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SEPARATING SEPTICEMIC AND NORMAL CHICKEN LIVERS

BY VISIBLE/NEAR–INFRARED SPECTROSCOPY AND

BACK–PROPAGATION NEURAL NETWORKS

C. Hsieh,  Y. R. Chen,  B. P. Dey,  D. E. Chan

ABSTRACT. The visible/near–infrared spectra of 300 chicken livers were analyzed to explore the feasibility of using
spectroscopy to separate septicemic livers from normal livers. Three strategies involving offset, second difference, and
functional link methods were applied to preprocess the spectra, while principal component analysis (PCA) was utilized to
reduce the input data dimensions. PCA scores were fed into a feed–forward back–propagation neural network for
classification.  The results showed no obvious difference in classification accuracy between offset and non–offset data when
no other preprocessing method was applied. The full 400–2498 nm wavelength region produced better results than the
400–700 nm, 400–1098 nm, and 1102–2498 nm sub–regions when more than 30 PCA scores were used. In general, the
classification accuracy was improved by increasing the number of scores of input data, but too many scores diminished
performance. The functional link test showed that using functional–link spectra selected at every third point with 60 scores
achieved the same classification accuracy as that obtained when using all the data points with 90 scores. The best
classification model used offset correction followed by second difference (g = 31) and 60 scores. It achieved a classification
accuracy of 98% for normal and 94% for septicemic livers.

Keywords. Chicken liver, Septicemia, Principal component analysis, Functional link, Classification, NIR spectroscopy,
Back–propagation, Neural network.

ith a continually growing demand for poultry
products, consumers require more assurance
of food safety. The 1968 Wholesome Poultry
Products Act requires each poultry carcass

sold in the United States to be inspected for its
wholesomeness during post–mortem inspection at the
poultry processing plant by inspectors from the Food Safety
and Inspection Service (FSIS) of the USDA. About
2,200 inspectors (USDA, 2000) are employed to examine the
exterior, the inner surfaces of the body cavity, and the organs
of each bird for visible abnormalities resulting from diseases.
The number of chickens slaughtered at federally inspected
establishments increased from 2.8 billion birds in 1965 to
7.5 billion in 1998. In 1998, 78 million birds were
condemned because they were diseased and defective. The
visual bird–by–bird inspection is labor intensive and prone to
human error and variability.

Article was submitted for review in July 2001; approved for publication
by the Information & Electrical Technologies Division of ASAE in
December 2001.

Mention of company or trade names is for purpose of description only
and does not imply endorsement by the USDA.

The authors are Ching–Lu Hsieh, ASAE Member Engineer, Visiting
Scientist, Yud–Ren Chen, ASAE Member Engineer, Research Leader,
and Diane E. Chan, Agricultural Engineer, Instrumentation and Sensing
Laboratory, USDA Agricultural Research Service, Beltsville, Maryland;
and Bhabani P. Dey, Veterinary Medical Officer, Animal and Egg
Production Food Safety, USDA Food Safety and Inspection Service,
Washington, D.C. Corresponding author: Yud–Ren Chen, ISL,
USDA–ARS, Building 303, BARC–East, 10300 Baltimore Avenue,
Beltsville, MD 20705–2350, phone: 301–504–8450; fax: 301–504–9466;
e–mail: cheny@ba.ars.usda.gov.

There are six major defects that cause chicken carcasses
to be removed from the processing line. They are septicemia,
cadaver, bruise, tumor, airsacculitis, and ascites. Under the
current HACCP–based Inspection Models Project (HIMP),
FSIS requires that any poultry showing evidence of septice-
mia, which is a systemic condition and a manifestation of
infectious disease caused by pathogenic microorganisms in
the blood, shall be condemned (zero tolerance) (Chen et al.,
2001).

