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ABSTRACT 

A method €or  p r e d i c t i n g  unsteady,  subsonic  a e r o e l a s t i c  responses  

has  been developed.  The technique  accounts  for aerodynamic non l inea r -  

i t i e s  a s s o c i a t e d  wi th  a n g l e s  of a t t a c k ,  vortex-dominated flow, s t a t i c  

de fo rma t ions ,  and unsteady behavior .  The a n g l e  of a t t a c k  is  l i m i t e d  

o n l y  by thc occurrence  of s t a l l  or v o r t e x  b u r s t i n g  nea r  t h e  wing. The 

f l u i ( l  and the  wing t o g e t h e r  are treated as a s i n g l e  dynamical system, 

and t h e  e q u a t i o n s  o f  motion fo r  t h e  s t r u c t u r e  and f l o w f i e l d  a r e  i n t e -  

g r a t e d  s imul t aneous ly  and i n t e r a c t i v e l y  i n  t h e  time domain. The 

method employs an i t e r a t i v e  scheme based on a p r e d i c t o r - c o r r e c t o r  

technique .  The aerodynamic loads  are computed by t h e  g e n e r a l  uns teady  

v o r t e x - l a t t i c e  method and are determined s imul t aneous ly  wi th  the  mo- 

t i o n  of t h e  wing. Because t h e  unsteady v o r t e x - l a t t i c e  method p r e d i c t s  

t h e  wake a s  p a r t  o f  t he  s o l u t i o n ,  t h e  h i s t o r y  of he motion i s  taken  

intcj accoun t ;  h y s t e r e s i s  is  p r e d i c t e d .  Two model a r e  used t o  demon- 

s t r , i t e  t h e  technique:  a r i g i d  wing on an e l a s t i c  uppor t  expe r i enc ing  

p lur , ;e  and p i t c h  about  t he  e l a s t i c  a x i  *, and an e l a s t i c  wing r i g i d l y  

s u p p i  r t e d  t t  t h e  t o o t  chord expe r i enc ing  spanwise bending and t w i s t -  

ing.  The method can be r e a d i l y  extended t o  account  €or  s t r u c t u r a l  

n o n l i r e a r i t i e s  and/or  s u b s t i t u t e  aerodynamic load models. The time 

domain s o l u t i o n  coupled wi th  t h e  unsteady v o r t e x - l a t t i c e  method 

p rov ides  t h e  c a p a b i l i t y  o f  g r a p h i c a l l y  d e p i c t i n g  wing and wake motion. 
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CHAPTER I 

i 

i s  i 

INTRODUCTION 

1.1 General 

Aeroelastic instabilities, which may be catastrophic, xcur as a 

result of coupling between aerodynamic for~es, structural forces, and 

mass. Therefore, the aeroelastic design of aircraft must address the 

structure and the aerodynamic forces within the flight environment. 

This concern includes the design of wings or aircraft for both flight 

and wind-tunnel testing. 

A method to predict the aeroelastic behavior of a wing is de- 

scribed. The objective is to develop an improvement in aeroelastic 

analyses by accounting for aerodynamic' nonliiearities assc ciated with 

angles of attack, static deformations, vorticity-dominatec flow, and 

unsteady behavior. 

aeroelastic response or instability by predicting both the motion of 

the wing and the motion of the fluid simultaneously. 

the wing and fluid are treated a8 a single dynamical system, and the 

equations of motion €or the structure and flowfield are integrated 

simultaneously and interactively in the time domain. 

This method generates a realistic simulation of 

In other words, 

The equations of motion are developed €or classical two-degree- 

of-freedom wing motion; that is, a rigid wing which is a1 owed to 

plunge and pitch about the elastic axis. In addition, tF !  equations 

of motion are developed for an elastic wing with bending ind twisting. 

The unsteady vortex lattice method (UVLM) is used to predlct the 

aerodynamic loads. The technique accounts for the aerodJnamic 

nonlinearities. 

1 



2 

A complication does exist with a time domain approach: the aero- 

dynamic loads cannot be predicted unless the motion of the wing is 

known, and the motion of the wing cannot be predicted unless the aeto- 

dynamic loads are known. 

interaction between the aerodynamic loads and wirg motion was devel- 

oped based upon a predictor-corrector approach. An advantage of the 

method is that it provides an excellent opportunity to animate the 

motions in the flow€ield and wing since the governing equations are 

solved in the time domain. 

An iterative scheme thzt accounts €or the 

The technique de cribed herein provides a somewhat different ap- 

proach to model flutter for a wing of arbitrary planform. 

tions are developed about arbitrary static angles of attack, providing 

a new capability to study the associated nonlinear e€fects. Through 

the use of the UVLM one is able to treat loraspect-ratio wings and 

account for the wake rollup at the wing tips. 

wake where the history of the motion resides. 

The equa- 

The UVLM models the 

1.2 The Aeroelastic Phenomenon 

Many different types of aeroelastic instabilities exist. Static 

instabilities include aeroelastic divergence in which the elastic re- 

storing forces of the wing are exceeded by the aerodynamic forces. 

Dynamic instabilities such as flutter are caused by an exchange of 

energy between the aircraft and surrounding air. 

phenomena are described by Fung (19551, Bisplinghoff , Ashley and 
Halfman (1955), and Dowell (1980) among others. A historical per- 

spective of aeroelastic research is given by Collar (1978). 

General aeroelast..c 

, 
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A complete model of the aerodynamic forces, elast€c f>rces, and 

inertial forces is required to describe the unsteady aeroelastic na- 

ture of an aircraft. As Figure 1.1 depicts, this Cnteract €on among 

these three types of force provides the conditions necesssry for 

potential static and dynamic instabilities. The nature of' the aero- 

elastic problem can best be illustrated by this three-ring diagram as 

suggested by Yates (1971). Variations to this diagram are presented 

by Bisplinghoff et al. (19551, Collar (1978), and Dowel1 (1980). 

Aerodynamic, elastic, and inertial forces are shown. The common 

ground between the inertial forces and elastic forces represents the 

free-vibration problem, the common ground between the aerodynamic 

forces and elastic forces represents static aeroelastic phenomena 

which include instabilities such as divergence, and the common ground 

between the aerodynamic forces and inertial forces represtmts dynamic 

stability investigations of "rigid" aircraft. The interat tion of all 

three forces is present in the aeroelastic phenomenon knotrn as 

flutter. 

Flutter has been defined in many ways. Among the first to exam- 

ine the nature of flutter, Theodorsen ( 1 9 4 0 )  described flutter and 

developed a general theory which Cs still used today. 

defines flutter as "a self-axcited oscillatory aerodynamic instabil- 

ity" and states that flutter may be considered "an oscillatory in- 

stability where one degree of freedom is driven at resonance by a 

second degree of freedom, both at the same frequency". Hancock, 

Wright, and Simpson (1985) describe flutter as "a complex phenomenon 

where, in the classical sense of the term, two or more structural 

Pines (1958) 
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AEROELASTICITY 

Figure 1.1. The Three-Ring Diagram. 
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normal modes are coupled and excited through time dependent aeto- 

dynamic loads". Dowel1 (1980) also describes the flutter phenomenon 

and suggests that many types of flutter exist; these include: 

"'Coalescence' or 'merging frequency' flutter", "'Single-degree-of- 

freedom' flutter", and "'Divergence' or 'zero frequency' flutter". 

An illustration of the flutter phenomenon is presented in Fig- 

ure 1.2. A wing is initially moving through a fluid at rest. The 

wing is subjected to a disturbance. In the left-hand side of the 

figure the dynamic pressure is below the critical condition for flut- 

ter. The bending and torsion of the wing occur at separate, unique 

frequencies which are close to the natural frequencies for the free 

vibration modes. The motion decays following the initial cisturbance 

as there is not enough energy being extracted from the fre stream to 

maintain the motion. In fact, the freestream is extractin, energy 

from the wing and damping the motion. There is aerodynamic damping 

here. The system is being damped by aerodynamic e€fects only. In the 

right-hand side of the figure the dynamic pressure is greater than the 

crttical pressure. 

but bending and torsion occur at a common frequency - a characteristic 
associated with flutter. In the lower portion of the figure the shift 

in system frequencies due to the dynamic pressure is illustrated. The 

frequencies are the natural ones when the dynamic pressure is zero.' A 

coalescence occurs at a critical dynamic pressure, the system is now 

in flutter. 

Not only is the motion seen to grow ill this case 



cr q c q  cr q ' q  

c 
A 

L plunge 
rc 

Figure 1.2. Flutter  Response for a Two Degree of Fre:dom Example. 
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1.3 Literature Review 

The purpose of this research is to provide an improvement in 

aeroelastfc analysts capabilities. Through the application of the 

UVLM to the aeroelastic formulation new capabilities are introduced. 

As mentioned previously these include the modeling of aerodynamic 

nonlinearities and new solution strategies. These enhancements, in 

turn, open the door for further improvements primarily in structural 

nonlinearities. However, the emphasis in this research is placed on 

the aerodynamic model and the solution strategy; the literature review 

will focus on these areas. 

1.3.1 Aeroelastic models 

Aeroelastic research is very broad indeed. Experimental and 

theoretical research has been performed in structures, fluids, and 

dynamics as well as solution schemes associated with aeroelasticity. 

Desmarais and Bennett (1978) described an approach for flutter 

analysis which is representative of current numerical strategies. 

In their method the generalized mass and mode shapes are developed 

through an external structural analysis package. These modes are used 

to describe the shape of the wing which in turn is used to compute an 

aerodynamic influence matrix. A subsonic kernal function approach is 

used to model the aerodynamics. An eigenvalue formulation is used 

with the governing equations. Hence, the solution is performed in the 

frequency domain, the governing equations are cast in a lfnear form, 

and a simple harmonic form of the solution is assumed. As we shall 

see, the method developed in this research is not limited by these 
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assumptions- The roots of this eigensolution, which are dependent 

upon the velocity, density, and Mach number, are used to determine the 

critical conditions necessary for flutter. 

The method commonly used to determine the flutter conditions of a 

wing using a frequency domain solution is illustrated in Figure 1.3. 

The method, called the V-g (for Velocity-incremental damping) method, 

tracks the roots of the modes used for the solution for increasing 

values of velocity. 

each velocity which is required to satisfy the eigenvalue problem. 

the upper part of the Eigure we plot the roots €or a 3 mode system. 

The upper plane represents an unstable region; hence, when a root 

enters this region the system is unstable. At only this "flutter 

crossing" is the solution meaningful, yet no physical inte pretation 

of the motion is available. In the lower part of the figure the 

frequencies for these modes are computed as the velocity increases. 

A fictitious damping (the root) is determined at 

In 

Hassig (1971) and Fung (1955) described some alternate solution 

schemes for the frequency domain solutions. 

examples, some of which will be referred to in this dissertation. 

Goland and Luke (1949) outlined a method to describe the aeroelastic 

character of an elastic wing. 

Fung also pre.ented many 

Garrick (1969) presented several classical papers on the flutter 

phenomenon, flutter determination, aerodynamic theories, and other 

associated subjects. Loring (1941) introduced generalized coordinates 

through the use of the natural modes to solve the flutter problem. 

