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Thanks, Reviewers

• Yours is a challenging task.

• Our goal is to help you however we can. Contact

Stan Mizerski

Bob Simmons

Mike Zarnstorff

Hutch Neilson

Rich Hawryluk

Rob Goldston

…or any member of the NCSX team.
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Compact Stellarators Provide
an Exciting Opportunity for the Fusion Program

• Unique science

unique toroidal configuration controls.

• Innovative solutions for fusion energy

tokamak+stellarator benefits combined.

• Complement to other toroidal confinement research.

• Robust links to all of fusion science.

• The NCSX is the key element: PoP experiment for broad CS physics studies..

– Supports fusion goals: plasma physics understanding, concept innovation.

– High-beta, low-R/〈a〉 stellarator-tokamak hybrid via quasi-symmetric design

– Sound physics basis.
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Unique Science: Compact Stellarators Address
Critical Plasma Physics Questions (MFE Goal #1)

• Macroscopic stability: Can limiting high-β instabilities be stabilized by

external transform and 3D shaping?  How are disruptions affected?

• Turbulence and transport: Do anomalous transport reduction mechanisms

that work in tokamaks transfer to low-collisionality quasi-axisymmetric

stellarators?

• Plasma boundary:  How do stellarator field characteristics such as islands

and stochasticity affect the boundary plasma and plasma-material interactions?

Unique controls to understand toroidal confinement fundamentals:
rotational transform, shaping, magnetic symmetry.
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Innovative Solutions: Compact Stellarators Combine the
Best of Tokamaks and Stellarators

Tokamaks: dramatic advances in performance, physics understanding:

• MHD equilibrium, ideal stability, bootstrap current, transport control.

Stellarators: use 3D helical fields from coils to generate rotational

transform, shape plasma. Benefits:

• Intrinsically steady-state ⇒ no current drive required.

• Can use 3D shaping to tailor plasma properties. ⇒ NCSX goals

– Stabilize instabilities (kink, vertical, ballooning, Mercier) without conducting wall

or feedback. Prevent disruptions?

– Magnetic symmetry.  (confined orbits, undamped flows, bootstrap current). .

Quasi-axisymmetry ⇒  capture tokamak benefits in 3D?

– High beta (≥4%) and low aspect ratio  (<4.4) ⇒ compact stellarators.
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The World Stellarator Program is Substantial

Large Helical Device (Japan)
Enhanced confinement, high β;

A = 6.

Wendelstein 7-X (Germany)
Physics-optimized design:

no current, A = 11.

• Medium-scale experiments (W7-AS, CHS), and
• Exploratory helical-axis experiments in Japan, Spain, Australia.

Large aspect ratios; physics-optimized designs with no symmetry, no current.
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U.S. Stellarator Program Has a Good Foundation

Strong stellarator knowledge base

• Experiments: enhanced confinement, high beta, well-heated & diagnosed.

• Theory: physics-based numerical design capability.

• Engineering: accurate 3D coils and structures at a range of scales.

U.S. PoP Program Complements World Stellarator Research.
Unique physics…

• Hybrid concept with some transform from bootstrap current.

• High beta and low aspect ratio together. “Compact Stellarators”

• Magnetic quasi-symmetry (confinement, flows).

Quasi-axisymmetric design: also  connects to tokamak physics base.

Combined foundation justifies PoP-scale experiment ⇒ NCSX.
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National Compact Stellarator Experiment (NCSX)

Acquire physics data needed to determine compact
stellarator attractiveness. (MFE Goal #2)

Broad, In-Depth CS physics program…

• Stability, limiting mechanisms at high β (≥4%).

• Fast ion confinement.

• Enhanced confinement at low collisionality.

• Boundary physics.

⇒ Conditions for disruption-free operations.

Requires PoP Scale Facility

• High-power heating & exhaust (3→12 MW).

• Plasma size like PLT or D-III (R=1.4 m, 〈a〉=33 m).

• Wide range in B (1.2 – 2 T).

• Flexible and robust.

• In-depth diagnostics.
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NCSX Has Strong, Robust Linkages to All of
Magnetic Fusion Science

Complements ATs and STs.

• Rotational transform: internally generated vs hybrid.

• Sustainment: passive vs active control.

• Joint experiments with DIII-D, C-Mod, NSTX.

Advances Stellarators Through International Collaboration.

• Sharing of design and analysis tools.

• Collaboration, joint experiments.

Focuses U.S. Compact Stellarator Research.
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The U.S. Stellarator PoP Program

Goals

• Develop the physics base for low aspect-ratio, high-β stellarators.

• Assess attractiveness, decide on next steps in ~10 years.

Elements

• NCSX proof-of-principle experiment.

• International collaboration on stellarators.

• Reactor studies.

• Theory: 3D plasma physics.

• CE experiments investigating stellarator physics issues at lower β,

higher collisionality.

– QOS, HSX, CTH
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Stellarator Theory and Modeling Advances
3D Plasma Physics Understanding

Important for stellarator design, understanding of experimental results.

• Non-linear MHD stability analysis, including Alfvenic eigenmodes.

• Non-linear micro-stability and turbulence simulation, coupled with neoclassical
transport effects.