Near–infrared (NIR) spectroscopy has proven its value in
food quality inspection for several reasons. For instance, it is
a rapid, non–invasive, and reliable method. Osborne et al.
(1993) reported that applications of NIR spectroscopy in food
and beverage analysis could categorize constituents includ-
ing moisture, protein, fat, and carbohydrate content. NIR
spectra (700–2500 nm) of food constituents show overlap-
ping bands, which correspond mainly to overtones and
combinations involving chemical bonds in molecular vibra-
tion. For example, the carbon–hydrogen (C–H) bond shows
first and second overtones at 1765 nm and 1215 nm for the
CH2 structure (Osborne et al., 1993). Different compounds
demonstrate overtones and combinations of bond vibrations
in different wavelength regions. In the visible region
(400–700 nm), spectral absorption is due to electronic
transition. It is closely related to the color pigments of the
sample. In NIR applications, the reflected signal contains
information about the composition of the testing sample
because the diffuse reflectance of the sample is determined
by the absorption properties of its major chemical constitu-
ents and by its physical light–scattering properties (Norris,
1989). The Instrumentation and Sensing Laboratory (ISL) of
the USDA has developed a visible/near–infrared (Vis/NIR)
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system to measure spectral characteristics of agricultural
products in both the visible light and NIR regions. This
system has been shown feasible for chicken carcass inspec-
tion, and on–line trials have been conducted (Chen and
Massie, 1993; Chen et al., 1998; Chen et al., 2000; Park et al.,
1995).

NIR analysis usually requires knowledge of the chemical
composition of a calibration set of samples. The relationship
between chemical and spectral data is generally created by
multivariate  linear regression. Principal Component Analy-
sis (PCA), a multivariate analysis method based on eigenvec-
tor models, can resolve the problem of correlation between
wavelengths, reduce the spectra to a small number of linearly
independent values, and provide information as to the nature
of underlying chemical factors affecting variation in the
spectra (Cowe and McNicol, 1985). Devaux et al. (1986)
reduced spectral patterns from 351 wavelengths to 10 inde-
pendent variables using PCA with enough information for
discriminating bread–baking quality of wheats. Chen et al.
(1998) utilized PCA to reduce the input variables from 190
to 15 variables and successfully classified normal and
abnormal chicken carcasses.

In quality prediction or classification of agricultural
products, models using neural networks have been reported
that are more robust than those using some other statistical
methods (i.e., Bayesian statistical classifiers or multivariate
linear regression). Conventional statistical methods are
limited when the parameters are too many or the statistical
properties of the classes are unknown or cannot be estimated
(Gonzalez and Woods, 1993; Thai and Shewfelt, 1991). Næs
et al. (1993) compared back–propagation neural network
models with partial least squares and principal component
regression in prediction. They found that neural networks
gave more accurate prediction. Brons et al. (1991) showed
that statistical methods increased neural network efficiency
when they were applied as preprocessors to the data before
building the neural network. Because a neural network
contains many advantages, including nonlinear, adaptive,
and parallel processing, it was found to have many successful
applications in classification, recognition, pattern comple-
tion, and optimization (Kung, 1993). Many research studies
have been published. Among them, Park et al. (1994) applied
a back–propagation model to classify beef sensory attributes
using ultrasonic spectral feature as input data. Hsieh et al.
(1997) classified head cabbage seedlings at five different
stages by applied a four–layer back–propagation model with
image texture analysis techniques. An application of the
back–propagation  model has been explored and tested
on–line using the Vis/NIR spectrum for separating normal
and abnormal poultry carcasses (Chen et al., 1998).

The Vis/NIR spectroscopy system developed by ISL has
been found capable of on–line chicken carcass classification.
However, the system is limited to examining carcasses. In
addition, procedures that only scan or image the carcass
exteriors are different from the whole–bird inspection
performed by the inspectors and may not detect some
condemned conditions. Thus, there is a need to acquire
additional feature information from post–mortem poultry at
different positions (e.g., body cavity) and/or from different
internal organs (e.g., liver and heart). A study on chicken
viscera has been reported by Chao et al. (1999). A
neuro–fuzzy–based color imaging system was used to

classify poultry viscera into normal, airsacculitic, cadaver,
and septicemic categories.

Since the presence of any septicemic condition is due to
some kind of infectious disease affecting the entire body of
the bird, a diseased chicken with septicemia will have an
abnormal liver. The object of this current research was to
study the feasibility of applying a Vis/NIR technique to
separate septicemic chicken livers from normal livers. Data
preprocessing methods including offset, second difference,
and functional link, and a dimensionality reduction measure
(PCA) applied to a back–propagation neural network were
compared. These methods were examined with the intent of
expanding the application of Vis/NIR system for the
inspection of organs along with the chicken carcass so that the
classification accuracy can be improved.