His work developed a systemized approach for the structural model. 
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Dowel1 (1980) described both frequency and time domain solutions 

of the aeroelastic equations. 

widely used since these require less resources and a more convenient 

solution scheme. However, a frequency domain solution does not pro- 

vide a physical description of the motion as do time domain solutions. 

Time domain solutions, which do not assume a Eorm of the solution 

(i.e. harmonic motion) as do the frequency domain schemes, provide the 

more general and physical approach. 

Frequency domain solutions are the most 

A more complete formulation of the aeroelastic equations was 

described by Bisplinghoff (1975) and Fung (1955). 

aeroelastic phenomena were presented by Theodorsen (19401, Biot and 

Arnold (19481, Pines (1958), and Hancock et al. (1985). 

two papers presented physical models of flutter. Pines, in par- 

ticular, examined the governing equations in a general sense and 

established relationships for which flutter can exist. 

Descriptions of 

These later 

An aeroelastic model, which is s€milar in nature to the one pte- 

sented in this dissertation, is described by Devers (1972). Devers 

developed a time domain solution of the governing equations, he too 

used a vortex-lattice method as an aerodynamic model. Yowever, sinr 

plifications in his model prevented the unsteady nature of trailing 

edge and wing-tip vortex effects to be considered. 

integration scheme assumed a form of the solution and, as a conse- 

quence, the simulation reflected this assumption. 

In addition, his 
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1.3.2 Aerodynamic models 

Currertly, the major effort of aeroelastic research is to de- 

scribe the unsteady aerodynamic loads, and, in particular, the flow in 

the transonic flow regime as most recently described by Batina et ala 

(1987). Edwards (1986) presented an overview of aerodynamics associ- 

ated with transonic aeroelcsticity. 

Bisplinghoff (1975) described many different aerodynariic opera- 

tors which are available €or all flow regimes. Yates (1985) described 

the various approaches available for aerodynamic models, w’lich include 

doublet-lattice, kernal function, velocity potential and acceleration 

(pressure) potential formulations. 

The research will concentrate in the subsonic regime. Theodorsen 

(1940) introduced a two-dimensional functional form of the subsonic 

aerodynamic operator which is still popular today. Desmarais and 

Bennett (1978) implemented a subsonic kernal function indicative of 

more current strategies. However, most methods are quasi-steady, lin- 

ear (i.e. small angle) theories. A new approach to the subsonic aero- 

dynamic model for aeroelastic analysis is introduced. The unsteady 

vortex-lattice method (IJVLM) provides the opportunity to address aero- 

dynamic nonlinear effects associated with unsteady flow aspect ratios, 

static deformations, and the angles of attack. Hence, nonlinear 

aerodynamic effects may be studied as they apply to the aeroelastic 

phenomenon. 

Experimental investigations have demonstrated nonlinear effects. 

Yates and Bennett (19711, Farmer (19821, and Yates, Wynne, and Farmer 

(1982) addressed the effect angle of attack has on flutter boundaries. 
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Hsu (1957) addressed the effect aspect ratio has on flutter 

boundaries. 

The development of the WLM will be briefly reviewed. The reader 

is referred to the work of Kandil (19741, Maddox 19731, and most re- 

cently, Konstadinopoulos (1981) for more complete descriptions. 

The unsteady vortex-lattice method, as we use it in this research, 

ortginates from the investigation of Belotserkovskiy (1966). 

original work could treat arbitrary wing planforms and deformations 

but could not model the geometry of the wake which thereby limited it 

to small angles of attack. 

nonlinear method to calculate the aerodynamic loads on winge with 

wing-tip separation in steady flows. Later, Belotserkovskiy and Nisht 

(1974) presented a method for the treating of rather general planforms 

in nonlinear unsteady flow. As part of this research, they determined 

the shape of the wake convecting from the wing tips and the trailing 

edge . 

This 

Belotserkovskiy (1968) then developed a 

Maddox (1973) and Mook and Maddox (1974) used this vortex-lattice 

method and considered leading edge separation. However, this method 

did not account for force-free wing-tip and trailing-edge vortex 

sheets. Fandil (1974) and Kandil, Mook, and Nayfeh (1974) refined 

this approach and their results were in very good agreement with the 

experiments. 

discussed by James (1971). 

The remarkable accuracy of vortex-lattice methods was 

Atta (1976) and Atta, Kandil, Mook, and Nayfeh (1976, 1977) ex- 

tended the method to treat unsteady flows past rectangular wings with 

sharp-edge separation. The problem was posed in an inertial frame 
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which proved to be awkward. Thrasher, Mook, Kandil, and Nayfeh (1977) 

and Thrasher (1979) posed the problem Cn terms of a body-fixed frame. 

The approach treated rectangular wings executing arbitrary maneuvers 

as long as separation occurred along the wing's sharp edges and vortex 

bursting did not occur at or near the ding's surEace. 

Thrasher (1979) coupled the aerodynamic method with a predictor- 

corrector method to predict the flowfield, loads, and motion of a 

hinged rectangular wing due to a prescribed motion of a flap. This 

development is of particular interest since it had application to 

aeroelastic type problems. Kandil, Atta, and Nayfeh (1977) and Atta 

(1978) refined the approach to treat delta wings. Further, they 

developed a higher-order convection process for the wake, but this 

process required iteration. 

Nayfeh et al. (1979) modified the method to treat small, harmonic 

oscillations around an arbitrary angle of attack. The general 

unsteady m?thod was described by Nayfeh, Mook, and Yen (19791, 

Konstadinopoulos (1981) and Konstadinopoulos , Mook, and Nayfeh (1951). 

Most recently the general method was descrihed by Konstadinopoulos, 

Thrasher, Mook, Nayfe'l, and Watson (1985). 

Recently, Konstalinopoulos (1984) and Konstadinopoulos, Mook, and 

Nayfeh (1985) developsd a numerical method for simulating subsonic 

wing rock. 

ulating two-degree-of-freedom wing rock. Elzebda, Mook, and Nayfeh 

(1985) described the ability of the general method to model the aero- 

dynamics for close-coupled lifting surfaces. 

More recently, Elzebda (1986) described a model €or sim- 
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1.3.3 Structural models 

In this research the wing structure is represented by two di€€er- 

ent models €or demonstration purposes - a rCgid wing which can p i t c h  

and plunge about the elastic axis and an elastic wing. 

the model of the elastic wing, the elastic axis of the wing is repre- 

sented by a beam which is allowed to bend and twist. 

nonlinearities are taken into account. The two-degree-of-€reedom 

model is addressed in the texts on aeroelasttcity we have already 

cited. 

equations of a beam which we have implemented. 

Currently, €or 

No structural 

Several texts ( for  example, see Rivello (1969)) describe the 

The numerical model can be readily extended to include nonlinear 

effects of beam flexure and torsion. Several references consider 

nonlinear models, these include the work of Crespo da Silvl and Hodges 

(19861, Hodges and Dowel1 (19741, and Kaza and Kvatetnik (1977). 

These references address the more difficult kinematics and large 

deformations associated with rotorcraft applications. 

More complicated models of the wing are typically handled by fi- 

nite element methods. For example, the method described by Desmarais 

and Bennett (1978) implements the structural modtts generat ?d by any 

experimental or analytical method. 

tures is dependent on the capability of these alternate sources. Yet, 

an advantage in the aeroelastic design of structures is gained through 

the inclusion of more elaborate structural models. Ashley et al. 

(1980). Bendiksen and White (19861, and Weisshaar (1987) describe the 

advantages of aeroelastic tailoring of structure$. 

Hence, the description of struc-. 
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1.4 The Present Method 

A method for predicting unsteady, subsonic aeroelastic responses 

i s  described. Previously, we described the application of the UVLM to 

the two-degree-of-f reedom problem (St rganac and Mook (1  986) ) . The 
introduction of the UVLM to the prediction of flutter provides the 

opportunity to model aerodynamic nonlinearities. Later, we extended 

this effort to include the elastic wing model (Strganac and Mook 

(1987)). Most recently, we demonstrated the simulation o flutter by 

animating the wing and flowfield as predicted by our model (Strganac, 

Mook, and Mitchum (1987)). These efforts are further described here. 

In Chapter 11, the equations of motion for a rigid wing on an 

elastic foundation are developed. 

deflections are included. The nondimensionalization concept is also 

introduced. 

Structural damping and static 

In Chapter 111, the equations of motiori for an elastic wing on a 

fixed support are developed. The equations account for static defor- 

mations. Mass and stiffness matrCces for the wing are developed. 

Coupling exists between bending and torsion. 

ties are not addressed but the general formulation allows for this 

feature . 

Structural nonlineari- 

In Chapter IV, the unsteady vortex-lattice method is described. 

The computation of the wake geometry is illustrated. Comparisons of 

the computed pressure distribution and the sensitivity to aspect ratio 

are shown. 

In Chapter V, the integration schemes which account 'or the 

structural dynamic and aerodynamic interaction are develoved. The 
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methods are based upon a predictor-corrector technique, with appro- 

priate modifications to account for aerodynamic/dynamic coupling. 

convection schemes which are used to accurately generate the wake in 

the unsteady model are discusse4. 

Pormulations are individually described as each wesent unique 

requirements. 

The 

The rigid wing and elastic wing 

In Chapter VI, several examples of computed results are pre- 

sented. Wing response, aerodynamic loads, and pressure distributions 

are shown. In addition, phase planes and aerodynamic load histories 

are shown which further describe the physical nature of aeroelastic 

phenomena. Finally, the ability to take advantage of time domain 

solr,tions is graphically demonstrated. 

vorticity dLstribution are shown at several time steps. 

sequences are indicative of the animation capability which exists 

with the present formulation. 

The wing and wake shape and 

These 
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CHAPTER I1 

EQUATIONS OF MOTION FOR THE RIGID WING 

2.1 Description of the System 

In this chapter the equations of motion are developed for a rigid 

wing on an elastic support limited to plunge and pitch about the 

elastic axis. This simplified structural model, illustrated in Fig- 

ure 2.1, serves as a demonstration of the technique and is described 

in many references (see Fung (1955)) as a common example. 

the equations are developed about an arbitrary static angle OF attack, 

0, which is included in the aerodynamic model. 

However, 

The wing is attached to the support by linear springs to model 

stiffness characteristics and by linear dashpots to model damping 

characteristics. The point of attachment is referred to as the elas- 

tic axis. The center of gravity is offset from the elastic. axis by 

the parameter r. This offset affects sensitivity to flutter; this 

effect has been described by Pines (1958) and Bisplinghoff (19751, as 

well as others. The aerodynamic model accounts for spanwise effects; 

hence, the aspect ratio of the wing is considered. Physictl proper- 

ties of the wing, stiffness (and structural damping) propetties of 

the support, and aerodynamic properties act on the wing section as 

illustrated. 

