Using Inertial Measurements for the Reconstruction Of 6-DOF
 Entry, Descent, and Landing Trajectory and Attitude Profiles (AAS 02-164)

Geoffrey G. Wawrzyniak and Michael E. Lisano
Jet Propulsion Laboratory, California Institute of Technology

Space Flight Mechanics Meeting
San Antonio, Texas
Tuesday, January 29, 2002

Outline

- Introduction
- Motivation
- Mars Exploration Rover Entry, Descent, and Landing (MER EDL)
- Airbag Testing
- Objectives
- Facilities
- Equipment and Instrumentation
- Video of Drop Test (facilities permitting)
- Trajectory Reconstruction (REDLand)
- Objectives
- Algorithm and Method
- Results
- Conclusions and Future Work
- Questions

Introduction

- MER missions to Mars
- Two identical space vehicles and rovers
- Doubles scientific return for minimal added effort
- Launching summer of 2003
- Arriving 21 days apart on Mars at different locations
- Similar to Mars Pathfinder (not the same, though)
- Rover concept
- Parachute -- retrorocket -- airbag EDL
- Rovers expected to travel up to 1 km
- Determine history of climate and water in two areas that may once have been favorable for life
- Instruments will help give better understanding of Martian geology
- 360° panorama
- Rock and soil samples
- RAT (Rock Abrasion Tool) exposes fresh surfaces of rock

Motivation for Trajectory Reconstruction JPL

- Need to determine the "stroke" of the airbags at impact to within $10 \mathrm{~cm}(3 \sigma)$ from airbag drop tests
- Airbag physics is a black art
- Stroke is the amount of airbag compression
- No direct measurement exists for measuring stroke
- Bottoming out, or "full stroke" is caused by inadequate pressure in the airbags
- Too high of a pressure, and the airbags could pop on impact
- Need to reconstruct EDL trajectory of 1st MER within seven days of its arrival
- 2nd MER will arrive 21 days later
- REDLand (Reconstruction of Entry, Descent, and Landing) software developed by authors to accomplish first objective
- REDLand is prototype for IPANEMA (Interim Planetary Atmosphere Navigation for Estimation and Mission Analysis)
- IPANEMA, also written by the authors, will be used to reconstruct the EDL of the MER mission

MER-A EDL Sequence

MER-A Sequence

MER-B EDL Sequence

JPL

MER-B Sequence

Airbag Drop Test Objectives JPL

- Evaluate the performance of MPF heritage airbag design under the higher landing mass conditions
- MPF mass was 385 kg
- MER drop test mass is 535 kg
- Evaluate the relative performance between abrasion layers constructed from 100 denier and 200 denier fabrics
- Denier is a thread count (or fabric thickness)
- Trade-off is between number of layers and denier of airbag
- Evaluate the MER petal to airbag interface
- Measure tendon loads, acceleration and stroke

Airbag Drop Test Facilities

- Drop tests are conducted at the Space Power Facility (SPF) at NASA Glenn Research Center, Plum Brook Station, Sandusky, Ohio
- Only place in the world that can simulate Martian landing environment and conduct drop tests of scale models
- Largest vacuum chamber on Earth
- Chamber is 100 feet in diameter, 122 feet high
- Center of the chamber is a ramp with a rock field to simulate the Martian surface

From `World Class Facilities CD-ROM", NASA Glenn Research Center at Lewis Field Productions, Cleveland, OH, 2000

Airbag Drop Test Facilities

- At right is a figure of the drop test chamber
- Z-axis is up
- Y-axis is right
- X-axis is out of page
- Pyro is fired to release lander from the hanging sling
- Bungee accelerates lander towards the 60° ramp
- Simulate Mars EDL horizontal velocity component from the wind
- Airbags encounter the ramp and compress
- Airbags and lander bounce off the ramp into catch net
- Entire sequence from release to net takes less than 2 seconds
- Drop captured by numerous cameras situated around the chamber

Drawing courtesy of Tom Rivellini, JPL

Equipment and Instrumentation

JPL

- Drop test lander is similar in size, shape and mass of flight lander
- Base petal of test lander holds instrument panel
- IDDAS (Intelligent Dummy Data Acquisition System)
- Accelerometers
- Rate gyroscopes
- Pressure transducers
- Tendon load cells
- Latch pin load cells
- String potentiometers
- Orientation Sensor
- Ballast mass added to side petals
- Lander is approximately 1 meter tall
- Inflated airbags on lander are 4 meters tall

Photos courtesy of ILC Dover, Inc.

(movie)

QuickTime ${ }^{\text {TM }}$ and a
Sorenson Video decompressor are needed to see this picture.

REDLand Trajectory Reconstruction IPL

- Objectives
- Determine acceleration environment of lander
- Indirectly determine airbag stroke
- Learn how to model IMU measurements for MER EDL using IPANEMA (Interim Planetary Atmosphere Navigation for Estimation and Mission Analysis)
- REDLand uses IMU data as measurements in EKF
- Traditional route of dead reckoning integrates IMU data
- REDLand estimates (of the CG and as functions of time):
- Position (SPF reference frame)
- Velocity (SPF reference frame)
- Translational Acceleration (Body frame)
- Quaternion (SPF to Body)
- Rotational Rate (Body frame)
- Rotational Acceleration (Body frame)
- Quaternion relates SPF and Body reference frames
- The rotation to the Mars frame from the SPF frame is a -60° about the SPF Xaxis

