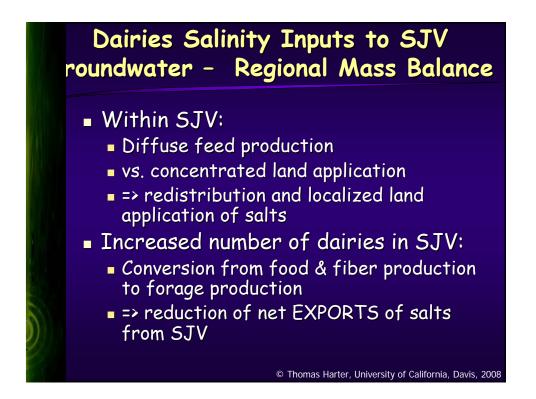
Dairy Manure Annual Salt Loading to Groundwater

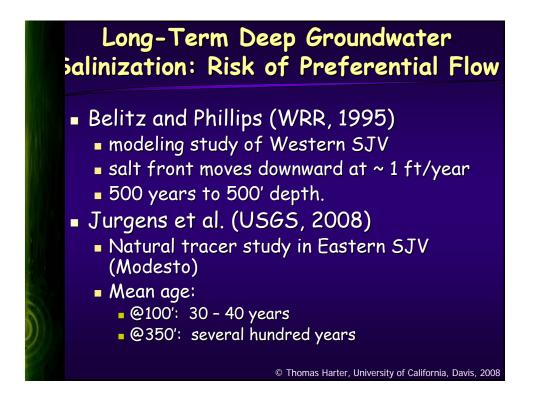
http://anrcatalog.ucdavis.edu/DairyCattle/9004.aspx).

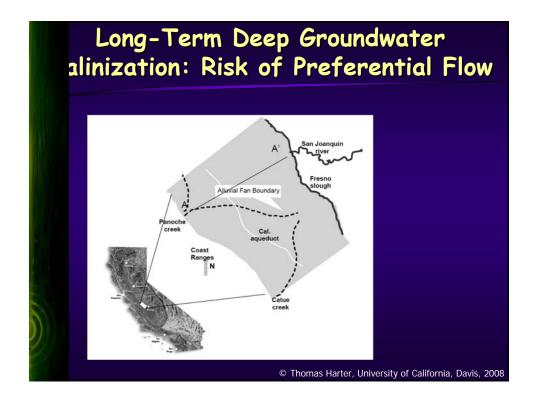
	Salt Inpu	t, kg ha ⁻¹	Annual Salt
Irrigation Water Source	Winter Forage	Summer Corn	Loading kg ha ⁻¹
East Side Sources	86	310	404
Wastewater + East Side	1356	2284	3615
West Side Sources	828	2983	3794
Wastewater + West Side	2000	4792	6452

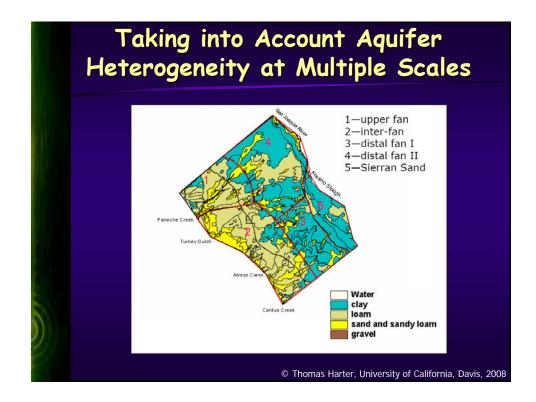

Computed using "Watsuit" Model. Crop uptake is considered. Agronomic manure application rates. Scenario: Annual Summer Corn/Winter Forage Double Cropping with 250 and 150 lbs per acre of N inputs, respectively; annual water inputs are rainfall 12 inches ((30.48 cm), winter irrigation 10 inches (25.4 cm), and summer irrigation 36 inches (91.44 cm); and leaching fraction is 0.3. (UC Committee of Consultants Report, UC ANR Communications, 2007; http://anrcatalog.ucdavis.edu/DairyCattle/9004.aspx).

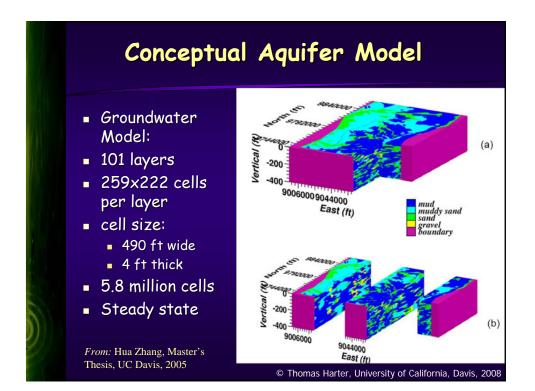
© Thomas Harter, University of California, Davis, 2008

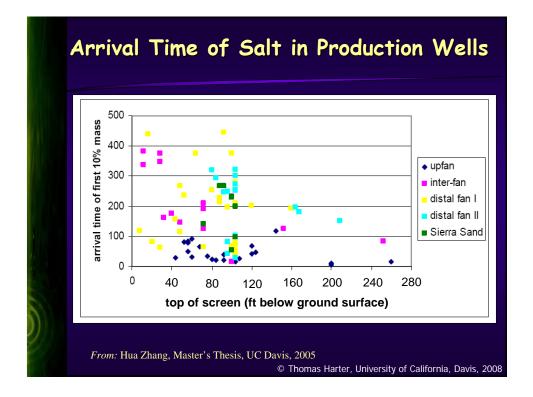

	Salt Inpu	ıt, kg ha ⁻¹	Annual Salt Loading kg ha ⁻¹
Irrigation Water Source	Winter Forage	Summer Corn 220 uS/cm	
East Side Sources	86	310	404
Wastewater + East Side	1356 1 200 – 1	2284 900 uS/cm	3615
West Side Sources	828	2983	3794
Wastewater + West Side	2000	4792	6452

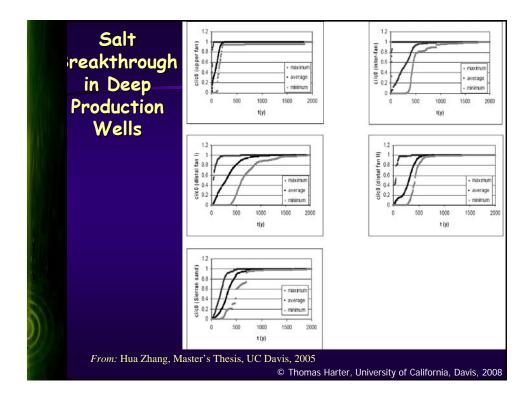

http://anrcatalog.ucdavis.edu/DairyCattle/9004.aspx).


© Thomas Harter, University of California, Davis, 2008




<section-header><list-item><list-item><list-item><list-item><table-container>





Conclusion

- Manure land application salinity in recharge (1,500 µS/cm) is 2x 4x above typical recharge from field crop
- Manure lagoons have highest salinity in recharge (2,000 - 4,000 μS/cm)
- Some improvements expected from WDR
 - Reduced/more diffuse land application in the most impacted areas (shallow water table, eastern SJV)
 - Lagoon liner requirements
- Major impacts to deep aquifer are on the centuries scale
- Preferential flow & well leakage will drive salinity downwards more guickly than expected

 $\ensuremath{\mathbb{C}}$ Thomas Harter, University of California, Davis, 2008