17 



Figure 2.1.  The Rigid-Wing Model. 
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2.2 Development of the Equations 

The components oE the acceleration of the center of gravity are 

described in the inertial frame. The x-component is expressed as 

and the y-component is expressed as 

.. 
a = y + r.i cos(a + 0) - ri2 sin(a + 4)  (2.2) Y 

where a and y are the coordinates which describe the pitch and 

punge motion. The location of the center of gravity relative to the 

elastic axis is given by 

center of gravity is aft (i.e., towards the trailing edge) of the 

elastic axis. 

r, which is a positive quantity if the 

Summing forces in the X direction results in the following 

equation: 

Fx + N s in (a  + $1 

Summing force8 in the Y direction results in the following equation: 

Fy - N cos(a + 4)  
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Summing moments about the wing's center of gravity results €n the 

following equation: 

+ 

where is the distance between the reference position of the aero- 

dynamic loads and the mass center of the wing and is a positive 

quantity if the mass center is aft of the reference position. 

raactlons of thr springs and dashpots are denoted by 

Us. 

and the rl!sult is the following di€€erential equation: 

The 

Fyr and Qx. 

Equations (2.3) and (2.4) are substituted into Equation (2.5). 

Equations ( 2 . 4 )  and (2.6) represent the diftercntial equations 

LLneat elastic spring and which describe the motion of the system. 

damping forces and moments are defined as follows: 

. 
kaa N = - c a -  

8 a 

These expressions are substituted into Equations (2.4) and (2.6). 

Structural nonlincarities could be introduced €n the spring and 

damping model. 
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The force and moment equations are now rewritten as 

e 2  mi + mri cos(a + 4 )  - ma r s i a ( a  + 4) 

= -N cos(a  + 4)  - k q  - Cy; 

(2.8) 
2 ** = NE - caa - koa + Mr - rN - r ma 

The form of these equations can be simplified by introducing the 

following: 

= I  + r m  2 
‘e cg 

and 

M = Mr + (E - r)N 

Equations (2 .7)  and (2.8) are now rewritten as 

and 
.. 

my + mri cos(a + $1 - mri2 sin(a + 4) 

+ k y + c = -N coe(a + 4) Y Y 

1 -  The linear form of Equations (2 .9)  and (2.10) agrees with the 

equations derived by Fung (1955). 

(2.10) 
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The numerical integration scheme which is described i n  Chapter V 

requires first-order differential equations. To this end, Equa- 

ttons ( 2 . 9 )  and (2.10) are solved simultanerbusly to provide equations 

in terms 

" 
Y' 

" 
a -  

of the second-order time derivatives. These equations are: 

{-ea& - kaa + 14 1 1 

(2.11) 

where the aerodynamic normal force, N, and pitch moment, H, are 

defined ae 

1 2  N pU=4Cn (2.13) 

1 2  M pU,?S"LcCm (2.14) 

M is referenced to the elastic axis. The quantity nLc is the full 

chord of the wing. 



2.3 Nondimensionalized Form of the Governing Equations 

The governing equations of the W t M  have been written in a non- 

dimensional form through the introduction of the character€stic 

length, le, characteristic velocity, U,, and the result€ng charac- 

teristic time, (T = l,/U,). 

dimensional by divtding both sides of the equation by 

equat€on is now expressed as 

Equation (2.11) is also rendered non- 
2 Uw/lc. This 

1 

K - r2 cos (a + 4) 
[(Koa + CaA - nCCm)r cos(a + 0) 

.. 
2 Y =  

(2.15) 

2 where K = Ie/mlc 

C = p l  A/2m is introduced as a nondimensional aerodynamic constant. 

Hence, we also utilize the mass, 

properties in nondimensional form. 

is introduced as a nondimensional inertia and 

C 

m, to characterize the physical 

Other terms in Equation (2.15) 

have been rearranged and represent the necessary collection of terms 

for the nondimensional form. All quantities are nondimensional. 

Similarly, Equation (2.12) is nondimensionalized by dividing both 
2 2  Uw/lc. sides of the equation by This equation is now expressed as 

{(c i + K Y)r cos(a + 4) .. 1 a =  
2 Y K - r2 cos ( a  + 0) Y 

2.2 - r a sin(a + 4)  cos(a + 4) - (Ca: + Koa) 

+ c(n cm + r cos 2 (a + o>c,)} (2. - 6 )  
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I 
One should note that the velocity now appears only in the spring and 

damping terms. K, and Ky contain the square ol the speed in the 

denominator. C, and Cy contain the speed i n  the denominator. 

Hence, the effective stiftness and damping of the system decreases as 
I 

I the freestream speed increases. 



CHAPTER 111 

EQUATIONS OF MOTION FOR THE E L A S T I C  WING 

3.1 Description of the System 

In this chapter the equations of motion for an elastic wing are 

developed by using an energy approach. This wing is illustrated in 

Figure 3.1. Small displacements about an equilihrium position are 

assumed. The angle of attack is introduced into the equations. The 

wing is allowed to bend and twist about an e1ast;c axis not necessar- 

ily coincident with the inertial axis. 

well as aerodynamic c,oupling between wing bending and torsion. 

?IUS, thcre is inertial as 

The wing is represented as a cantilevered beam, which can both 

bend and twist. The cross section of the beam is assumed to be rigid. 

The wing root is rigidly fixed. The physical properties may vary 

along the span of the wing. 

loading is considered. The 

sists of static and dynamic 

Spanwise variation in the aerodynamic 

solution of the governing equations con- 

contributions. The statically deformed 

shape due to steady aerodynamic loads and the distributed weight is 

determined. Franz, Krenz, and Kotschote ( 1 9 8 4 )  discussed the impor- 

tance of deformations due to static loads on aerospace vehicles, 

particularly wind-tunnel models. 

3.2 Development of the Equations 

We ignore the out-of-plane (that is, the spanwise) motion. The 

components of the velocity are expressed as 

25 
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The kinetic energy of the system is exxessed as I .  

The potential energy o €  the system is expressed as 

L 1  V = 1 T {EI(Y)W"~ + GJ(y)a'* - m(y)g(w + xa(y) sin a)']  dy ( 3 . 4 )  
0 

The distributed aerodynamic loads are provided by the unsteady 

vortex-lattice method (UVLM). 

ing is expressed as 

The work done by the aerodynamic load- 

This aerodynamic spanwise loading is dependent upon the motion, 

and the motion, in turn, is dependent upon the aerodynamic loads. 

The norma: force and pitching moment are €unctions which should be 

expressed as 

N = [w, 4, w*, a, t; 4, AR,  planform^ 

M = [w, G ,  w', a ,  &, t; 4, AR,  planform^ 
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According to Hamilton's principle, 

Substituttng T, V, and W into Equation (3.61, one obtains the 

following differential equations: 

02 111;' + ma cos(o)L - ma sin(a)a 
+ (EX Y")" - rag = -N 

The linear form of these equations is 

where all properties vary along the length. 

For the case where Equation8 ( 3 . 9 )  and (3.1 1) represent a canti- 

levered wing, the boundary condition8 for there eauattonr are 
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3.3 Stattc and Dynamic Equations 

The solution of Equations (3.9) and (3.10) provides both the 

static and dynamic contributions. The developed equations will yCeld 

the static solution for cases of decaying motion. However, the solu- 

tion may require unnecessary computations for static solutions only; 

therefore, w(y,t) and a ( p , t )  are redefined a9 

(3.12) 

(3.13) 

where the subscripts s and d refer to the static and dynamic solu- 

tions. Now these equations become 

(3.14) 

I '  

and 

.. .. 
I a + mawd - (GJai)' - (GJai)' - mgxa = ?.( (3.15) e d  

From Equations (3.14) and (3.15), the equations for the static 

deformations and the dynamical equations for small motion about the 

static deformations are 

- ( G J a i ) '  - mgxa = Ms 

.. 
mwd + + (EIwl;)" -Nd 

(3.16) 

(3.17) 

(3.18) 
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I + - (CJa;)' = Pld e d  (3.1 1) 

Meirovitch (1980) describes a method of solution to these equations by 

an expansion of the dependent variables. The variables w and a 

are represented by expansions i n  tarus of the natural free vibration 

modes of the syrtea. 

and 

(3.20) 

where the qf 8nd q are the gener8lited coefficients and the ei 

and ej are the d e r  choren a0 the comparison functions, and h e r e  
J 

I = number of bendfng modes selected, 

J - I = nuabet of torsion modes relected, and 

J = total number of modso selected to represent the solution. 

3.3.1 Equ8tiOnS governing the static contribution 

Thesc. expanrionr are 8ubrtitutcd into the st8tic Equation0 (3.16) 

and (3.17'. The rerult becomes 

I 

J 
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I *  i 

Multiplying the first equation by 4, for r=1t2t...,l and then 

integrating along the span, one obtains 

L I  L 
I 1 (EIO;)"Or dy qi - mgcDr dy = -I Nsar dy 
0 i=l 0 

(3.24) 

Multiplying the second equation by 4, for  S=I+l,...,J and 

then integrating along the span, one obtains 

(3.25) 

In Equations (3.24) and (3.25), the first term is integrated by parts 

and the boundary conditions, Equation (3.11), are imposed. 

rangement these equations are rewtltten as 

With rear- 

I L  L L 

and 

E14;B; dy q1 = $ mg4= dy - I Ns4= dy 
0 0 

1 
i=l i, 

(3.26) 

(3.27) 

The above expressions represent J equations, which in matrix 
I -  
1 

(3.28) 
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The sttffness matrix (K1 is partttioned as 

where 

L 

K12 = K21 = 

L 
= I We'@'  dy for i = I+I,...,J 

i l  j I+l,*oo,J =22 

{As) is the static 8etodynrmic lording vec-ot 8nd is defined a6 

for i-1,2,000,1 
{As) '1 j=I+l, 9 J 

M e  dy 
8 3  

{SI is the static loading (due to weight) vector and is defined 

as 
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3.3.2 Equattons govetntng the dynamic contribution 

We now concentrate on the dynamic equations. Substituting the 

series representation into the governing equations ((3.18) and (3.19)) 

for the dynamic solution yields the following equations: 

I J J c ma ipi + 1 I 4 - 1 qj(GJ4;)' = Md 
I= 1 j =I+ 1 e j j j=I+1 

(3.29) 

(3.30) 

Multiplying the ftrst equation by (Dr for r = 1,2,...,I and 

integrating along the span we obtain the following expression: 

I L J L 

I L L 

Multiplying the second equation by Os for s = R+l,...J and 

integrating along the span we obtain the following expression: 

J L L 
(3.32) 
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The third term in each of these expressions has been integrated 

by parts and the boundary conditions, Equation (3.11). are Imposed. 

The result €s a more simplified fora of the equations. 

expressions represent a number of equations (J) equal to the total 

number o t  modes chosen to represent the system. 

be written in the following matrix fora: 

The above 

These equations may 

The IUS$ matrix [M] is partitioned 8s 

where the t e m 8  in [MI are defined as follow$: 

= $  I 4 4  1y '22 ,, e i j 

for i - 1,2,...,1 
j - 1,2,...,1 

The stiffness matrix I K ]  is as previously defined. 
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! .  

The right-hand side contains the aerodynamic contribution and is 

expressed as follows: 

0 

{Ad) 

Nd and 'rid represent the sectional normal force and moment refer 

enced at the elastic axis and computed from the dynamic solutions. 

[MI and [Kl are symmetric. In addition, these equations may 

be inertially uncoupled if the sectional center of gravity and elastic 

axis are coincident such that x,., = 0. 

still coupled through the aerodynamic loads. 

However, the equations are 

The equations are to be cast in a manner similar to that of the 

two-degree-of-freedom formulation. Therefo-e, n * 4 is introduced 

which allows the governing equations t )  be mitten in state space 

form. 

