Errors in the J_3 part of nutation series

Torsten Hartmann¹, James G. Williams² and Michael Soffel³

¹ The oretische Astrophysik dor Universität Tübingen, Auf der Morgeustelle 10. D-72076 Tübingen, Germany emall: hartmann@tat.physik.uni-tuebingen.de

^a Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Califonia 91109, USA email: jgw@logos.jpl.nasa.gov

^sInstitut für planetare Geodäsie, Lolizmann Observatorium, Mommsenstraße 13, D-O1O62 Dresdan, Germany email: sofiel@rcs2.urs.tu-dresden.de

Abstract

This paper points out that the nutation terms of Zhu and Groten (1989) due to the tidel potential n degree 3 are erroneous. Correct values are deduced hero and they coincide very well with those given in Kinoshita and Souchay (1990), These errors explain the discrepancies between the evaluation of the theories of Zhu and Groten (1989) and Kinoshita and Souchay (1990), which can reach values up to $165 \mu as$. Also the two leading nutation terms due to the tidal potential of degree 4 are given. Finally some of the computer programs (NUTC. F, KSV-1994.F) for evaluating the Janutation terms are also erroneous.

1. Introduction

Duo to the high accuracy of Very Long Boaline Interferometry (VLBI), present theoretical nutation models should consider amplitudes of the order of a few μas (= micro arcseconds). This especially applies to figid Earth models which serve as a basis for more complicated and realistic Earth model including elastic and anelastic effects of the mantle, effects from outer and inner core, oceans and the atmosphere etc. (ZMOA Herring (1990), Mathews et al. (1001 a,b)). At this level of accuracy nutation terms due to the J_3 coefficient of the Earth should be taken into account. Values for them differ in the two most recent nutation series, Kinoshita and Souchay (1990) and Zhu and Groten (1989), by a facto of up to two. These difference were reported by several authors (e.g. Souchay (1993), Williams (1994)) but so far no explanation has been given. It is shown here that they can be attributed to two errors in the computation method of Zhu and Groten (1989).

2. Method of computation

The Computation method applied here is based on the tesseral part of the tidal potential and its relationship to the nutation angles. This article takes advantage of a new expansion of the (luni-solar) tidal potential which was recently given by Hartmann and Wensel (1995). Although the tidal potentials used by Zhu and Groten (1989) are sufficiently accurate for the purpose, here the newer one is chosen duo to its much simpler structure, Using them expansion coefficients the derivation of corresponding nutation coefficients is straightforward (see also Hartmann rim-1 Soffel (1 894)) and can be explained by the following steps.

1) The classical formula for the tidal potential $W_{tidal}(accc.g. Merits and Müller (1087))$ reads:

$$W_{\text{tidsl}} = GM_b \sum_{\ell=1}^{\ell=\infty} \sum_{m=0}^{m=\ell} \frac{r^{\ell}}{r_b^{\ell+1}} \frac{1}{2\ell+1} \overline{P}_{\ell m}(\cos\theta) \overline{P}_{\ell m}(\cos\Theta_b(t)) \cos[m(\lambda - \Lambda_b(t))] \quad . \tag{1}$$

Here, $\overline{P}_{\ell m}$ denote the fully normalized Legendre functions of degree ℓ and order $m.r, \theta, \lambda$ and r_b, Θ_b, Λ_b are the geocentric spherical coordinates of a station on the Earth and the tide generating body, respectively, GM_b is the product of the gravitational constant and the mass of the specific body (Moon, Sun, planets). Equation (1) is evaluated numerically using the standard ephemeris DE200 from JPL and transformed into the following Poisson series: (see Hartmann and Wengel (1005) for further details)

$$W_{\text{sidel}} = \sum_{l=2}^{l=0} \sum_{m=0}^{m=l} \left(\frac{r}{a}\right)^{l} \mathcal{P}_{lm}(\cos\theta) \sum_{i} \left[C_{i}^{lm}(t) \cos(\arg_{i}(t)) + S_{i}^{lm}(t) \sin(\arg_{i}(t)) \right]$$
(2)