MATERIALS AND METHODS
SAMPLE PREPARATION

A total of 300 chicken livers, 150 normal and 150 septice-
mic, were collected from poultry processing plants on the
eastern shore of Maryland from August 2000 to March 2001
(shown in table 1). Chickens were inspected and assigned to
normal or septicemic classes by FSIS veterinarians. Before
collecting livers from birds found to be normal or birds
condemned due to septicemia, the general body condition of
the bird and the color and condition of the liver, gall bladder,
spleen, heart, lungs, muscle, and skin were noted. For each
bird, the organs were collected and stored in a new, sealable
plastic bag. The bagged organs were preserved in a cooler
filled with ice and brought back to the laboratory within
2–3 hours. Collected in the morning, the samples were
prepared for spectral measurements in the afternoon. A 4 cm
diameter core cutter was used to cut a circular piece from
each liver. The piece was fitted inside a cylindrical sample
cup with top surface of the liver against the sample window.
Spectra were measured using an NIRSystems model 6500
scanning monochromator (Silver Spring, Md.). The comput-
er automatically converted reflectance values to absorbance
values, i.e., log(1/R). Each 1050–point spectrum was an
average of 32 scans, collected over the 400–2498 nm
wavelength range at 2 nm intervals.

To reduce the effect of possible variation due to different
growers, growing season, etc., the training and testing data
set were randomly chosen on each sampling date (shown in
table 1). From a total of 300 samples, 200 were used for
training and 100 for testing.

DATA PREPROCESSING

Figure 1 shows a flowchart of the data preprocessing and
classification schemes applied in this study. Three preproces-
sing strategies were applied to enhance different features of
the spectral data. In strategy I, an offset correction was
applied and followed by PCA to reduce the number of
variables. In strategy II, offset correction and second
difference were used before PCA. In strategy III, offset
correction, second difference, and functional link were
implemented before PCA. The spectral data were enhanced
by different data preprocessing strategies, and the PCA
scores were input to a back–propagation neural network for
classification.  The classification results were then compared.
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Table 1. Dates and numbers of samples collected and randomly selected for training and testing sets.
Collected Training Set Testing Set

Date Normal Septicemic Normal Septicemic Normal Septicemic

31 Aug 2000 5 13 3 8 2 5

7 Sep 2000 6 14 4 9 2 5
27 Sep 2000 4 15 3 10 1 5
5 Oct 2000 3 10 2 7 1 3
6 Oct 2000 7 10 5 7 2 3
6 Dec 2000 30 –– 20 –– 10 ––
7 Dec 2000 30 –– 20 –– 10 ––
12 Dec 2000 16 17 10 11 6 6
25 Jan 2001 6 20 4 13 2 7
1 Feb 2001 14 12 9 8 5 4
8 Feb 2001 15 10 10 7 5 3
7 Mar 2001 14 29 10 20 4 9

Total 150 150 100 100 50 50
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Figure 1. Flowchart of chicken liver classification.

Offset Correction

Offset correction usually is applied to eliminate the
scattering or distance effects (Hruschka, 1987) on spectra
applications.  The algorithm used in this study sets the spectra
to the same baseline by adding or subtracting a constant
(offset) at each point in a spectrum to move its minimum
absorption value to zero. The offset correction can be
formulated as:

S0
n = Sn – C (1)

where
S0

n = spectral value at the nth point after offset
Sn = spectral value before offset
C = offset constant for all points of a particular

spectrum.
Offset preprocessing was performed using GRAMS/32

(Galactic Industries Corporation, 1999) spectral processing
software.

Second Difference

The second difference method is commonly used in
spectroscopy data analysis to separate overlapping spectra
and remove baseline shifts (Hruschka, 1987). A reflectance
spectrum shows absorbance features directly, while the
second difference method extracts the curvature properties of
the reflectance spectrum. The finite–difference method used
here requires gap size as a parameter for calculating the
difference points. Usually measured in wavelength span or
data points, different gap sizes extract different curvature
properties. Here, the second difference is defined as:

S″n = Sn+g – 2 × Sn + Sn–g (2)

where Sn is the spectral value at the nth point, and g is the gap
size in data points. In this study, g was evaluated at values of
2, 8, 15, 31, and 75 data points, based on a previous study.
FLMK, a FORTRAN–based program developed by ISL, was
used in second difference preprocessing.