(3.34) 

The above expressions provide a set of first-order di'ferential 

equations, the solution of which describes the motion of the elastic 

wing. The integration scheme of there equations will be described 

subsequent ially. 



CHAPTER I V  

AERODYNAMIC LOADS, TUE UNSTEADY VORTEX4AI"PICE METHOD 

4.1 Overview 

The equatCons of motion and the associited integration scheme are 

€ormulatad in # t  manner which permit the aerodynamic loads to be deter- 

mined concurrently with the motion. In this chapter, a technique is 

described which models the aerodynamic loads using the unsteady vortex 

lattice method (UVLY). 

Konstadinopoulor (1981); hence, the technique as applied in this 

rcreatch will be briefly reviewed. 

This method has been completely described by 

The Wtn fs a numerical d e l  of the three-dimensional flowfield, 

which can be used to treat arbitrary aarrneuvers of wings of arbitrary 

planform, including highly swept delta wingr which exhibft leading 

edge reparation, multiple closely coupled lifting surfaces, and l o r  

aspect-ratio planforms. 

and camber as long as rtall or vortex bursting in the near wake doer 

not occur. The method account8 for the nonlinear effects of the wake8 

adjoining the tips and trailing edge. 

It can also treat arbitrary angles o€ attack 

The ability of the wLE( to predict accurate rpanwise distribu- 

tion of loads has been demonrtrated. 

Konstadinopoul~~ur, it is also worth mentioning other application8 of 

the IIVLH. 

lifting rurfaces (Eltebda (1986)). 

strated the method €or high-angle-of-attack aerodynamics. Itobayakawa 

and Onuma (1985) applied the vortcrlattice method to model propeller 

In addition to the work of 

The method was used to model aerodynamics of close-coupled 

Mook and Nayfeh (1985) demon- 

36 
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aerodynamics. Thomas and Nerney (1976) implemented the vortex-lattice 

method (coupled with slender body theory) to predict the aerodynamics 

of wing-body combinations. Kandil, Mook, and Nayfeh (1976) applied 

the UVLM to aircraft interference problems. 

The approach assumes that the flow is incompressible and inviscid 

and does not separate on the wing, but that separation occurs along 

the sharp edges where the Kutta Condition is imposed in a steady flow. 

At each time step this vorticity, which Eorrls the wake, is convected 

at the local particle velocity; thus, the pmition of and the distri- 

bution of vorticity in the wake are part of the solution. 

contains the history of the flow. Consequettly, the velocity induced 

by it at the present time reflects the prev olts motion. 

The wake 

. ’  

In the aerodynamic model the vorticity Xn the flow is restricted 

to a thin region around the lifthg surface and its wake. 

outside this region is considered irrotational. * The wing and wake are 

The flow 

modeled as a sheet of Vorticity. The wing portion, commonly referred 

to as the bound-vortex sheet, is specified, and as a result, a finite 

pressure jump exists across it. The wake portion, commonly referred 

to as the free-vortex sheet, is not specified but rather is force-free 

and is formed as part of the solution in such a way that no pressure 

jump exists across the wake. 

4.2 b Description of the Method 

4.2.1 The wing representation 

The vortex-lattice representation of a typical wing is illus- 

trated in Figure 4.1. The wing is modeled by a lattice of discrete 

I 



Figure 4.1. The Unstt8dy Vortex-Lattice Method. 



vortex Eilaments. Each element of area on the wing is surrounded by a 

closed loop of constant-circulation vortex segments. These segments 

join at the nodes, where the loops make sharp (typically 90') turns. 

A node is the intersection of the segments and is represented by a 

heavy dot in the figure. Control points are located at the center of 

each element; two typical control points are shown in the figure 

I 

i I  

(denoted by small crosses). 

The individual discrete vortex segments connecting the nodes are 

typically members of two difEerent loops (the exceptions are.the seg- 

ments along the edges). Consequently, the circulation around an 

individual segment is the algebraic sum of the circulations around the 

two loops to which it belongs. In Figure 4.1 the r's represent 

circulations around the individual segments, and the G ' s  represent 

circulations around the closed loops o f  segments. For example, 

referring to the figure, r t  is Gg - G 4 .  

4 .2 .2  Kinematic considerations 

Two coordinate systems are defined: the fixed inertial frame and 

a moving frame I'ixed to the wing and aligned with the wing root and 

elastic axis. This would be a deforming coordinate system for the 

elastic-wing model. The problem is posed in terns of the moving ref- 

erence frame. As described in the chapters addrassing the equations 

of motion, the dynamic model will be posed in terms of a translating, 

but nonrotating, coordinate system. 

The position of a point may be described as 

+ + +  
p = R + r  
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The velocity o€  this point is given by 

+ +  
p - R + v + o x r  
. a + * +  

( 4 . 2 )  

+ + 
where v is the velocity vector relative to the moving frame and w 

is the angular velocity of the moving frame. Th; components of the 

velocity vectors are expressed in term of the moving frame. The 

components of the angular velocity in the moving frame may be ex- 

pressed in term of the derivatives of the Euler angles. 

description of the coordinate transformations and Euler an lee for 

A complete 

general motion is presented in Konstadinopoulos's work. The trans- 

formations required for this research involve only the pitch angle. 

These transformations are described in the chapter which presents the 

development of the governing equation of motions. 

4.2.3 The Biot-Savart Law 

The equation that serves as the fcundation of the UVLM is the 

Biot-Savart Law (see Karamcheti (1980)) which gives the velocity 

induced at point P (see Fig. 4.1) by an individual vortex segment. 

(4.3) 

The graphical representation of this equation is illustrated in Fig- 

ure 4.1. I' represents the circulation associated with a vortex 

filament described by 0 and h is the perpendicular distance from 

the filament to the point P. 

+ 
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Equation ( 4 . 3 )  is used to establish the aerodynamic influence 

matrix and the local velocity at a point as affected by all bound and 

free vortex filaments. The velocity field generated identically 

satisfies the continuity equation by this equation. The continuity 

equation for an incompressible fluid is 

+ v . L o  (4.4) 

4.2.4 The boundary conditions 

The flow must satisfy the following boundary conditions. The 

disturbance velocity must approach zero far away from the lifting sur- 

face and wake (satisfied identically through the Biot-Savart L a w ) ,  and 

the relative velocity normal to the lifting surface must vanish on the 

lifting surface, 

(f - GlS) n + = 0 on the wing ( 4 . 5 )  

+ 
where Vls is the velocity of the lifting surface and n is the 

normal to the lifting surface. In addition, for an inviscid fluid the 

Kelvin-Helmholtz theorem, which requires that all vorticity be trans- 

ported with the fluid particles when the pressure is continuous, is 

used to obtain the position of the force-free wake. This theorem may 

be stated as 

- - - 1 o  Dr 
Dt 

where I’ is the circulation around any arbitrary closed loop. 
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The vortex sheet representtng the wtng La approximated by a lat- 

tice. Thus, the no-penetration condition, Equation ( 4 . 5 1 ,  is enforced 

at only a finite number of points, the control points of the hound 

lattice. These control points are located at the centroids of the 

elements, and the normal vectors are obtained by forming the cross 

product of the diagonals in each element. 

This lattice serves as a computationally expedient imitation of 

the boundary layers on the lifting surface and the free-shear layers 

in the wake. 

according to the Biot-Savart law; consequently, the velocity field 

satisEiea the continuity equation and decays far from the wing and its 

wake 

The velocity field induced by the vorticity is computed 

4.2.5 The calculation of the circulation 

The circulations OF the loops, the Gi in Figure 4.1, are ob- 

tained from the no-penetration condition 

( 4 . 7 )  

where N is the total number of the elements representtng the w i n g ,  

and the Aij 

control point of the i- (receiving) element generated by a clored 

loop of unit circulation around the j- (sending) element. At the 

th i- control point (Vis - VWli is the velocity of the lifting surface 

minus the velocity induced by the wake elements. 

represent the normal component of the velocity at the 

th 

th 
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For a r i g i d  wing, t h e  problem is posed i n  a moving c o o r d i n a t e  

i j  system a t t a c h e d  t o  a r e f e r e n c e  c o n f i g u r a t i o n  of t h e  wCng and t h e  

a r e  cons t an t .  For an  e l a s t i c  wing t h e  Ai, must be computed a t  each 

time s t e p .  

A 

4.2.6 The unsteady Kut ta  c o n d i t i o n  

The Ku t t a  c o n d i t i o n  r e q u i r e s  ACp t o  be zero a long  t'ie wing t i p s  

and t r a i l i n g  edge. 

t h e  v o r t i c i t y  a long  t h e  sha rp  edges of t h e  wCng i n t o  t h e  wake a t  t h e  

local particle v e l o c i t y .  

It is s a t i s f i e d  a t  each  time s t e p  by c m v e c t i n g  

Each node is d i s p l a c e d  a c c o r d i n g  t o  

A; = f A t  

+ 
where A t  Cs t h e  d isp lacement  of t h e  node, v Cs t h e  l o c a l  v e l o c i t y  

r e l a t i v e  t o  t h e  moving c o o r d i n a t e  system, and A t  is t h e  t i n e  s t e p .  

The l o c a l  p a r t i c l e  v e l o c i t y  is computed from i 

i 
i 

j 

+ 
where V Cs t h e  a b s o l u t e  v e l o c i t y  c a l c u l a t e d  from t h e  Riot-Savart  

Law. 

wake is also d i s p l a c e d  a c c o r d i n g  t o  Equa t ions  (4.8) and (4 .9 ) .  

To m a i n t a i n  t h e  wake i n  a f o r c e - f r e e  p o s i t i o n ,  each  node i n  t h e  

4.3 The Impulsive S t a r t  of t h e  UVtM 

I n i t i a l l y ,  t h e  wing is t e p r e r e n t e d  by a latt ice.  There is no 

wake. Before motion begins  a l l  c i r c u l i t i o n s  are zero. The i n s t a n t  

motion begins  t h e  circulations i n  t h e  bound vortex la t t ice  change. 

d i r c r c t e  v o r t e x  l i n e  form a l o n g  t h e  wing t i p s  and t r a i l i n g  edge. 

A 

The 
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existence of this starting vortex is dictated by the requirement of 

spatial conservation of circulation. This is the vorticity that is 

convected into the wake from the sharp edges of the wing at the part€- 

cle velocity. 

The entire aeroelastic model has been nondimensionalized by de- 

fining a characteristic length, tc, and characteristic velocity, U, 

From these definitions the nondimensional time step, AT, is defined 

as Lc/U,. As much as possible, it is desirable to have uniform ele- 

ments in the lattices. To achieve this end, we choose the character- 

Cstic length to be the chord of the rectangular elements. At each 

time step the free-vortex system is convected at the local particle 

velocity, Equation (4.8). As a result the streamwise lengths of the 

wake elements are approximately the same as the bound elements. One 

might also note that an increase in the number of chordwise elements 

is accompanied by a corresponding decrease in the actual time step. 

4.4 Graphical Representations of the Flowfield 

In Figure 4.2 a flowfield predicted by the general UVLM is illus- 

trated. The wing-tip vortex system is clearly evident. It strongly 

influences the velocity at the control points along the wing tips. In 

Figure 4.3 the flowfield is shown in different views. 

the strength of the vorticity fields of both the bound and free vortex 

sheets is shown. 