The parameter a is taken to be the semi-major axis of the Earth (a: = 6378138.3 m in the IERS 1992 Standards, McCarthy (1992)), tisthetime reckoned from the epoch J2000 in Julian, centuries. It should be mentioned that the linear time dependent amplitudes C_i^{dm} and S_i^{dm} have the dimension m^2/a^2 . The arguments $arg_i(t)$ refer to epoch J2000 and they are taken to be integer combinations of the Doodson variables τ, s, h, p, NJ, p_i (or equivalently of the Delaunay arguments l_{NI}, l_{S1} F, D, Ω) and

the mean longitude λ_j (t) of the planets. For the purposes here it is sufficient to regard them as linear functions of time

$$\arg_i(t) = \phi_i + \omega_i t \quad . \tag{8}$$

2) It is known (secc.g. Melchior and Georis (1868) or Moritz and Müller (1987)) that the torque N acting on an axisymmetric Earth model is directly proportional to the tesseral part (m = 1) of the tidal potential. Denoting the moments of inertia of the Earth hy A = B and G, one has to lowest approximation

$$N_{\ell=2} = \frac{\sqrt{15}}{a^{2}} \begin{pmatrix} (C-A) \sum_{i} \left[S_{i}^{21} \cos(\phi_{i} + \omega_{i} t) - C_{i}^{21} \sin(\phi_{i} + \omega_{i} t) \right] \\ -(C-A) \sum_{i} \left[C_{i}^{21} \cos(\phi_{i} + \omega_{i} t) + S_{i}^{21} \sin(\phi_{i} + \omega_{i} t) \right] \\ 0 \end{pmatrix}$$
(A)

The higher order parts of the torque can be obtained by the replacements (factor and tidal amplitudes) given in ,'Cl'able 1. This elso applies to all other formulas given below. The J_l values of the Earth were taken from DE245 and are based on the GEM-T3S model by Lerch et al. (1994)).

degree	factor	tidal amplitudes	J _L (in 10 ⁻⁶)
2	$\sqrt{15}$	S_{i}^{21}, C_{i}^{21}	1 0821828
3	$\sqrt{12} J_3/J_2$	S_i^{31}, C_i^{31}	-2.533
4	$\sqrt{90} J_4/J_2$	S_i^{41}, C_i^{41}	-1:010

TABLE 1: Replacements to obtain the higher order nutation terms

Note that Zhu and Groten (1989) apply only a factor J_3/J_2 . Hence, by means of their simplification they miss a factor of $\sqrt{42}/\sqrt{15}$.

3) Because of the smallness of the nutation terms considered here a distinction between effects for angular momentum axis, rotation axis and figure axis is not made. Assuming again our model Earth to be approximately axisymmetric we proceed therefore with the Poisson equations in the form

$$\sin c_0 \cdot \frac{d}{dt} \Delta \psi \approx + \frac{N_a}{C\omega} \quad , \quad \frac{d}{dt} \Delta \epsilon \approx + \frac{N_y}{C\omega} \quad , \tag{5}$$

where $\Delta \psi$ and Ac denote the nutation angles in longitude and obliquity, respectively, so denotes the obliquity, which takes according to DE200 (see Standish (1962)) the value 23°26'21".412 stepuch J2000 C is the largest principle moment of inertia and for the mean value of the Earth's angular velocity ω we take 7,292116 x 10-a rad/sec.

4) The introduction of the time harmonic tidal development in the torque allows the integration of equations (5). Rearranging the sum over the tidal amplitudes in pairs (thus the sum running only up to i/2) with frequencies $\Delta \omega_{\pm 1} \equiv \bot(\omega_i - \omega)$, which form one nutation term; one gets for degree $\ell = 2$:

$$\Delta \psi = + \frac{\mathcal{B}_{i}}{\sin \varepsilon_{0}} \sum_{i/2}^{-} \frac{\omega}{\Delta \omega_{+i}} \left[\left(C_{i}^{21} - C_{-i}^{21} \right) \cos(\Phi_{i} + \Delta \omega_{+i} t) + \left(S_{i}^{21} + S_{-i}^{21} \right) \sin(\Phi_{i} + \Delta \omega_{+i} t) \right] \quad (0a)$$

$$\Delta c = -E_2 \sum_{i/2} \frac{\omega}{\Delta \omega_{+i}} \left[(C_i^{21} + C_{-i}^{21}) \sin(\Psi_i + \Delta \omega_{+i} t) - (S_i^{21} - S_{-i}^{21}) \cos(\Psi_i + \Delta \omega_{+i} t) \right] \quad (6b)$$