Functional Link

Functional–link networks were introduced by Pao in
1989. The main idea of the method is to find a suitably
enhanced representation of the input data to generate the
higher effects and artificially increase the dimension of the
input space (Zurada, 1992). Thus, functional link input data
is a combination of the original input pattern and the
enhanced input pattern. A block diagram of a functional link
network is shown in figure 2. The enhanced pattern is
generated by a linearly independent function or formulation
from the original pattern components. By extending the
dimensionality  of the input space, the linearly nonseparable
patterns can be separated. In this research, the offset–cor-
rected spectrum (Oi) was enhanced using a second difference
calculation,  and this enhanced spectrum (Hi) was then
combined with the offset–corrected spectrum to form a
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functional link input pattern. For a single functional link
input pattern (Fi), the formula is:

Fi = Oi | Hi (3a)

where | symbolizes the appending of Hi to Oi. Fi has length
q = p + d, where p is the number of data points in Oi, and d
is the number of data points in Hi. The number of data points
varies with the strategy applied. In a matrix form, the
equation is:

F = O | H (3b)

where F is the set of functional link input data vectors of size
n × q, where n is the number of samples used. O and H have
dimensions n × p and n × d, respectively.

Principal Component Analysis (PCA)

PCA approximates the spectral vector (Ai) with a linear
combination of a set of orthogonal (uncorrelated) factors (Fj),
also known as eigenvectors or loadings:

Ai ≅ s1F1 + s2F2 + s3F3 + ...skFk (4)

where the coefficients sk are called scores. The number of
factors used (k) depends on the strategy applied. In matrix
form, the approximation is:

A ≅  S × F (5)

where
A = offset–corrected, second difference, or functionally

linked spectral matrix
S = PCA score matrix
F = PCA factor matrix.
A, S, and F have dimensions n × q, n × k, and k × q,

respectively. In this study, the parameter k was evaluated at
5, 15, 30, 60, and 90; n = 200 for the training set and n = 100
for the testing set; and q, the number of data points in a
spectrum trace, varied depending on strategy.

The first factor, a vector of spectral reflectance, is chosen
to account for the largest possible variance of reflectance in
the class. Each successive factor is then chosen to account for
the largest possible amount of the remaining variance. Each
spectrum can be adequately represented by a few factors in

Input layer Hidden  layer Out put layer

Original
Pattern

Enhanced
Pattern

Figure 2. Block diagram of functional link network.

factor space instead of many reflectances in wavelength
space. In this way, the dimension of the spectra in wavelength
space can be transformed into a vector space with k
dimensions spanned by k factors (Galactic Industries Corpo-
ration, 1999; Pimentel, 1979).

The PRINCOMP procedure and the SCORE procedure in
the SAS software (SAS, 1999) were employed to form the
factors and scores in the PCA process. Normal chicken livers
for the training set were used to generate the PCA factors by
the PRINCOMP procedure. Based on these factors, the scores
were computed by the SCORE procedure for the normal
training and testing sets and for the septicemic training and
testing sets, respectively. The basic assumption of this PCA
application was that the normal chicken liver spectra were
better defined as a class in the factor space. Any scores
formed from these normal chicken liver factors will fall into
the normal group if they have the same score features as the
normal livers. Otherwise, they do not belong to the normal
group and should be assigned to the septicemic group.

BACK–PROPAGATION NEURAL NETWORK

A feed–forward back–propagation neural network is a
supervised neural network. It consists of an input layer, one
or several hidden layers, and an output layer. For a linear
application,  no hidden layer is necessary. Too many or too
few hidden layers or hidden nodes can cause an effect of
overfitting or underfitting (Næs et al., 1993). Haykin (1994)
summarized the algorithm of feed–forward back–propaga-
tion in five steps: (1) start with a reasonable network
configuration and set all weights of the network to small
random numbers, (2) present the network with training
examples, (3) compute the activation potentials and function
signals of the network by proceeding forward through the
network, (4) compute the gradients of the network by
proceeding backward and adjusting weights of the network
in each layer according to the learning–rate parameter and
momentum constant, and (5) iterate the computation until the
network stabilizes or the error is at a minimum or acceptably
small value.