Extended Kalman Filter

- The trajectory and attitude reconstruction will be performed using an Extended Kalman Filter (EKF)
- At right is a flowchart of a typical EKF
- A priori values are from the initial conditions
- Φ is the state transition matrix
- $\quad Q$ is the process noise matrix
- $\quad Y$ is the observed measurement, G is the modeled measurement. Their difference is the residual, y
- H is the state-observation matrix
- $\quad R$ is the measurement noise matrix
- K is the gain
- The next slides discuss each of these elements of an EKF in more depth

Measurement Types (Y in EKF)

- Accelerations from a number of three-axis accelerometers positioned in the lander
- Current 1σ noise assumption is 0.1 g
- DC offsets are averaged and removed
- 1 g is added to unbiased accelerometer tri-axis
- This will lead to a propagated error if initial orientation is miscalculated
- Modeled kinematics (G in EKF) of acceleration at a point " a " relative to a reference point " o " is:

$$
\mathrm{a}_{\mathrm{a}}=\mathrm{a}_{\mathrm{o}}+\omega \times \omega \times \mathrm{r}_{\mathrm{a} / \mathrm{o}}+\alpha \times \mathrm{r}_{\mathrm{a} / \mathrm{o}}
$$

- Small error may arrive from $\Delta r_{a / o}$ uncertainty (most apparent during max rotation rate and acceleration)
- $\operatorname{Max}(\omega) \sim 12 \mathrm{r} / \mathrm{s}, \operatorname{Max}(\alpha) \sim 140 \mathrm{r} / \mathrm{s}^{2}$, Set $\mathrm{a}_{0}=0$
- $\mathrm{a}_{\mathrm{a}}\left(\mathrm{r}_{\mathrm{a} / \mathrm{o}}=50 \mathrm{~cm}\right)=142 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{a}_{\mathrm{a}}\left(\mathrm{r}_{\mathrm{a} / \mathrm{o}}=51 \mathrm{~cm}\right)=144.84 \mathrm{~m} / \mathrm{s}^{2}$
- Difference of 0.3 g
- Small errors may also arrive from orientation of accelerometers wrt lander axes
- $20 \mathrm{~g} * \sin \left(1^{\circ}\right)=0.35 \mathrm{~g}$
- Rotational rates from a three-axis gyroscope in the lander
- Current 1σ noise assumption is 0.4 mV
- $1 \mathrm{mV} \sim 1 \mathrm{deg} / \mathrm{sec}$

Process Noise Matrix (Q) Assumptions JPL

- The propagated covariance matrix is:

$$
\mathbf{P}_{\mathbf{i}}^{-}=\Phi \mathbf{P}_{\mathrm{i}-1}^{+} \Phi^{\top}+\mathbf{Q}_{\mathbf{i}}
$$

- $\quad Q$ is a diagonal matrix that can be thought of as a lower bound on the propagated covariance matrix
- Non-zero Q prevents the estimator from converging
- Tuning of an EKF is the black art of balancing the uncertainty of the dynamics model and the uncertainty of the measurements, or Q/R
- Q should only be applied to states where and when there are dynamics uncertainties
- Release and impact
- Velocities predicted using a constant value for g
- Translation and rotation accelerations
- Rotation rates
- The measurement update to the covariance matrix,

$$
\mathrm{P}_{\mathrm{i}}^{+}=\left[I-\mathrm{K}_{\mathrm{i}} \mathrm{H}_{\mathrm{i}}\right] \mathrm{P}_{\mathrm{i}}^{-}
$$

will correct for the added process noise (Q)

Results: Mars view animation frames IPL

* Roll Line. This movie was played at 20 frames per second.

Stroke Estimate

Results: Position (SPF frame) JPL

XYZ Positions in the SPF frame

Results: Velocity (SPF and Mars frames) JPL

XYZ Velocities in the SPF (left) and Mars (right) frames

Uncertainties: Translational \& Rotational JPL

Translational (left) and Rotational (right) Uncertainties

Initial Conditions

- Previous slide of estimate 1σ uncertainties illustrates need for accurate initial conditions
- Uncertainties of unmeasured states grows as a value of its derivative state
- Position uncertainty grows at a rate equal to the value of the velocity uncertainty, etc.
- If stroke measurement is needed to be know to within 10 cm (3б), initial conditions must be an order of magnitude more accurate
- Initial position and initial attitude are important since no measurements of height or attitude are made during the drop (only acceleration and rotation rate are measured)
- Navigators are involved in precision measurements of the SPF chamber's layout and magnetic field
- We (navigators) are dealing with hardware and getting our hands dirty!

Conclusions and Future Work

- REDLand demonstrates that IMU data can be used as measurements in a Kalman filter
- JPL is on course to have a high-fidelity EDL reconstruction application for the MER missions
- Must get better estimate of stroke
- Must get accurate measurements of the initial conditions
- Future drop tests will include distance measurement

Backup Slides

Results: Acceleration (Body and Mars) JPL

XYZ Accelerations in the Body (left) and Mars (right) frames

Results: Quaternion and Euler Angles JPL

SPF to Body rotations: Quaternion (left) and 1-2-3 Euler Angles (right)

Results: Rotational Rate and Acceleration JPL

XYZ Rotational Rate (left) and Rotational Acceleration (right)

Acceleration Uncertainty (SPF \& Mars) JPL

Translational Acceleration Uncertainties in the SPF (top) and Mars (bottom) frames

Accelerometer Layout

Accelerometers on Tri-axial Block JPL

Photo courtesy of ILC Dover, Inc.

Closed Lander

Photo courtesy of ILC Dover, Inc.

