NCSX Project Overview

G. H. Neilson NCSX Project Manager

Informal NCSX Program Advisory Committee Meeting No. 4 Princeton Plasma Physics Laboratory August 1, 2000

NCSX Has Made Dramatic Progress Since PAC-3

Substantial Gains in Tools and Understanding

- Improved capabilities to optimize and evaluate critical metrics.
- Technical issues are being resolved.

Substantial Improvements in Design

- Much better magnetic surfaces, confinement, coils.
- Have explored a broad range of attractive options from which to choose.
- Now: have narrowed down to 2 plasma and 2 coil options.

Compact Stellarators Included in U.S. Fusion Planning

• FESAC 10-year goal to determine compact stellarator attractiveness.

PAC-3 Design (June, 1999): A Machine Concept Satisfying Most Requirements

R=1.4 m ⟨a⟩=0.4 m B=2 T P_{NB}=6 MW

- Reference QA plasma "C82" stable at β =4% without a conducting wall.
- Re-used PBX-M TF and PF coils and neutral beams.
- New conformal saddle coil system and vacuum vessel.

PAC-3 Assessment

PAC Found:

• An interesting plasma configuration and a set of coils that can produce it.

Issues Identified, Further Studies Recommended:

- Magnetic surfaces.
- Coil flexibility for startup and physics studies.
- Technical capabilities, access.
- Confinement, attainability of target beta.
- Coil current density reductions.
- High-beta plasma explorations.
- Bootstrap current uncertainties.
- Wave heating options exploration.
- Tool development.

PAC Expectation: Significant time and tool refinement needed.

FESAC Assessment, August, 1999

Regarding the Compact Stellarator Proof-of-Principle Program

- Ranked high in scientific benefit, energy vision, international integration.
- Expected to become an important PoP program.
- Not then approved for PoP, "because of an important technical issue that needs to be resolved; specifically, the conceptual design embodiment (NCSX) must exhibit robustness of the equilibrium configuration throughout the plasma evolution."

Recommendations

- FESAC subpanel participation in NCSX review process to complete PoP readiness evaluation.
- Budget increases (\$1M in FY-2000, \$1.5M in FY-2001) to expedite design completion, issue resolution, successful reviews.

Program Responses to PAC & FESAC Reports

Agreed that NCSX design needed improvement. Steps taken:

- Improved tools, developed understanding.
- Broadened the range of options: plasma configurations, coil topologies.
- Shifted balance of effort: increased physics, reduced engineering.
- Delayed Physics Validation Review to Dec., 2000.

Program budget was increased by \$0.9M (to \$5.1M) for FY-2000, per FESAC recommendation. But flat budgets are planned for FY-2001-02.

FY-2000 Accomplishments- 1 Gains in Tools & Understanding

Issue	Tool improvements and Studies
Magnetic surfaces	 Major improvements in PIES and VMEC codes.
(Reiman)	 New island-reduction method being tested.
Flexibility (Lazarus,	 New free-boundary optimizer for coil flexibility analysis.
Hirshman)	 Startup simulations clarifying system requirements.
Plasma design	 Improved targeting of physics and coil metrics.
(Zarnstorff)	• Parameter-space explorations: t , κ_{axi} , β , R/(a), N _{periods}
Coil design (Hirsh-	 Improved optimization tools and explored various coil types.
man, Nelson)	 Small-scale conductor tests to determine design allowables.
Confinement (MZ)	 New power-balance solver with improved self-consistency.
Wave heating (MZ)	 HHFW absorption, system study extended.
Access (Nelson)	 Heating, diagnostic access req'ments, solutions studied.

Physics and technology innovations by national stellarator team have dramatically advanced the stellarator knowledge base.

FY-2000 Accomplishments- 2 Major Improvements in Design

Metric	PAC-3 Design	Current (PAC-4) Status
Magnetic surfaces	stochastic for r/a>0.75.	good surfaces out to r/a=1;
@high β		~15% internal islands.
Eff. helical ripple	1.0%	0.6%
@r/a0.7		
Fast ion loss	22.5%	19.0%
Coil current	35.8 kA/cm ²	17.8 kA/cm ²
density (unopt.)		
Coil complexity	3.11	2.05
Flexibility of coils	unexplored	startup states, alternate
		high- β profiles
Access	only NBI studied	NBI, RF, diagnostics,
		pumping

Desired improvements have been achieved.