In Figure 4.4 

4.5 The Aerodynamic Loading 

The aerodynamic loading is determined by calculating the pressure 

jump across each individual element in the bound (wing) lattice. The 
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Figure 6.2. Wirefra& of Wing and Wake Lattice. 
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Figure 4.3. Vortex-Lattice Representations. 
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pressure is calculated from Bernoulli’s equation €or unsteady flows. 

The pressure difference between the upper and lower surface of element 

i is given by 

(4.10) 

+ 
where AV is the discontinuity in the tangential component caused by 

the local vorticity. The average circulation around the discrete 

vortex segments on parallel edges of an element is considered to be 

the circulation around a sheet of vorticity parallel to and between 

the same edges. .The vorticity is concentrated into cores to facili- 

tate computation of the velocity field. The average circulation is 

related to the jump in the tangential component of velocity perpen- 

dicular to these edges, across the thickness of the lifting surface. 

The reader is again referred to Konstadinopoulos (1981). 

The pressure distribution is naultiplied by the area of the 

element to provide the elemental force perpendicular to the surface. 

These forces are integrated along the chord and span to provide the 

aerodynamic forces and moments. 

. .  



CHAPTER V 

i -  1 
I C  

THE NUMERICAL SOLUTION SCHEME 

5.1 Overview 

The equations governing the motion of the structure have been de- 

. veloped. In addition, the model that determines the motion-dependent 

aerodynamic loads has been described. The interaction between these 

aerodynamic loads and wing motion presents an interesting challenge 

since the loads are necessary to predict the motion, yet the motion is 

necessary to predict the loads. Therefore, an interacting numerical 

integration scheme has been developed, which determines the motion, 

loads, and wing/wake geometry simultaneously. The method is based on 

Hamming's Predictor-Corrector Method as described in Carnahan (1969). 

This integration technique coupled with the nondimensionalized 

form of all governing equations results in a reliable arrangement of 

the problem. The characteristic length, a,, is the chordwise length 

of a lattice element. One time step is represented by the time neca- 

sary for a fluid particle to convect approximately one 

predictor-corrector method does not subdivide a time step of integra- 

tion as do other techniques such as Runge-Kutta. Hence, the chordwise 

size of the convected elements remains nearly uniform for all 

calculations of the loads. 

E,. The 

5.2 The First-Order Differential Equations 

The development of the two-degree-of-freedom model for the rigid 

wing and the multiple degree-of-freedom model for the elastic wing 

49 
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both rc?suLt in a set  of f irs t -order  dlfferentlal equations as  devel- 

oped in previous sections. The set of first-order equations which 

describe the two-degree-of-freedom motfon (see E q s .  (2.15) and (2.16)) 

can be written as 

- r2E2 sin(a + 4)  cos(a + 4) - ( C a t  + Kaa) 

where . 
Y = n  

The equations of motion €or the elastic wing are repeated €or 

convenience. 

( 3 i 3 4 )  
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In general, we have a system of F€rst-order d€€€erent€al equa- 

tions of the form 

fl(t, Y1, Y 2 ,  . .*e Yn) dY 1 
- t  

dt 

f2(t, Y1, Y2,  ..* , Yn’ dY2 - =  
dt 

(5.5) . . . 

where n is 4 €or the two-degree-of-freedom problem and n is twice 

the number of modes €or the elastic wing problem. 

5.3 The Basic Predictor-Corrector Method 

In both sets of equations the right-hand side represents the de- 

rivatives of the dependent variables. The general predictor-corrector 

scheme requires the values of the dependent variables at the current 

and three previous time steps. In addition, the derivatives at the 

current and two previous time steps are required. With this informa- 

tion the computation of the state variables €or the next time step can 

be calculated. The approach to obtaining the information necessary to 

start the procedure will be described later in this chapter. The 

integration of one time step will be described when all the necessary 

information is known. 
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The state variables at the end of the current time step are pre- 

dicted by the following equation: 

j = 1,2,...,n 

where the subscript i is the index for the time step and the sub- 

script 0 signiFies the initial prediction of the state Variables. 

The time interval, At, Is unity in our formulation due to the non- 

dimensionalization. The local truncation error, 

at the end of each time step and this truncation error is used to 

modify the predicted values to y*. 

is estimated ej,i* 

112 +-e = 
Yf,i+l,O Yj,i+l,O 9 j,i (5 .7)  

Then y* is used to obtain the derivatives (f*). Next, the 

corrector" equation is used to obtain the updated state variables. 11 

- 1 
'j,i+l,M 'B lSyj,i yj,i-2 

The corrector equation is used iteratively (M is the index for 

this iteration) until convergence on the state variables is achieved. 

The derivatives, f!,i+l,M-l, are computed from y j,i+l,!l-l* Hence, 

the corrector equation uses the current information. In addition, it 

is important to note that the aerodynamic model is used each time the 

state variables are predicted or corrected. 
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The wake t s  convected From the posit€on generated at the end of 

the last time step into the new position. This wake, new state vari- 

ables$ and ving geometry are used to compute the loads. Therefore, , 

the aerodynamic loads are current. 

Once convergence of the state variables and loads has been 

achieved the local truncation error is estimated. 

1 - 9 = -  
e j $i+l 121 (Y.jsi+l,M yj,i+l,M-l 

A final modification is made to the state variables. 

- e  0 

yj $ i+l j , i+ l  , M j , i+l 

(5.3) 

(5.10) 

5.4 Starting the Predictor-Corrector Method 

The predictor-corrector procedure requires the derivatives OE the 

dependent variables from the current and three previous time steps. 

It also requires the derivatives o€  these variables €or the current 

and two previous steps. Carnahan suggests a Runge-Kutta scheme to 

determine these values as a starter for the predictor-corrector 

technique. We elect to use'a Taylor series expansion to establish the 

starting values because this approach only requires the aerodynamic 

loads at integral time steps. 

For the ,th equation 

(5.11) 
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where the right-hand sCde of Equation (5.11) is the right-hand side o f  

Equations (5 .1)  through ( 5 . 4 ) .  or ( 3 . 3 4 ) .  

expressed in difference € o m s  between the 1st and 2nd time step. 

Then, Equation (5.11) is 

Y - Y  

At = fn (t, Y1' Y2, ..., Yn) (5.12) "2 "1 
1 

O C  

Y = fn (t, Y1, Y2' 0 . 0 ,  Y 1 * At + Yn 
1 n "2 1 

(5.13) 

Now recall, 

2 
Y(t + At) = Y(t) + 4t Y'(t) + $- Y"(t) + h.o.t. (5.14) 

where the prime indicates differentiation and h.0.t. .represents the 

higher-order terms. Therefore, 

(5.15) 

or, considering Equation ( 5 . 1 1 ) s  Equation (5.15) becomes 

2 f' At *, 
Y * Y  + A t f  + + h.0.t 2! "3 "2 "2 

(5.16) 

for 2At and coneiderfng relation (5.14) 
ynl 

Approximating from 

2 (2At) Yn 

2! + h . 0 . t .  (5.17) Y (t + 2At) = Ynl + 2At Y: + 
"3 1 
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or 

If we multiply Equation (5.16) by 4 and subtract Equation (5.18) we 

obtain 

At + hm0.t. 
1 n 3Y = 4Yn - Y + 4fn At - 2f 

"3 2 1 2 n (5.19) 

Next we make the approximation f: f' ; then Equation (5.19) can be 
2 "1 

rewritten as 

V L 

- 2 f ) At + h.0.t 
"3 "2 "1 

In a similar €ashion an expression for Y is developed 
"4 

I 

- 2  f ) At + h.o.t. 
"2 

Y = -  
"4 

( 5 . 2 0 )  

Hence, the starting values for the general predictor-corrector 

procedure are available. 

The integration of the equations of motion by the predictor 

corrector method is the same for both the rigid wing on the elastic 

foundation and the elastic wing on the rigid support. However, the 

complete integration process includes the interaction with the aero- 

dynamic model; hence, differences may exist in the complete integra- 

tion process. 

in the wing-fixed (not inertial) reference frame. 

The convection of vorticity from the wing is performed 

Therefore, the 



basic diIference in the lntegtatton process is whether or not the ref- 

erence system is movtng and the assoctated effect on the convection of 

the flowfield at the local velocity. Interesttngly, the two-degree- 

of-freedom rtgid wing presents a more complicated integration process 

than the mutttple-degree-of-freedom elastic wing slnce the elastic 

wing is assumed to be cantilevered from a fixed support and the rigid 

wing is attached to a rotattng support. 

procedures will be described. 

The complete integration 

5.5 Integration Method for the Rigtd-Wing System 

5.5.1 First-order convection theory 

The integration technique for the equations developed for the 

rigid wing is illustrated by the flowchart in Figure 5.1. 

state variables are predicted. 

and dynamic contributions. 

force-free position from the position generated at the end of the last 

time step and the aerodynarric loads are computed. 

variables are corrected. It is important to note that the aerodynamic 

model is used each time the state variables are predtcted or cor- 

rected. 

loads is required. 

convected from that generated (and converged) at the previous time 

step, new aerodynamtc loads are determined, and the state variables 

are again corrected. Convergence is checked. It convergence is 

achieved then the conditions for the begfnning of the next time step 

are known. 

Pftst, new 

These variabIes represent both static 

Next, the wake is convected to the new 

Then, the rtate 

Convergence of both the rtate variables and the aerodynamic 

If convergence is not achieved the flowfield t s  
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Conditions 
at t = i  

1 

P r e d i d ( y ,  9, a, a )  

I ( G Z p Z - ) ]  
I UVLM II I 
I- 1 1  I (Compute C, & Cm)l Recall 

Flowfield 
at t = i  

Convergence 
(Y ,  Y. a,  0) 

(Cn.CmI 

- Conditions 
7 

at t =i+l 

Figure 5.1. Flowchart of the Integration Scheme Using Lower- 
Order Convection Theory, Rigid-Wing Formulation. 
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5.5.2 Second-order convect ton theory - 
A higherorder convectton strategy was examined (see Fige 5*2) .  

In thts approach, a two stage corrector process was developed. In 

stage one, the motion was corrected and the aerodynamic loads deter- 

mined For a wake in a €txed position. That is, the position of the 

wake was not recomputed each time the state variables were determined. 

Stage one was repeated to convergence of both the loads and aotion. 

In stage two, the wake was convected by an iterative process to a con- 

verged position with fixed state variables. Then, the field points 

for the wake were convected at a velocity based upon the average of 

the corrected variables and the varfables from the previoue time step. 

The new position of the wake is checked €or convergence with the pre- 

vious position. 

€or stage one (motion and loads determined) and the converged new 

motion and loads were then used again €or stage two (wake position). 

Motion, loads, and the wake were required to converge before the 

A new two-stage cycle begins: this new wake was used 

integration process continued to the next integration time step.  

computational time was increased five-fold; however, the predicted 

results showed no discernible differences over the lower-order con- 

vergence scheme . 