The back–propagation element transforming its inputs
could be formulated as (NeuralWare, 1998):
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where
f = nonlinear transfer function. For example, the

sigmoid function is defined as:

    ( )
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(7)

[s]
jx = current state of jth neuron in layer s
[s]
jiw = weight on connection joining ith neuron in layer

(s – 1) to jth neuron in layer s
[s]
jI = weighted summation of inputs to jth neuron in layer

s.
During the learning phase, the training vectors from the

training sample set were presented to input nodes. If the
output pattern did not match the pattern of the classes of the
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attributes, the weights in the net were adjusted by a gradient
descent rule as follows:
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where
lcof = learning coefficient
α = momentum
ej

[s] = error of jth neuron in layer s.
The error ej

[s] is formulated as follows:
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By iteratively propagating the error back from the output
layer to the previous layer, the neural network system
adjusted its weights to minimize the root mean square (RMS)
error between desired and actual network outputs.

NeuralWorks Professional II/Plus software (NeuralWare,
1998) with the delta learning rule and sigmoid transfer
function was used. A “Savebest” feature of NeuralWorks
software was used to optimize training. With this function,
the training model is used to predict the testing set after every
100 iterations of the training cycle. If the model shows
improvement in terms of predicting the testing set, it is saved,
so that the “best” weights are those resulting in the best
prediction of the testing set during the total training of
100,000 iterations. The momentum function in NeuralWorks
software was also enabled to improve the learning process.
The momentum is set to 0.4 by default.

The back–propagation neural network model employed in
this study for classification consists of one input layer, one
hidden layer, one output layer, and one bias node. The input
nodes are the scores obtained from PCA after preprocessing,
while the two output nodes indicate normal and septicemic
classes. Nodes in the hidden layer are varied according to the
number of input nodes, numbering roughly equal to half of
the input nodes. Thus, the neural structures in input–hidden–
output nodes for this study are 5–3–2, 15–7–2, 30–15–2,
60–30–2, and 90–45–2.

RESULTS AND DISCUSSION
PATHOLOGY OF SAMPLE CHICKEN LIVERS

The post–mortem examination of each bird for its general
condition; the size, color and texture of the carcass; and the
gross appearance of the liver, gall bladder, spleen, heart, and
lungs was performed by the plant veterinarian. For the
normal birds, carcass weight ranged between 1.8 kg and
2.3 kg, and their color had a uniform yellowish tinge. The
color of the livers from the normal birds varied more, ranging
from light brown to deep brown, chocolate brown, and even
magenta for some. However, they generally were smooth
with a firm texture, and varied in size from 7.6 × 5.1 cm to
8.9 × 6.3 cm.

For the septicemic birds, abnormal changes in condition
were noted primarily in the liver, gall bladder, spleen, heart,
and lungs. Some of the septicemic livers presented only one
notable change. However, many livers showed multiple
changes. The numbers of samples displaying these condi-
tions were as follows: 37 congestion, 81 enlargement,
30 hemorrhage, 1 cyanosis, 12 necrosis, 2 mottled, 50 pliable
or fragile, 1 pulpy or gritty texture, and 17 covered with

gelatinous material or a membrane. The septicemic livers
showed colors ranging from oxblood to blue to black.
Histopathological  tests of a subset of the samples (99 liver
samples with 28 normal and 71 septicemic) were also
conducted. All 28 normal livers were identified to be without
pathological syndrome. All 71 septicemic liver samples were
identified by microscopic examination as having pathologi-
cal changes in the liver tissue.

Table 2 summarizes the testing models examined in this
article. There were 20 testing models: 13 for input data
preprocessing, five for dimensionality reduction, and two for
neural network training strategy.

STRATEGY I
Figure 3 shows the average spectra of 150 normal and

150 septicemic chicken livers with offset and non–offset
correction. The GRAMS offset function found that the
minimum log(1/R) value occurred at 1100 nm. Each
absorption spectrum was adjusted relative to this point
automatically  by applying the GRAMS offset function. The
discontinuity at the 1100 nm offset point is caused by the
change between two detectors in the NIRSystems 6500: a
silicon detector for 400–1098 nm region, and a lead sulfide
detector for the 1100–2498 nm region. A higher log(1/R)
value indicates that more radiation has been absorbed (less
reflected) by the sample at the corresponding wavelength. In
figure 3, four apparent differences between averaged normal
and septicemic spectra were indicated in the 600–1000 nm,
1100–1400 nm, 1400–1900 nm, and 1900–2498 nm regions.
These shifts in absorbance implied that differences between
normal and septicemic livers spectra existed in these regions.