The scale factor \mathcal{R}_2 is (approximately) given by

4

ł

1

$$E_2 \approx \sqrt{15} \, \frac{H_{dyn}}{a^2 \, \omega^2} \tag{7}$$

and depends on the dimensionless dynamical ellipticity $H_{dyn} \equiv (2 \ C - A - B)/(2 \ C) \equiv J_2 M_{\oplus} a^3/C$ taker from Kinoshita and Souchey (1990), $H_{dyn} \approx 0.0032740$, so that $F_2 \approx 1.2,0.01 \mu ns$. For the corresponding quantities E_3 ($\ell = 3$) and E_4 ($\ell - 4$) we obtain -47, s96 μas and -44.207 μas , respectively. The results presented below were obtained from numerically evaluating expressions (Ca) and (Cb). For the even degrees of the tidal potential ($\ell = 2,4$) only the sine-amplitudes S_{21} , S_{41} are relevant while for $\ell = 3$ the quantity C_{21} is most important. (The other tidal amplitudes arise because of planetary effects and therefore their magnitudes are very small.) Thus for $\ell - 2$ and $\ell - 4 |\Delta \psi$ is proportional to the Burr and Δs to the difference of the two tidal amplitudes constituting one nutation term, while for $\ell = 3$ it is just the other way around. This has not been taken into account by Zhin and Groten (1989). Probably they relied on the *paper of* Melchior and Georis (1968) and theorem 2 therein which is also wrong in that context, Moreover for $\ell = 9$ the nutation in longitude / obliquity is proportional to the cos/sin of the nutation argument which is again opposite to the case of $\ell = 2$. Note, that some of the computer programs (e.g. NUTC.F for the Kinoshita and Souchay (1990) series, KSV-1004.F for the recent nutation series based on VLBI data) for evaluating the J_3 nutation terms are also erroneous since they use the interchanged trigonometric functions (namely those for the cos / sin dependence of the Jalongitude / obliquity nutation is correctly given in Kinoshita and Souchay's (1990) text, but it is noted (Souchay and Kinoshita (1995)) that it is incorrectly listed as sin / cos in their final tables 28 and 29.

It should be pointed out that - although the method could be applied in principle to the main-nutation terms due to J_2 too - the results will not be satisfying due to the various assumptions and approximations made above. However, results using a more elaborate computation method will be presented in a subsequent paper.

S) It is casy to derive also values for the precession and obliquity rate! due to these parts of the tida potential. In that case $\Delta \omega$ vanishes and one obtains

$$\frac{d}{dt}\Delta\psi = + \frac{E_2\omega}{\sin\varepsilon_0}S^{21}(\omega_i = \omega)$$

$$\frac{d}{dt}\Delta\varepsilon = - E_2\omega C^{21}(\omega_i - \omega) .$$
(8b)

Numerical values are given in Table 5.

3. Results

In Table 2 all nutation terms due to the J₅ coefficient are given (HWS = this paper, KS Kinoshit, and Souchay (1990), ZG = Zhuand Croten (1989)). Eleven amplitudes due to the Moon are larger that $1 \mu as$. No nutation terms due to the sun arise since the solar tidal potential of degree 3 is already ver small.

l _M l _S F	D Ω	period	(d) 2	∆ vµws ∆	ψ _{K9} Δψz	_G Δε _{HW}	5 Δε _{KS} Δε20
-1 u	1 03	65502.276	- 6.3	-6.0		-2.7	
- 1 . 0	1 0 2	8159.136	36.6	36.0	30.0	17.6	19.0 -10.0
-1 0	1 01	3231.496	-104.0	-105.0	-150.0	-89.0	-89.0 30.0
-1 0 1	0 0	2190.360	33.2	33. 0		0.0	
1 0 1	-2 1	19s.680	-1.2			-1.0	
00	1 0 2	27.432	3,0			1.4	
0 0 1	0 1	27.S22	-16.2	-16.0	-20.0	-13.8	-14.0
0 0	1 00	27,212	7.5	8.0		0.0	
1 0 1	0 1	1.3.719	-1.3			-1.1	
0 0	303	0.107	-2.6			-1.1	
o 0,	s o 2	9.095	-1.0			-0.5	

TARTR 2: Nutation due to the J₂ coefficient (in μa_2 ; coefficient for Δe)

- -----

Using the same computation method one obtains for the two largest nutation terms due to J_4 values given in Table 3.

