NATIONAL GEODETIC SURVEY

Improving Regional Geoid by optimal Combination of GRACE Gravity Model and Surface Gravity Data

YM Wang, DR Roman and J Saleh National Geodetic Survey National Oceanic and Atmospheric Administration

NATIONAL GEODETIC SURVEY

Combination methods used in local geoid determination

Numerical results and comparisons

Conclusions

Combination Methods

NATIONAL GEODETIC SURVEY

Remove-restore (R-R)

$$N_{R-R} = N^{GGM} + \frac{R}{4\pi\gamma} [\iint_{\sigma} (\Delta g^{s} - \Delta g^{GGM}) S(\psi) d\sigma]$$
$$= \frac{R}{4\pi\gamma} \iint_{\sigma-A} \Delta g^{GGM} S(\psi) d\sigma + \frac{R}{4\pi\gamma} \iint_{A} \Delta g^{s} S(\psi) d\sigma$$

- Surface gravity data used in the local integral
- GGM gravity used in the integration outside the local region
- Accurate long wavelengths of GGM are not used in local integration

Combination Methods

Modified Stokes Kernel (Kleusberg and Vanicek method, K-V)

$$N_{K-V} = N^{GGM} + \frac{R}{4\pi m} \iint S^{H}(\psi) (\Delta g^{s} - \Delta g^{GGM}) d\sigma$$

$$S^{H}(\psi) = S(\psi) - \sum_{n=2}^{M} S_{n}(\psi) = \sum_{n=M+1}^{\infty} S_{n}(\psi)$$

100% long wavelengths of GGM, if integration is global

- Long wavelengths of the terrain effect ignored
- Truncation error (non global integration) is significant

Combination Methods

NATIONAL GEODETIC SURVEY

Spectral combination using 2D FFT

- FFT of surface gravity data and GGM on the same grid
- Spectral cut and paste, weighted mean of low frequencies
- No truncation error
- Long wavelengths of terrain effect can be treated
- Proper taping is favorable
- No equal distance along latitude direction

Numerical results and comparisons

NATIONAL GEODETIC SURVEY

Data Used

- GGM02S to degree and order 110, EGM96 from degree 111 to 360
- Surface gravity data used the GEOID03 computation that includes surface anomaly, altimetry gravity, shipborne gravity (2.6 million points data)
- Terrain correction computed from 30"/3" DEMs
- 6169 GPS/leveling data at benchmarks over CONUS

Modified Stokes Kernel (K-V)

NATIONAL GEODETIC SURVEY

GPS/Leveling Comparisons (STD, cm)

	R-R	K-V N=20	K-V N=30	K-V N=360
National	19.7	29.3	28.6	29.1
Individual States	8.4	8.7	8.0	11.8

Discussions

NATIONAL GEODETIC SURVEY

- In comparison with standard R-R, modified Stokes kernel method produces worse results. This may due to
- 1. Truncation error
- 2. Excluding long wavelengths of the terrain effect.
- Remedies
- 1. Use modified Stokes kernel in least squares fashion (minimizing the truncation error)
- 2. Proper treatment of long wavelengths of the terrain effect

Spectral Combination using 2D FFT

NATIONAL GEODETIC SURVEY

GPS/Leveling Comparisons (std, cm)

	R-R	Cut/Paste N=8	Cut/Paste N=14	Weighted average N=114
National	19.7	29.3	28.6	22.2
Individual States	8.4	8.1	7.8	7.8

NATIONAL GEODETIC SURVEY

- Spectral combination has not produced better results at national level, but improves comparisons at state level.
- Smaller discrepancy of the weighted mean in the spectral domain indicates the long wavelengths in surface gravity data are not totally useless.
- Weighted average in the spectral domain is preferred over simple spectral cut/paste method.
- More investigations in proper weighting GGM and surface gravity data should be conducted

Conclusions

NATIONAL GEODETIC SURVEY

- Longer wavelengths have larger contribution to geoid, so the combination has to be carefully done.
- Truncation error is significant for modified Stokes kernel. If the maxim degree is 110, the error could reach 30% or more of the signal.
- Long wavelength of the terrain effect can not be ignored.
- Spectral combination improves the results state by state, but not nationally
- The effect of topography is different on GGM and surface gravity data. Proper treatment of this effect is crucial to a successful combination