Figure 4 shows the classification accuracy (percentage of
correctly classified samples in the testing set) when using
full–range (400–2498 nm) offset and non–offset spectra with
PCA and neural network classification. It is evident that
higher accuracy can be expected with the use of more scores,
which include more details from each spectrum. The highest
accuracy resulted from using 90 scores for both offset and
non–offset spectra. Figure 4 also shows that a minimum
number of scores are required when high accuracy is desired.
For instance, at least 15 scores are necessary to obtain 80%
accuracy. No difference in the classification accuracies for
offset and non–offset treatment was observed, except for the
30–score model, in which case offset performed better by
3%. Although no significant difference results from offset
correction when classifying chicken livers using spectra

Table 2. List of testing models in chicken liver classification.
Testing
Target

Testing
Strategy

Testing
Model

Data pre–
processing

Offset correction Offset:
   400–700 nm
   400–1098 nm
   1102–2498 nm
   400–2498 nm
and non–offset.

Second difference
(gaps)

75, 31, 15, 8, 2 points.

Functional link
(data points)

All, every third, and every fifth.

Dimension re-
duction

PCA
(number of scores)

5, 15, 30, 60, and 90.

Classification Neural network Iteration and momentum.
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chicken liver spectra with various scores.

given no other preprocessing treatment, offset correction is
still recommended since it reduces the scattering or distance
effect that, under other conditions, cannot always be
controlled.

WAVELENGTH REGION

Figure 5 shows the classification accuracy when using
spectral data from different wavelength regions. The perfor-
mance of the 400–1098 nm region was better than that of the
more limited 400–700 nm and 1102–2498 nm regions when
more than 30 PCA scores were used. This suggests that using
both color and chemical compound information should
generally improve chicken liver classification. The four
areas containing shifts in absorbance between normal and
septicemic spectra shown in figure 3 also support this. In
these wavelength region tests, increasing the numbers of
scores does not necessarily improve the classification
accuracy. For example, the 400–700 nm and 400–1098 nm
regions both show highest accuracy with 15 scores, and the
1102–2498 nm regions with 60 scores. This may indicate that
too many scores will diminish performance if the original
input data points are limited, since the extra scores may
contain more noise than useful information. Figure 5 shows
that the highest classification accuracy was found with
90 scores in the 400–2498 nm range, which includes colors
and chemical reflectance properties.

STRATEGY II
Figure 6 depicts a liver spectrum after second difference

preprocessing using the finite–difference method with gaps
of varying size. The gaps function like band filters, extracting
different features from the original spectrum trace. Small
gaps are like high–pass filters, while large gaps are low–pass
filters. It is important to select an appropriate gap size to
extract representative features. If the gaps are too small,
important information will be poorly extracted from among
other features, but if the gaps are too large, information will
be smoothed out, and finer variations in the spectra will be
lost. The gap size also affects the processed spectrum trace
length. For example, for a spectrum processed with a second
difference gap of 15 points, the second difference spectrum
will lose its first and last 15 points of original spectrum. If
there is a discontinuity in the original spectrum, such as the
1100 nm offset correction point in the liver data, then the
points around the discontinuity should be omitted when using
the second difference spectrum. The larger the gap size, the
more points will be removed from the processed spectrum.
Even more points may be lost if other preprocessing is
applied before the second difference (e.g., a 4–point running
mean smooth would remove 4 points from each end of the
spectrum).

Figure 7 shows the classification accuracy from using
full–range (400–2498 nm) second difference spectra with
gaps of 2, 8, 15, 31, and 75 points. The gap of 31 points with
60 scores gave the highest classification accuracy. The gaps
of 15 and 31 generally performed better than the others. The
second difference spectra with gaps of 8, 31, and 75 points
showed optimal classification with 60 scores, while gaps of
2 and 15 performed best with 90 scores.