TABLE 3: Nutation due to the J_4 coefficient (in μa_3 ; sin for $\Delta \psi$, cos for Δe)

l∡ l	s	F	D)	Ω period (d)	Λψ _{HWB}	Achwa
0	0	0	0	1	6798.384	-0,7	6.8
0	0	0	0	2	3S99.192	0.5	-0.3

For nutation terms due to J_4 Kinoshita and Souchay (1990) mention the .0.7 μ as longitude term, but no the larger obliquity term which slightly exceeds their 5 μ as threshold. In Figure 1 and 2 we show to the time interval 1930 -2050 the differences between the evaluation of our nutation series due to J_3 and those of Kinoshita and Souchay (1990) and Zhu and Groten (1989), respectively. The values for the rm J m a x i m u m differences in μ as are given in Table 4.

TABLE 4: Differences in µcs							
	82	Δε					
	1 mB	max	IW8	max			
HWS-KS	3.3	9.9	2.6	8.2			
HWS-ZG	410	7 9 3 .	6 86.8	165.2			
14	0,6	1.1	4.8	7.1			

Table 5 gives precession and obliquity rates due to J3 and J4. The precession rate due to J4 18 in good agreement with the theoretical equation given by Kinoshita (1977) and the value of 2600 µas/J.cy given in Kinoshita and Souchay (1990). The rates from J3 are really
• xceedingly long period terms duo to the motion of the perihelion of the partb's orbit compared to the equinox.

TABLE D: Precession and conquity fates in #44/3.cy								
d	cgree	ť	od, ∆∳	Δė				
	3	Moon	-5.7	-1.1				
		Sun	-2.6	-0.5				
		Total	-8.4	-1.6				
	4	Moon	2S1S.3	0.0				

4. Conclusions

Using au independent procedure for computing the nutations from the earth's J3,8 conflict between the series of Kinoshita and Souchay (1990) and Zhu and Groten (1989) hag been resolved. The former series is correct and is extended to smaller coefficients here, Given the accuracy of modern observations, the nutations due to J_3 should be included in computations of the carth's orientation in space.

References

Hartmann, T., & Soffel, M. (1994): Astronomical Journal, 108, 1116

Hostmann, T. S. Wannel, H. C. (2005), scorpied by Comphysical Research Interes

Herring, T. A. (1981): In: Proceedings of the 127th Colloquium of the International Astronomical Unior Reference Systems, edited by J. A. Hughes, C. A. Smith, & G. H. Kaplan (U.S. Naval Obs., Washington) 157

Kinoshita, H. (1977): Celestial Mechanics, 15, 277

Kinoshita, II., & Souchey, J. (1990): Celestial Mechanics, 48, 187

Lerch, F. J., Nerem, R. S., Putney, R. H., Felsentreger, T. L., Sanches, B. V., Marshall, J. A., Klosko, 9. M Patel, G. B., Williamson, R. G., Chinn, D. S., Chan, J. C., Rachlin, K. E., Chandler, N. L., McCarth J. J., Luthcke, S. B., Pavlis, N. K., Pavlis, P. E., Robbins, J. W., Kapoor, S., & Pavlis, E. C. (1994 J. Geophys. Res., 99, 2816

Mathews, I'. M., Buffett, B. A., Herring, T.A., & Shapiro, I. L (1991 a); J. Geophys. Res. 96(B8), 8219

Mathews, P.M., Buffett, B. A., Herring, T. A., & Shapiro, I. L (1991b): J. Geophys. Res. 98(B5), 8243

McCarthy, D. (1992): IERS Technical Note no. 13, (Central Bursau of International Earth Rotation Servit Observatoire de Paris)

Melchior, P., & Georis, B. (1968): Phys. Earth Planet. Interiors, 1, 267

Morits, H., & Müller, I. I. (1987): The Ungar Publishing Company, New York.

Souchay, J. (1993): Astronomy & Astrophysics, 276, 266

Souchay, J., & Kinoshita, H. (1995) accepted by Astronomy and Astrophysics.

Standish, E. M. (1982): Astronomy & Astrophysics. 114. 297

Williams, J. G. (1904): Astron. Journal 108, 711

Zhu, S. Y., & Groten, E. (1989): Astron. Journal 98(3),

Acknowledgements. T. H. is supported by the Sonderforschungsbereich 228 (Special Collaborative Programs of the Doutsche Forschungsgemeinschaft (DFG). The truitful cooperation with Prof. Wenzel (Karlsruhe) on th 'tidal potential is gratefully acknowledged. A portion of the research described in this paper was carried ou at the let Propulsion Laboratory of the California Institute of Technology, under a contract with the National Acronautics and Space Administration.

9

.

ł

ī

10