The 

5.6 Solution of the Equations €or the Elastic Wing 

5.6.1 Static solution 

The solution of the equations for the elastic wing is handled in 

The static solution of the elastic wing 

The analyrir 

a somewhat different manner. 

is required prior to the start of the dynamic solution. 
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Convect wake 

Predict state 
Correct f-HYhtI Compute loads Converge state? F j  (Cn, Cm) (y, 9, a, 
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convergence? 
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I 
1 
I I t = i + l  
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Figure 5.2. Flowchart of the Integration Scheme Using Second- 
Order Convection Theory, Rigid-Wing Formulation. 



60 

of the static problem begins wtth the spectfication of a nominal angle 

a€ attack. The corresponding distributed steady aerodynamic loads are 

computed. 'his load and the weight are then used to calculate the 

bending and torsional deflections. At this point the wing has a new 

shape, but the loads still correspond to the old shape. New loads, 

corresponding to the new shape, are obtained next; then the corre- 

sponding new shape is obtained. 

either both the shape and loads converge or aeroclastic divergence 

(where the aerodynamic forces exceed the elastic restoring forcer) 

occurs. The procedure is  illustrated in Figure 5.3. The elements 

with dots at thelr centroids are part of the bound lattice (ving); the 

others are part of the free lattice (wake). 

The procedure is repeated until 

5.6.2 Dynamic solution 

The integration technique which provides the dynamic solution io 

Similarities do exist with the rigid wing illustrated in Figure 5.4.  

formulation. The wake is convected to the new force-free position 

Prom the pos€tion generated at the end of the last time step. 

the r€gid-wing formulation, this convection is only performed once. 

The new state variables are predicted €or the first integration parr 

and are corrected for a11 subsequent passes. These state variabler 

only represent the dynamic contribution. They are added to the static 

contribution and are used through the modal expansions to generate the 

new wing shape. 

used to compute the loads. Therefore, the aerodynamic loads are 

current. 

Unlike 

The wake, new state variables, and wing geometry are 

It is important to note that the aerodynamic model ir ured 
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WING PROPERTIES and I FREESTREAM CONDITIONS 

I GENERATE FLOWFIELD 

h I I DEFORM WING 
k to NEW POSITION 

V 4 I 
N U ~ I C A L  

or 
AEROELASTIC DIVERGENCE 

GENERATE FLOWFIELD II) 
of DEFORMED WING 

Figure 5.3. Flowchart for the Determination of the Elastic 
Wing Deformations Due to Static Loads. 



62 

A CONDITxoNS a r t - i  I 
from CURRENT WING 
6 WAKE POSITION 

CONDITIONS 
at t - i+l 

Figure 5.4. The Integration Process for the l?quationr Cdverning 
the Dynamic Solution of the Elastic Wing. 
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each time the state variables are predicted or corrected. The state 

variables are corrected, new wing geometry is computed, the aero- 

dynamic loads are updated, and Convergence o €  both the state variables 

and aerodynamic loads are checked. I€ convergence is not achieved the 

scheme returns to the corrector stage. Convergence is required of 

motion and loads at the end of each time step prior to advancing. 



CHAPTER VI 

APPLICATION OF THE MODEL TO SPECIFIC EXAMPLES 

6.1 Introduction 

In this chapter, the aeroelastic model is used with several exam- 

ples to demonstrate the technique. These examples include cases for 

the rigid wing on an elastic support and the elastic wing on a fixed 

suppart. These examples illustrate the ability of the technique to 

predict the aetoelastic behavior and the unsteady aerodynamic loads of 

a wing. 

6.2 An Example of Aeroelastic Behavior tor the R i g i d  Win& 

First, we consider an example that is similar to one discussed 

by Fung. 

about the elastic axis is placed in a uniform steady flow. A cross- 

sectional view of this wing is shown in Figure 2.1. 

Fung's model for the aerodynamic loads is limited to two- 

A large-aspect-ratio wing that can only plunge and pitch 

dimensional flow. Our model includes the effect of the wing tips and 

the wake; hence, these predicted results account for three-dimensional 

and unsteady characteristics. The essential physical properties for 

this example are given in Table 6.1 (these are values used by Fung). 

No structural damping is present in this example; therefore, 

damping of the motion results strictly from aerodynamic effects. 

Later, we will demonstrate the additional effect that Structural 

damping contributes to the wing response. In addition, the elastic 

axis and the mass axis are coincident; hence, the pitch and plunge 

degrees of freedom are not coupled inertially. The coupling which 
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Table 6.1. Properties of the Rigid Wing EXalnQle 

Wing area 60 ft2 

Wing chord 60 ft 

Elastic axis/mass axis offset 0 

Elastic axis location (% of chord) 50% 

2 
Yass of wing 269 lbf:ec 

Mass moment OP inertia 

Support translational spring stiffness 

Support to-sional spring stiffness 

Translatioital natural frequency .880 rad/sec 

Torsional natural frequency 1.552 rad/sec 

Density OC air 

150630 lb see2 f t  

208.5 lb/ft 

363020 f t lblrad 

.002378 lb scc2/ft4 
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occurs between the degrees of Freedom is a result OF aerodynamic 

eFfects. 

Two diflerent freestream speeds are considered For the example 

and the density of air at sea level is used. 

chosen to bound the critics1 dynamic pressure which we define as the 

dynamic pressure at which the motion neither grows nor decays. Thir 

critical dynamic pressure results in wing Flutter. 

These conditions are 

Typically, for the two-degree-of-freedom model, a simulation is 

performed by establishing the flowfield For a wing which is Fixed at a 

static angle of attack. 

position and given an initial disturbance. 

is examined; a decay of motion i n  both degrees of freedom indic8tcs 

stability and a growth i n  motion indicates instability. 

Next, the wing is released From thia fixed 

The response of the wing 

6.2.1 Subcritical response without structural damping 

In Figure 6.1 we show the response OF the wing to a small initial 

disturbance which has the following form: 

Y(0) = 0 {(O) = 0.01 

and 

e(0)  = 0 i(0) - 0.02 

The freestream speed for this case is small and results in 8 dy- 

The namic pressure which is less than the critical dynamic pressure, 

displacements and velocities associated with both degrees of freedom 

clearly decay with time. The pitch and plunge displacements reflect 
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the static and dynamic. contribution; hence, in time the motion will 

decay and will eventually converge to the static (which includes the 

effects of both aerodynamic and mass Cnduced loading) condition. 

In addltion, as one would expect, the frequency of oscillation 

for each degree of €reedom closely matches the uncoupled frequencies 

of oscillation associated wCth the respective elastic springs. The 

aerodynamic normal-force and pCtching-moment coefficients are also 

shown. This aerodynamic loading decays to the steady aerodynamic 

loads . 
As a matter of interest, in nondimensional form the frequencies 

are dependent upon the freestream speed; therefore, a change in the 

freestream speed will change the nondimensional frequency of oscil- 

lation. However, for subcritical conditions the frequency in physical 

time would remain nearly constant. Also, referring to the nondimen- 

sional form of the governing equations of notion (see Chapter 11, 

Eqs. (2.15) and (2.16)) one finds that the stiffness of the support 

spring is reduced as the freestrean speed is increased - in fact, the 
square of the speed appears in the denominator. 

structural damping, if present, is inversely proportional to the 

freestream speed. 

The nondimensional 

6.2.2 Supercritical response to a small initial disturbance 

Next, we show the response o l  the wing to a dynamic pressure that 

is larger than the critical dynamic pressure. 

are the same (see Eqs. (6.1)) as those used in the previous case. 

The initial conditions 

The 
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time histories of both degrees of freedom and their time derivatives 

are shown in Figure 6.2. 

The inlt€al disturbance grows and, as we will show, can be ex- 

pected to reach a limit cycle eventually. A gradual transition occurs 

very early in the mot€on and is not€ced €n the response associated 

with the plunge degree of freedom. The motion for the two degrees of 

freedom changes from the natural frequencies in these modes to a com- 

mon frequency, which is nearly the frequency of flutter in the limit 

cycle. This common frequency lies between the two natural frequencies 

and is closer to the natural frequency in pitch than to the one in , 
plunge - a characteristic of the flutter phenomenon which has been 
well documented. The time histories of the aerodynamic normal load 

and pitching moment coe€ficients are also shown. It must be empha- 

sized that the aerodynamic loads and wing motion are dependent upon 

each other and a form of the solution for the loads or motion is not 

assumed. At each time step, the integration process iterates to a 

converged solution, predicting both the flowfield and the motion of 

the wing simultaneously. 

6.2.3 Supercritical response to a large initial disturbance 

In Figure 6.3, we show the response of the wing to a large 

initial disturbance which has the following form: 

Y(0) - 0 i(0) - 1.0 

and 

a(0) - 0 k(0) - 0 
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Thc clyn:mic pressure is the same as the previous case. flowever, 

in this case we introduce a larger fnttial disturbance to only the 

plunge degree of freedom. 

The equations of motion are uncoupled In the absence of aero- 

dynamic loads since r = 0. 

excited almost immediately, which is clearly the result of coupling 

intraduced by the aerodynamic loads. 

decays. In this case, the transition of the motion to a common fre- 

quency is clearly evident. The delay in this transition (when COP 

pared to the case with the small initial disturbance) is created by 

the large initial condition. 

Yet, we find that the pitch is strongly 

The plunging motion rapidly 

After the initCal rapid decay, the plunging motion appears to 

approach a limit cycle, not to decay to zero. The pitching motion 

continues to grow in time. Presumably, independent of the different 

initial disturbances introduced in these cases, the pitching and 

plunging motion of these two cases will eventually match. In Fig- 

ure 6 . 4 ,  we show the phase planes €or the two cases shown in Fig- 

ures 6.2 and 6.3. 

plunge motion, we observe that in the upper half of Figure 6.4 the 

small motion appears to be growing around an unstable focus towards a 

limit cycle, while in the lower half of the figure the large motion 

appears to be decaying toward the same limit cycle. 

If we examine the phase planes associated with the 

6.2.4 SubcrLtical response with structural damping 

No structural damping in the support is included in these pre- 

vious results, though aerodynamic damping is modelled by the UVLM. 
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In € a c t ,  in some frequency domain solutions, the darnping coeffictent 

is used as an index to determine the onset of flutter. The present 

method can also account for damping in the support. In additton, the 

present equations of motion can be readily extended t.0 include non- 

linear stiffness and damping €or both degrees of freedom thereby 

providing a means to study nonlinear structural behavior. 

In Figure 6.5, we show the response to the same initial condl- 

tions and same dynamic pressure as used in the case reflected in 

Figure 6.2. However, we now introduce structural damping into the 

problem, for the case illustrated = C, = 0.01. Now instead of 

growing, the initial disturbances decay and the wing does not flutter. 

As one might expect, the flutter boundary is quite sensitive to struc- 

tural damping. 

6.2.5 Comparison with theoretical results 

The unstable results discussed above were obtained by using a 

wind speed of 125 feet per second, and the stable results were ob- 

tained using a wind speed of 40 feet per second. The density of air 

at sea level was used and assumed constant. The crttical speed lie@ 

between these two. 

critical velocity will be discussed later. 

velocity to be 162 feet per second which is higher than our predicted 

value. The differences in the two approaches are (1) Fung considered 

an infinite aspect ratio, and we consider an aspect ratio of ten which 

introduces finite wing effects; (2) Fung considered a zero static 

angle of attack, and we consider three degrees which introduce 

Suggested methods for extracting the exact 

Fung found the critical 
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nonlineartties; and (3) Fung's aerodynamic analysis is based upon 

two-dimensional, linear theory, and our method is based on the 

unsteady vortex-lattice concept. 