STRATEGY III
Three functional link spectra generated by taking an

offset–corrected spectrum and appending to it its correspond-
ing second difference spectrum (using g = 15, 31, and 75) are
shown in figure 8A. Reduced spectra, created by taking every
third (one–third) and every fifth (one–fifth) data point of a
functional link spectrum are shown in figures 8B and 8C,
respectively. As illustrated, there are no significant changes
in spectrum shape, and the original traces are reduced to
one–third and one–fifth of their original length.
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Figure 6. Spectrum trace after second difference processing with various gaps.
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Figure 7. Comparison of classification accuracy for various second differ-
ence gaps in 400–2498 nm wavelength region.

Table 3 shows the classification accuracies for data
preprocessing strategy III followed by the neural network.
Both the full spectra used with 90 scores (g = 15 or 75) and
one–third spectra used with 60 scores (g = 15) were able to
achieve 92% accuracy. Because the model with every third
data point requires fewer scores to perform with similar
accuracy to the full–spectral model with more scores, the
model with every third data point was considered the best
model among the functional link models. This also suggests
that, with appropriate preprocessing choices, reducing the
number of input data points and scores need not diminish
performance.

NUMBER OF TRAINING ITERATIONS AND MOMENTUM OF
NEURAL NETWORK

In the application of a neural network, the number of
training iterations is an important factor affecting the model
robustness. Overtraining and undertraining will occur when
training iterations are too many or too few. Besides training

iterations, momentum also contributes to improving the
learning speed with a low learning coefficient. A model from
strategy II with offset preprocessing followed by second
difference (g = 31) and 60 input scores was chosen for this
test. In this test the “Savebest” feature of NeuralWorks
software was disabled to obtain the classification accuracy at
desired iterations. Figures 9A, 9B, and 9C show the
classification accuracy as affected by iterations when
momentum is set to 0.2, 0.4, and 0.8 respectively. With fewer
than 40,000 iterations in an undertrained model, classifica-
tion accuracy is lower in all three cases. But when
90,000 iterations are exceeded, the classification accuracy
also decreases slightly in all three cases. Thus, proper
training falls between 40,000 and 90,000 iterations.

These figures also show that lower momentum gives more
consistent training and testing results than high momentum.
Training and testing accuracies are similar in figure 9A with
lower momentum, whereas in figure 9C the higher momen-
tum resulted in overfitting and a testing accuracy that fell
further below training accuracy. For example, after 90,000 it-
erations, 99% training accuracy could be reached, but the
corresponding testing accuracy was only 93%. ). Thus, using
smaller momentum (e.g., 0.2 or 0.4) could obtain a more
consistent result between training and testing; on the
contrary, using larger momentum (e.g., 0.8) would tend to
result in an overfitting model.

OPTIMUM MODEL
Table 4 summarizes the classification accuracy of the

optimum models obtained from data preprocessing strategies
I, II, and III and the neural network. Offset preprocessing with
90 scores is the optimum model for strategy I. Offset
preprocessing followed by second difference (g = 31) and
60 input scores is the optimum model for strategy II.
One–third reduced functional link spectra, combining offset
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Figure 8. One example of functional link spectra: A = all data points, B = every third data point, and C = every fifth data point.

Table 3. Classification accuracy of functional link models.
Score

Data Point Gap 5 15 30 60 90

All 15 75 84 84 91 92

31 77 81 83 88 87

75 75 82 83 91 92

Every third 15 75 84 83 92 85

31 76 82 84 89 89

75 75 82 84 89 89

Every fifth 15 75 85 85 90 88

31 76 82 86 86 86

75 75 82 83 87 89

and second difference (g = 15) data, with 60 input scores, is
the optimum model for strategy III. Among these three
optimal models, strategy II was the best classification model,
with 98% and 94% classification accuracy for normal and
septicemic livers, respectively.

The classification accuracies of strategy III (92% for both
normal and septicemic) fell below those of strategy II (98%
normal, 94% septicemic). This may be the result of enlarging
the input data dimension by using the functional link spectra
in strategy III, where 90 scores may simply not have been
enough to extract all the useful information because the
training set of 100 samples limits the maximum number of
scores and factors that can be calculated by PCA. More
samples may be necessary to optimize the functional link
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Figure 9. Momentum and iteration effects on classification accuracy for training and testing: (A) momentum = 0.2, (B) momentum = 0.4, and (C) mo-
mentum = 0.8.

approach. Strategy III performed 6% better than strategy I in
classifying the spectra of septicemic livers, which implies
that the combined spectral intensity and curvature informa-
tion is more useful than the intensity information alone.