Selection of Reference Plasma-Coil Configuration

Plasma Configurations Unconstrained by PBX-M (M. Zarnstorff)

- Found many better than C82 from which to choose.
- Currently focussing on two:
 - 3-period, A \approx 4.4 (better developed).
 - 2-period, A≈3.3.

Coil Topologies (W. Reiersen, S. Hirshman)

- Found multiple attractive alternatives.
- Currently focussing on two:
 - saddles + background TF coils
 - modulars with weak TF coils

Select reference plasma (next few days) and coil topology (Sept.) for FY-2001 design development and reviews.

Modular and Saddle Coil Designs Are Being Evaluated

Modular + Weak TF

Satisfy common compulsory physics requirements. Likely differentiators: flexibility, access, risk, maintainability, cost,...

PAC-3 & FESAC Issues: Magnetic Surfaces

PAC-3: good surfaces in the primary plasma configurations; maintaining surfaces in other configurations.

FESAC: the conceptual design embodiment (NCSX) must exhibit robustness of the equilibrium configuration throughout the plasma evolution.

Current Status (A. Reiman)

- Greatly improved surfaces; ~15-20% internal islands in β =0 and full- β states.
- Promising method for shrinking internal islands being tested.
- Surface quality relatively insensitive to profile variations, in initial studies.

PAC-3 Issues: Flexibility

PAC-3: Coil-set flexibility: accommodate different profiles, plasma shape variations, start-up.

Current Status (S. Hirshman)

- Coil designs required to reproduce startup states.
- Coils compatible with high-beta equilibria over a range of profile shapes (initial studies).
- Coils provide fast current ramp rates (2 MA/s) for startup scenario.

```
(E. Lazarus, W. Reiersen)
```

PAC-3 Issues: Confinement

PAC-3: Confinement enhancement, access to high beta with available power.

Current Status (M. Zarnstorff)

- New configurations have reduced ripple, better neoclassical and fast-ion confinement.
- Self-consistency of confinement projections improved.
- Power & particle handling scoping studies (J. Schmidt, P. Mioduszewski) has neutral control as key objective: wall conditioning, limiter placement, possible divertor upgrade.

PAC-3 Issues: Machine Capabilities and Design

PAC-3: Clarify technical capabilities, in particular pulse length, magnetic field strength, heating power, and diagnostic access.

Current Status (M. Zarnstorff, W. Reiersen, B. Nelson)

- Reference scenario (B-field/pulse length) satisfied by all designs.
- Heating (NB, RF) and diagnostic access requirements clarified and accommodated.

PAC-3: Explore current-density reductions, higher beta, wave heating; improve tools.

Current Status

• Progress on all of these.

Schedule Aims At Title I Design Starting in FY-2003

Preconceptual Design (complete in Dec., 2000)

- Update reference configuration (plasma + coils), Sept., 2000.
 ⇒ basis for FY-2001 design development and reviews.
- Physics Validation Review (PVR), Dec., 2000
 - Physics basis; requirements; preconceptual design, cost, and schedule.
 - Resolution of FESAC technical issues for PoP readiness.

Conceptual Design (Jan. 2001 – Sept. 2002)

Design, Cost, and Schedule Review ("DCSR"), April, 2001
 ⇒establish baseline to support project validation (May, 2001) and FY-2003
 budget request for start of engineering design.

Title I Design (start October, 2002)

The Project Can Meet These Milestones

Fusion Community Interest in Stellarators is Growing

News Items

- LHD getting good results: β=2.4%, enhanced confinement, high temperatures, 80-s pulses.
- Compact Toroidal Hybrid (Auburn University) proposal was successful!
 ⇒ MHD studies with novel iota-profile diagnostics in current-carrying stellarator.
- Welcome to LLNL initiative to collaborate with ORNL & PPPL on power and particle handling for compact stellarators. (D. Hill, M. Fenstermacher)
- 1999 FESAC plan, draft integrated program plan include stellarator objectives:
 5-year: determine performance of a large stellarator through int'l collaboration.
 10-year: determine the attractiveness of a compact stellarator.

Outstanding Progress Has Been Made Since PAC-3

- Large gains in tools and understanding.
- Broad range of options studied.
- Major improvements in the design.
- Key design decisions are being made this summer.
 ⇒Update reference machine configuration by end of September.
- On track for resolution of issues, favorable outcomes.

Goals for PAC-4: An Interactive Meeting Your Best Advice