• Edge modeling.

• Integrated discharge analysis and simulation.

• Faster 3D equilibrium calculations including islands, stochastic regions, and
neoclassical effects.

• 3D equilibrium reconstruction and analysis, coupled to coil design.

• RF wave propagation and damping.

Topics are of broad importance for magnetic confinement.
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QOS: CE-level Compact Stellarator Experiment

• Quasi-poloidally symmetric
stellarator.

• Very Low R/a:  2.6
• Broaden understanding of

toroidal configurations
* stellarator equilibria at low R/a

* bootstrap current dependence

* reduce neoclassical losses

* low-R/a anomalous transport

* β limits

• Study startup issues for a low-
R/a quasi-poloidal 〈β〉 = 10-15%

compact stellarator concept

• 〈R〉= 0.95 m;  〈a〉 = 0.37 m

• B = 1 T (0.5 s);  PRF = 1-3 MW
• Ipl < 60 kA; 〈β〉 limit = 2.5%

proposed by ORNL
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NCSX: QAS design takes advantage of tokamak physics understanding

and performance advances ⇒ PoP.

QOS: explore less-developed QPS physics and very low R/〈a〉 ⇒ higher

risk, potentially high payoff ⇒ CE.

Feature NCSX QOS

Magnetic Symmetry Quasi-Axial Quasi-Poloidal

R/〈a〉 4.3 2.6

Key physics issue Disruption immunity at
high-β (4%), low ν*, low-R/〈a〉

Toroidal mode coupling
effects at very low-R/〈a〉,

moderate-β (2.5%), high-ν*

Parameters,

Capabilities

R = 1.4 m, 〈a〉 = 0.33 m, B = 2 T
Pheat =  3 → 12 MW (NB, IC)

extensive diagnostics

R = 0.95 m, 〈a〉 = 0.37 m, B = 1 T
Pheat =  → 3 MW (EC, IC)

limited diagnostics

Basis (justification

for scale)

Theory

Stellarator + Tokamak expts.
Theory

Scale of exp’t /

physics program

Proof-of-principle /

in-depth

Concept exploration /

exploratory

QOS Complements NCSX
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QOS  Status
Designed using tools and
experience of multi-lab
NCSX-QOS team

• PVR scheduled for
April 24-25

• Design, Cost & Schedule
Review in April 2002

• Design and construction
in parallel with NCSX
proposed
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Helically Symmetric Experiment (HSX)

R=1.2 m, B=1 T, 4 periods, R/〈a〉 = 8
Operating since 2000.

University of Wisconsin

• Supports NCSX:
– First test of quasi-symmetry.

– Developed method to map
magnetic field spectral content.

• Complements NCSX via unique
properties and physics issues:

– High effective transform (q=1/3).

– Low parallel viscosity in helical
direction.

– Mercier and ballooning limits
accessible at low-β via flexible
auxiliary coils.
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Compact Toroidal Hybrid
Auburn University

Flexible, Ohmic current,
low R/〈a〉.

Contributes to NCSX through
improved understanding of kink
and tearing modes in current-
carrying stellarators.

Operation to begin in 03.

R=0.75m,   <a> =0.18m,    B=0.5T,    Ip=50 kA
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Compact Stellarator Design Program Has
Already Advanced Stellarator Science

Capable tools have been developed…

• Improved 3D equilibrium codes- PIES and VMEC.

• Plasma currents, high β incorporated into configuration optimization.

• Free-boundary optimizer- new tool for flexibility evaluation.

• Stability, transport, bootstrap current, and coil engineering metrics
integrated to target design objectives.

• Coil design innovations to reduce complexity and current density, heal
islands, preserve good physics properties.

Results have been delivered…

• 20+ publications.

• Plasma and coil configurations: hundreds evaluated.

• A sound physics basis for NCSX design.
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The “Robustness” Issue Identified
 in 1999 Has Been Resolved

• New NCSX plasma design has dramatically improved magnetic surfaces.

Edge stochasticity problem of 1999 design has been overcome.

• NCSX modular coils are designed to produce good magnetic surfaces in

vacuum and high beta states; neoclassical effects are calculated to further
reduce islands.

• Multi-helicity trim coils are included in the design to maintain good surfaces

in other configurations.

• Coils produce QA equilibria over wide range of β’s and IP’s.

• Coils are robust to profile variations ⇒ design is not “optimized on the head

of a pin.”

• Coils can vary beta limit ⇒ stability mission is robust.

• Stable startup pathway from vacuum to high-beta state has been
demonstrated.
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Summary

• Compact stellarators make unique contributions to stellarator physics.

– Magnetic symmetry, high β / low-R/〈a〉 together, hybrid optimization.

• Complementary to the AT & ST programs.

– Effects of 3D shaping, external rotational transform, quasi-symmetry on stability
and transport.

– Effects of stellarator field structures in the edge.

• National stellarator program provides breadth of science.

– Theory of 3D plasma physics

– CE experiments exploring compact stellarator physics issues.

⇒ NCSX proof-of-principle experiment for broad, in-depth CS physics studies to

determine concept attractiveness.

• A sound physics basis for NCSX design has been established.