Table 5 lists misclassified samples for optimum model in
strategies I and II. It shows that strategy II reduced the
misclassified samples from 19 to 10, an improvement
approximately  47.4%. This demonstrates that the second
difference is a useful method in chicken liver classification.
Among the misclassified samples, normal sample N102 and
N119 were always misclassified in the training and testing
process, respectively, regardless of the strategy used. Re-

peated misclassification also occurred to septicemic samples
S237, S734, and S738 in training and S268 in testing. One
possible reason is that because the veterinarians judged the
livers based on the physical condition of the birds, some birds
that were small in size but had normal livers may have been
inappropriately assigned to the septicemic group. Similarly,
some birds without any exterior disease symptoms may have
been judged normal even though some internal organ
changes, undetectable by human eyes, may have begun. A
pathological  examination for characterizing samples would
ideally eliminate this potential source of error.
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The confusion matrix shown in table 6 summarizes the
prediction errors for the strategy II optimum model. Type I
error is 2% and type II error is 5.8% for normal chicken livers.
For septicemic livers, type I and type II errors are 6% and
2.1%, respectively.

CONCLUSIONS
Although comparison of models with and without offset

correction preprocessing showed no obvious improvement in
classification performance, the use of offset–corrected
spectra is still recommended for its reduction of scattering
and distance effects. A minimum number of scores is
required when an acceptably high level of accuracy is
desired. For instance, in the offset test, the result shows that
at least 15 scores are necessary to obtain 80% accuracy.
However, using too many scores will diminish classification
accuracy, since the later scores will contain more noise. For
example, in 1102–2498 nm region test, the results show that
the accuracy obtained when using 90 input scores is lower
than that when using 60 scores. Consequently, determining
the minimal and optimal numbers of scores required is very
problem–oriented and will vary in different cases.

Different wavelength regions were examined, and the
highest classification accuracy was found using the full
400–2498 nm wavelength region, which includes both colors
and chemical properties. The 400–1098 nm region also
performs better than the 400–700 nm or 1102–2498 nm

Table 4. Comparison of the optimum model
of each preprocessing strategy.

Optimum Model Classification Accuracy (%)

Strategy Gaps Scores Normal Septicemia

I N/A 90 92 86

II 31 60 98 94
III[a] 15 60 92 92

[a] Data points used in strategy III optimum model were every third data (see
text for details).

Table 5. Misclassified samples of the optimum
model for strategy I and II.

Strategy Sample Class Training Set Testing Set

I Normal 3
(N102, N104, and

N149)

4
(N109, N119, N197,

and N505)

Septicemic 5
(S237, S275, S730,

S734, and S738)

7
(S224, S244, S248,

S268, S701, S719, and
S731)

II Normal 3
(N102, N189, and

N534)

1
(N119)

Septicemic 4
(S237, S734, S738,

and S741)

2
(S202 and S268)

Table 6. Confusion matrix for the optimum model of strategy II.

Predicted
Type I

Actual Total Normal Septicemic
Type I

error (%)

Normal 50 49 1 2

Septicemic 50 3 47 6

Type II error (%) 5.8 2.1

regions, supporting the conclusion that using regions encom-
passing both color and chemical data will improve classifica-
tion performance.

The functional link test results showed that the number of
input data points could be reduced by selecting every third
data point, resulting in one–third length input spectra. The
one–third model using 60 scores achieved a classification
accuracy equal to the full data model using 90 scores. The
functional link method itself increased the number of input
data points and consequently also increased the number of
scores required to maintain acceptable performance.

The iterations and momentums test for the back–propaga-
tion neural network showed that an appropriate number of
training iterations is needed to avoid undertrained and
overtrained situations (e.g., between 40,000 and 90,000 it-
erations in this study). Results from using a smaller
momentum (e.g., 0.2 or 0.4) were more consistent between
training and testing than the results from using a larger
momentum (e.g. 0.8).

The best classification model was found with strategy II:
offset correction followed by second difference (g = 31) and
the use of 60 scores for neural network input data. The
optimum model achieved classification accuracies of 98%
for normal and 94% for septicemic. A confusion matrix
analysis shows that the probabilities of Type I and Type II
errors for normal livers were 2% and 5.8%, respectively, and
for septicemic livers were 6% and 2.1%, respectively.
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