6.3 An Example of Aeroelastic Behavior for the Elastic Wing 

We now turn our attention to results predicted for example caser 

of our elasticring model. 

initial disturbances for dynamic pressures below and above the flutter 

These results describe the rerponses to 

boundary. 

The physical properties of this elastic wing are given i n  

Table 6.2. 

variation of all properttes, we choose to denonstrate the procedure 

using a wing with conatant sectional properties. 

Cs located at the sectional eidchord, and the sectional center of 

8881 ir located aft of the elastic axis. 

15 degrees, this angle is defined as the angle of attack prior to the 

introduction of loading due to MSS, steady aerodynamic loads, and 

unsteady aerodyn8mic loads. 

Although the structural made1 allows for the spanwirc 

The elartic axis 

The angle of attack i r  

The natural d e s  for the structure are required for the expan- 

sion of the dependent vati8bles, v and a. This expansion is given 

in Chapter 111. The Hunter method, described by Gray (1987), is used 

to determine the natural modes for the elastic wing. 

solves the tvo-point boundary value problem by a transfer matrix 

approach to the finite difference equations. 

be derived by any available coaputational or analytical method. 

This method 

Of course, the d e r  uf 
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Table 6.2. Properties of the Elastic Wing Example 

Wing aspect ratfo 

Wing chord 

10. 

1.0 ft 

Bending stiPfness 1.2 105 1b-ft2 

Totsfonal stiffness 7.0 x IO4 lb-ft2 

Elastic axie/mass axis offset . I  ft 

Distributed mass .537 lb-sec2/ft2 

Distributed moment of inertia .125 lb-sec2 

. 



In this example we use the FLrst and second bending modes and the 

first torsion mode to represent the deformations of the elastic axis 

of the wing. The normalized amplitudes o €  the mode shapes are tabu- 

lated in Table 6.3. The natural frequencies, scaled to the funda- 

mental frequency in bending, are l, 5.91, and 4 .55 .  

As discussed in Chapter V, the solution to the equations for the 

h i -  

The deforma- 

If conditions 

elastic wing consist of both the static and dynamic solutions. 

tially, an undeformed wing is placed in a steady flows 

tions due to the static loads and weight are computed. 

are such that the wing will aeroelastically diverge, this will be 

determined during the computation of the static defotmatlons. The 

dynamic response will be computed about the statically deformed shape. 

6.3.1 Subcritical response of the elastic wing 

In Figure 6.6, we show the response of the elastic wing when the 

The initial dynamic pressure is below the critical dynamic pressure. 

disturbance has the following form: 

The generalized coordinates q1 and 42 are associated with the 

first two bending modes, 

node. 

cients in the expansions for the dependent variables. 

cients give the dynamic contribution only. 

43 is associated with the first torsion 

These generalized coordinates are the time dependent coeffi- 

These coeffi- 
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Table 6.3. Natural Modes Uaed to Represent the Elastic Wing 

Station 
( X  wing) 

0. (root) 

e 1  

e 2  

e 3  

e 4  

e 5  

e6 

e 7  

e 8  

e9 

1.0 ( t i p )  

rlending 
First Mode 

('pbl = .044*) 

0. 

-0174 

.0650 

. 1380 

.2316 

.3413 

.4630 

. 5926 

. 7269 

.8632 

1 e o  

Rending 
Second Mode 
(%2 = .260*) 

0. 

-.0978 

-. 300 1 
-.SI69 

0. 6687 

0.6975 

-e5753 

-. 3064 
e0776 

.5287 

1 e o  

*Frequencies in radians/nondimenrional time. 

! -  

Torsion 
First Mode 

e198*) 
-~ 

0. 

. 1563 

. 3088 

.4538 

. 587 5 

.7068 

e 8088 

.a908 

-9509 

e9876 

1 e o  



Figure 6.6. Response of the Elastic Wing at  Subcritical 
Dynamic Pressure. 
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The motion decays for all three generalized coordinates to the 

statically deformed shape. In addition, the frequency of oscillatior. 

associated with the history of the generalized coordinates occurs at 

the natural, uncoupled frequency associated with each respective mode. 

6.3.2 Critical response of the elastic wing 

We now increase the dynamic pressure to that which creates the 

aeroelastic instability. This dynamic pressure was estimated by a 

method which will be discussed later. The initial disturbance has the 

following form: 

91 025 q* = 0.0 q3  = 0.0 
i . e . 

q* = 0.0 q3 = 0.0 q1 = 0.0 

I 

i 

These initial conditions are smaller than those used for the 

subcritical case. The motion predicted by the simulations for the 

critical case, which use the initial disturbance expressed in Equa- 

tion (6.3), grew excessively fast due to the large initial deforma- 

t ions. Hence, smaller disturbances are used and reflect the same 

instability but at a lower initial rate of growth. 

In Figure 6.7 the response of the wing is represented by the t i w  

histories of the generalized coordinates. These coordinates are de- 

fined ar in the previous case. The motion associated with the first 

bending mode (91) decays initially; however, af ter this initial period 

the motion appears to neither grow nor decay. Several harmonics (from 

the different moder) are embedded in this motion. The motion arso- 

ciated with the first torsion mode grows in time. The frequency of 

oscillation for this mode is near the fundamental torsional frequency. 
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Figure 6.7. Rerponre of the E h r t i c  Wing at a Critic81 
Dynamic Prerrure. 
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The history of 42 reflects the coupling necessary for flutter. 

Initially, the motion decays at the frequency associated with the 

second bending mode. 

appear. 

three coefficients) grows in amplitude. 

second mode coefficient coalesces with the torsional frequency. A 

flutter mode is created. The motion oscillates about a non-zero mean 

close to (but not coincident with) the static deflection. This drift 

is a nonlinear phenomenon (see Chapter 4 of the text by Nayfeh and 

Mook (1985)). 

Then, a shift in frequency and other harmonics 

Around time step 600 one sees that the response (for all 

Finally, the frequency of the 

6.3.3 Supercritical response of the elastic wing 

In the preceding case we considered a dynamic pressure very 

slightly above the critical dynamic preseure. We now increase the 

dynamic pressure to a larger value. The initial conditions are the 

same as those described by Equation (6.4). 

The response of the wing to these conditions is shown in 

Figure 6.8. An interesting feature is contained in the predicted 

response of the torsion coefficient, q3. The torsional contribution 

continues to grow. In fact, the osctllation grows to angles that 

would certainly cause the flow to separate from the surface, violating 

the assumptions used in the UVLM. However, more important is the fact 

that the motion is continually growing. Most likely, this motion 

would be catastrophic to the structure. 

As a footnote, if we were to continue to increase the dynamic 

pressure it is possible that we could return to an aeroelastfcally 
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the freestream speed is increased, one or more modes may cross into 

the unstable regime. 

does the mode 3 root) and the structure is again stable. 

reasons, the lowest critical condition is of interest in aircraft or 

wind-tunnel model design. 

These modes may return to the stable regime (as 

F6r obvious 

6.3.4 Comparison with empirical results 

Harris et al. (1963)  described a method to approximate the flut- 

ter speed based upon empirical data. The method uses a baseline 

flutter speed index adjusted according to particular characterirtics 

(e.g. aspect ratio, mass ratio, sweep angle, mass distribution, etc.) 

of the configuration under study. These adjustments are based upon 

parametric analyses of experimental and analytical studies. 

For the elastic wing, the results reflect a constant freestream 

velocity which keeps the reduced (nondimensional) f requency nearly 

constant for all cases. The density of the fluid is  modified which, 

in turn, modifies the dynamic pressure. 

Using the approach described by Harris, the density required for 

the system to become unstable is approximately 0.026 slugs per cubic 

foot. In our calculations, a density of 0.0066 slugs per cubic foot 

was used for the stable (subcritical) case, a density of 0.035 slugs 

per cubic foot for the unstable (supercritical) case, and a density 

of 0.030 slugs per cubic foot for the marginally unstable (critical) 

case. 

numerically simulated condition for marginal stability. 

There is very close agreement between the empirical and 
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6.3.5 Unsteady aerodynamic loads 

The aerodynamic loads and the mot€on of the wing are computed 

simultaneously and interactively. The primary objective of the 

numerical simulation is to determine the response of the wing and, Cn 

particular, determine whether or not the wing is aeroelastically 

stable. However, as a consequence, the unsteady aerodynamic loads are 

computed and the history of the pressure distribution on the wing 

could be used to describe the physics of aeroclastic response. 

ther, the technique could be modified by removing the structural model 

and restricthg the wing motion to specified manuevers. 

F u r  

In Figure 6.9 we show the pressure distribution of the wing at 

three different times during the wing motion. The spanwise pressure 

distributions are shown for several chordwise stations. The values 

of the pressure differences are €or the control points of the wing; 

the control points along the wing tips, leading edge, and trailing 

edge are not located directly on the edges of the wing. 

In the upper portion the pressure distribution is shown €or the 

wing due to static aerodynamic loads and the resulting static deforma- 

tions. 

slight rise in pressure is indicated near these edges as a result of 

wing-tip vortices. The effect of the second bending mode is clearly 

evident. 

spanwise station) reflects that distribution one would expect from 

classtcal theory; the peak pressures are at the leading edge and there 

pressures decay to a near-zero value at the trailing edge as dictated 

by the Kutta condition. 

The pressure does decay toward the wing tips; however, a 

The pressure distribution along the chord (for a conatant 

The pressure distribution is also shown at 
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two tlmea during the motlon of the wing. Again, the effect of the 

second hendlng made l s  clearly evident. The efFect of  the strong 

wing-tip vortex systems created by the rapid motion is partCcriZarly 

evident in the bottom part of the figure. 

In Figure 6.10 the (nondimensional) time history of the pressure 

distribution for individual elements is traced. We show the pressure 

difference across four elements: the wing-tip leading-edge, the wing- 

tip trailing-edge, the wing-root leading-edge, and the wing-root 

trailing-edge elements. The wing-tip elements experience large- 

amplitude motions; hence, large fluctuations occur. In contrast, the 

wing-root elements do not experfence large motion because of the 

fixedring boundary condition; hence, smaller fluctuations occur. 

pressure difEerences for the two trailing-edge elements are near zero 

which substantiates the presence of the Kutta condition in our 

aerodynamic model. 

The 

In Figure 6.11 the (nondimeneional) time histories of the aero- 

dynamic normal-force and pitching-moment coefficients are shown for 

the wing-root, mid-span, and wing-tip locations. 

are computed from the pressure distributions associated with the 

column of lattice elements located at these spanwise stations. A8 one 

would expect, the coefficients oscillate at frequencies associated 

with the natural modes. 

all stations. 

These coefficients 

"he peaks do n3t occur at the same tine at 
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6.4 The Identification of Flutter 

We have shown the response of the rigid wing and the elastic 

wing to conditions which result in both aeroelastic stability and 

instability. However, the technique which determines the precise dy- 

namic pressure necessary for the instability has not been discussed. 

Although not within the scope of this research, ultimately we are in- 

terested in determining the lowest possible dynamic pressure at which 

initial disturbances will not decay. Once this exact conditlon can be 

ascertained then the effects of angle a€ attack, aspect ratio, or 

other nonlinearities may be examined. 

Currently, we increase the freestream conditions (dynamic pres- 

sure) from a known stable position, simulate the response of the wipg 

to an initial disturbance, and examine the response of the wing. At 

some point it is clear that the motion is growing and that a flutter 

mode exists. 

sure. It is difficult to determine the precise dynamic pressure at 

which the wing becomes unstable. In some cases, the motion associated 

with a degree (or degrees) of freedom appears to grow while the motion 

for another degree (or degrees) of freedom appears to decay. 

addition, several simulations are required. 

identify this critical point with a minimum of required simulations. 

However, we have only bounded the critical dynamic pres- 

In 

A method is needed to 

The frequency domain solutions (Desmarais et al., 1978) detetrbine 

this critical point by tracking the eigenvalues (and associated aero- 

dynamic damping) of the system for increasing velocities. We briefly 

describe these methods in Chapter I, the reader is referred to Fig- 

ure 1.3. Hassig (1971) demonstrated a similar approach by examining 
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t h e  damping associated with the assumed harmonic motion. Tfme domain 

solutions (Dowell et al., 1980) typically use logarithmic decrement 

approaches to determine the flutter boundary. rtowever, these me&hods 

assume a form of the solution. 

h method to determine the exact lFlutter boundary as predicted by 

the numerical simulation has not been fully developed; however, two 

promising approaches have been initiated. 

based on a parametric identification procedure which is described by 

Kons tadi nopoulos ( 1984) and Eltebda ( 1986). 

based on an energy method. 

The first approach is 

The second approach is 

The approaches will be briefly described. 

6.4.1 Parametric identiltcation procedures 

Adopting the approach described by Konstadinopoulos, one can 

model the nonlinear motion of the wing by assuming the normal-force 

and p€tch-moment coefficients are nonlinear functions of a, Y, and 

&. 

contains the higher-order terms. A quintic nonlinearity is suspected; 

therefore, the equations contain all 55 terms up to and including the 

fifth-order terms. 

a 

An equation for each aerodynamic coe€ficient is formed which 

The aerodynamic normal-force coe€€icient is represented by the 

following equation: 

c = a l f + a a + a ~ + a f  2 +a5" 2 +ai2+... 
n 2 3 4 6 

.2 .2 2.2 + a Y aa + a5,.Ya a + h.0.t. 54 
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The aerodynamic pitching-moment caefftc€ent € 4  represented by the 

€ollow€ng equation: 

= bl+ + b2a + b3i + b4Y 82 + b a 2 + b a -2  + ... 
‘m 5 6 

+ b Y 82 aa 82 + bS5Ya 2.2 a + h.0.t. 
54 ( 5 . 6 )  

We then fit the aerodynamic coefficient versus time curves - such 
as those curves shown in Figures 6.1, 6.2, and 6.3 - using a least- 
squares technique to determine the coefficients ai and bf. By 

taking off one term at a time we are able to identify those terms 

which have a negligible contribution. The remaining terms provide a 

simple expression for the aerodynamic coefficients. 

The coefficients ai and bi will be unique €or a particular 

dynamic pressure, static angle of attack, spring constant, etc. 

Konstadinopoulos classified the coeff€cients as either restoring ter.os 

or damping terms. By examining the value and, in particular, the sign 

change of the damping terms versus the critCca1 parameter (the angle 

OE attack), he was able to identify the angle a t  attack at which wing- 

rock occurs. 

Our critical parameter is the dynamic pressure and we are inter- 

ested in the minimum value at which initial disturbances do not decay. 

This parameter will be identified by extracting from the damping 

coefficient versus dynamic pressure curve the condition at which the 

sign for the damping changes- 
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Unfortunately, our results have not yielded the same wc-cess ,IS 

the work of Konstadinopoulos. Several complications are introduced 

when the method is extended to the aeroelastic application. F l r s t ,  

we are working with two aerodynamic coeffCcients. Second, the terms 

of the fifth-order equations (see E q s .  ( 6 . 5 )  and ( 6 . 6 ) )  which are 

eliminated are a function of the dynamic pressure; hence, the form of 

the expression is not quite the same for all cases. Third, the use o f  

the method for the elastCc wing will certainly be complicated by the 

spanwise varLation and phase relationshipc of the aerodynamic 

coefficients. 

Yet, the concept of examining the character of the darnpCng of 

the system is consistent with the frequency and time domain methods 

addressed in the literature. Therefore, the method nay yet he the key 

in future determinations of the exact crCtical condition. 

6.4.2 Identification using the system e n e r a  

An alternate method is suggested to determine the crCtCcal condi- 

tion necessary for an instability. 

work being done on the system by the loads during the simulation. 

method is based on the concept that an aeroelastic inetahfllty e x i s t s  

when more energy is being extracted from the freestream hy the wing, 

then pumped back into it by the wing. 

present when the total energy level of the wing grows in time. 

This method determines the total 

The 

Therefore, an instahClCty 19 

In Chapter 111 we develop the equations of motion €or the elastlc 

The kinetic energy of the wing is expressed by Equation ( 3 . 3 )  wing. 

c 
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and t h e  po ten t i aL  energy of t h e  wing is expressed  by Equation ( 3 . 4 ) .  

These e q u a t i o n s  are repea ted  he re  €or convenience.  

L 1  T - I 7 [m(y)({; + xa(y) (cos  a);]' 
0 

The t o t a l  energy  is t he  sum of the  k i n e t i c  energy and t h e  poten- 

t i a l  energy.  

th rough a s i m u l a t i o n  and d e s c r i b e  t h e  motion of t h e  wfnq are substi- 

t u t e d  i n t o  t h e  energy express ions .  

The s t a t e  v a r i a b l e s  which have p rev ious ly  been p r e d t c t e d  

Expres s ions  t h a t  g i v e  t h e  t o t a l  energy  f o r  t h e  r i e f d  wing are 

a v a i l a b l e  from t h e  fo rmula t ion  of t h e  e q u a t i o n s  of motion described i n  

Chapter  11. 

t h e  r i g i d r i n g  model. 

The method is i l l u s t r a t e d  through an example utClir , ing 

Figure  6.12 d e s c r i b e s  t h e  time h i s t o r y  of the  wing !n motion f o r  

bo th  a s t a b l e  and an  u n s t a b l e  case.  The p r e d i c t e d  motion o f  the r i n g  

(Y,+,a,&) is  used i n  t h e  expres s ion  €or t h e  t o t a l  e n e r q y .  The s t a b l e  

case is c h a r a c t e r i z e d  by an  o s c i l l a t i n g ,  p e t  decaying ,  l e v e l  of energy 

and w i l l  r each  a c o n s t a n t  energy l e v e l  a s s o c i a t e d  wi th  t h e  s teady-  

s ta te  (i.e. s t a t i c )  cond i t ions .  The u n s t a b l e  case is c h a r a c t e r i z e d  by 

an o s c i l l a t i n g ,  y e t  growing, l e v e l  of energy. I f  t h e  dynamic p r e s s u r e  
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Critical 

Figure 6.12. The Computed Energy of the Rigid Wing for a 
Subcritical and Critical Care. 
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is sllghtly above thc c - r i t l c a l  condttion then the motton may he 

governed by system nonlinearit€es and the total energy level will 

fluctuate around a nonzero mean. 

The advantage of the method is that now, instead of examining the 

motion associated with each degree of treedorn or €ittin% the aerody- 

namic coefficients with high-order polynomials, a single quantity is 

used. The method applies to both the elastic wing and the rigid wing 

models . 
The disadvantage is that a transition from the stable to the 

unstable case is still difficult to ascertain. One possible method is 

to measure the decrement associated with the decaying oscillation and 

extract a damping term from the energy curve. 

indicates the instability. 

Negative damping 

6.5 Wing and Wake Graphics 

An advantage of the general technique is that the time domain 

solution coupled with the UVLM provides the capability of graphically 

depicting wing and wake motion. Now, the physics OF aetaelastic 

response can be graphically described. 

We have previously demonstrated the capability (Chapter IV) of 

generating graphical representations of the Ilowfield. 

the generation of movies of the wing and wake motion as predicted bv 

the general model. 

Strganac, Mook, and Mitchum (1987)) presented movies of the wing and 

wake motion. Both stable and unstable behaviors of the wing were 

We now address 

Recently, we (Strganac and Mook (19871, and 

Shown 
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In Figure 6.13 we show the vorticity €or the wing at several time 

steps. The frames are ertracted from the movie. The view is from 

above the wing surface. Near the top of each €tame is the leading 

edge of the wing. The brighter regions, typically those regions 

near the leading edge, indicrte the more intense concentrations of 

vorticity. 

condition, the vortictty on the wing changes. It is tmportant to 

reiterate that, in turn, the motion t s  also a function of this 

vorticity through the unsteady aerodynamic loads. 

As the wing twists and bends in responee to the initial 

In Figure 6.14 we show the vorticity and shape of the wing and 

wake at several t h e  steps (which correspond to Pig. 6.13). 

history of the previous motion is embedded in the wake. 

of the vorticity is also tndicative of the current motion of the 

wing. 

The 

The character 

The motion of the wing can also be seen in the sequence. 

For purposes of illustration, the physical properties of the 

system are such that for every three cycles of (first mode) bending 

motion there are two cycles of (first rnode) torsion motton. 

geometry of the wing and wake continues to change. 

to note that the wing-tip vortex system breaks down and reforms with 

the bending/torsion motion. The aerodynamic loads which are used to 

calculate the notion reflect this behavior. 

The 

It i s  interesting 
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Figure 6.13. The Strength of Vorticity for the Wing 8t 
Several Time Steps. 
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Figure 6.14. The Predicted Shape and Strength of Vorticity 
for the Wing and Wake a t  Several Time Steps. 
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CHAPTER VI1 

! j  
' i  

CONCLUDING REMARKS 

A numerical model has been described that predicts the steady and 

unsteady aeroelastic behavior of a wing. The method can predict 

steady-state static responses and transient responses to initial dis- 

turbances. The solution of the governing equations is obtained in the 

time domain. A physical interpretation of the response is aided by 

animation of the wing and flowfield histories. 

An aerodynamic model is introduced into the formulation which 

addresses nonlinearities created by static deformations, angles of  

attack, vorticity dominated flows, and unsteady flowfields. The wake 

is computed as part of the solution; hence, the history of the motion 

is included in the technique. Steady and unsteady aerodynamic loads 

are also computed as part of the solution. 

The numerical model has been developed such that the aerodynamic 

and structural models may be independently modified. As a result, 

nonlinear structural models or other aerodynamic models may be 

introduced in the €uture. Two structural models are demonstrated: 

the rigid wing mounted to a linear elastic support and the elasti< 

wing cantilevered from a rigid support. Both formulations treat  t h r  

nonlinear effects of static angle of attack and displacement 

The equations governing the motion of the structure qre coupled 

with the equations governing the motion of the fluid, and t ke  st1-1:; 

ture and fluid are treated as a single dynamical system. "he i n t e g r a -  

tion of the governing equations using the predictor-corrcctur tech-- 

nique requires convergence of the loads and motion at each time s:er 

of integration. 
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