Standard Model Higgs Searches at the Tevatron (Low Mass : $M_H \le ~140 \text{ GeV/}c^2$)

For the CDF and DØ Collaborations

Kohei Yorita University of Chicago

The XLIIIrd Rencontres de Moríond EW La Thuíle ín Italy, March 1 - 8, 2008

Contents

i. Tevatron, CDF/DØ, SM Higgs

ii. Search_Results

> $H \rightarrow bb$ (Luminosity) - $WH \rightarrow lvb\overline{b}$ (CDF(1.9fb⁻¹)/DØ(1.7fb⁻¹))

- WH \rightarrow IVDD (CDF(1.9fb⁻⁺)/DØ(1.7fb⁻⁺) ZH \rightarrow I+I-bb (CDF(1.0fb-1)/DØ(1.1fb-1)
- ZH \rightarrow I⁺I⁻bb (CDF(1.0fb⁻¹)/DØ(1.1fb⁻¹)) - ZH \rightarrow wybb (CDF(1.7fb⁻¹)/DØ(2.1fb⁻¹))
- ZH $\rightarrow vvb\overline{b} (CDF(1.7fb^{-1})/D\emptyset(2.1fb^{-1}))$
- > $H \rightarrow \tau \tau$ (From CDF !) \longrightarrow Brand New !
 - Simultaneous Search for WH/ZH/VBF/ggH $\rightarrow \tau\tau$ +2jets

iii. Combined Results

iv. Conclusions

Contents

i. Tevatron, CDF/DØ, SM Higgs

ii. Search_Results

> $H \rightarrow bb$ (Luminosity) - $WH \rightarrow lvb\overline{b}$ (CDF(1.9fb⁻¹)/DØ(1.7fb⁻¹))

- VVH \rightarrow IVDD (CDF(1.9fD')/DØ(1.7fD') 7H \rightarrow I+I-bb (CDF(1.0fb-1)/DØ(1.1fb-1)
- ZH \rightarrow I⁺I⁻bb (CDF(1.0fb⁻¹)/DØ(1.1fb⁻¹)) - ZH \rightarrow vvbb (CDF(1.7fb⁻¹)/DØ(2.1fb⁻¹))
- > $H \rightarrow \tau \tau$ (From CDF !) \longrightarrow Brand New !
 - Simultaneous Search for WH/ZH/VBF/ggH $\rightarrow \tau\tau\text{+}2\text{jets}$

iii. Combined Results

iv. Conclusions

The Tevatron @ Fermilab

- ♦ pp collisions at 1.96 TeV
- 36x36 @ 396 ns bunch crossing Year2002 2003 2004 2005 2006 2007 2008 Month1 4 7 10 1 4 7101 4 7 1 4 7101 7101 4 70 A;3000 In this talk Lot 1200 1000 Delivered 500 CDF To tape 2000 3000 4000 5000 1000 Store Number
- ◆ ~3.0 fb⁻¹ data on tape.
- Initial instantaneous luminosity Record: 2.9 x10³²cm⁻²s⁻¹
- ♦ 6~8 fb⁻¹ expected by end of 2009

CDF/DØ Detectors

- Multipurpose detectors :
 "Classic onion-like design"
 - Trackers inside solenoid
 - Calorimeters(EM/Had)
 - Muon chambers
- Both running well !

Broad physics programs are actively ongoing !

SM Higgs Boson

- The Standard Model has been well tested against experimental data and so far provided great success in particle physics.
 - BUT one particle undiscovered yet.
 - -> "Higgs Boson" :
 - "Origin of Mass" for all fermions & W/Z bosons.
 - "Origin of Electroweak symmetry breaking".
 - Spin 0, Charge 0
- Why so difficult to find Higgs ?
 - Small production cross section.
 - Large backgrounds.
 - The SM (by itself) does not predict the value of the Higgs boson mass directly.
 (possible through radiative corrections though)
- Challenging but the most important task in High Energy Physics.

◆ The most probable value from SM global fit : 76 ±³³₂₄ GeV Upper bound (95% C.L) : <144 GeV (182 GeV if LEP limit included)</p>

- This talk focuses on <u>low mass region</u>. (M_H<~140 GeV)
- High mass search will be presented by next speaker (L. Zivkovic).

- ◆ Main Channels @ Tevatron :
 - WH→lvbb
 - ZH→vvbb
 - ZH→llbb
- * $H{\rightarrow}\tau\tau$: New results from CDF !

- This talk focuses on <u>low mass region</u>. (M_H<~140 GeV)
- High mass search will be presented by next speaker (L. Zivkovic).

- ◆ Main Channels @ Tevatron :
 - WH→lvbb
 - ZH→vvbb
 - ZH→llbb
- * $H{\rightarrow}\tau\tau$: New results from CDF !

$WH \rightarrow lvb\bar{b}$ (cont.)

Limit on WH \rightarrow lvbb

- 95% Confidence Level Upper limit is set by binned likelihood method.
 - -> Showing $\sigma(\text{limit})/\sigma(\text{SM})$ Ratio (i.e. If reached 1, it is excluded)

WH/ZH/VBF/ggH $\rightarrow \tau\tau + 2jets$ Brand New

- $H \rightarrow \tau \tau$ is hard due to small BR (10% of $b\overline{b}$).
- But we should not give up ! Ideas are :
 - 1. Recover BR by looking at W/Z->2jets:
 - W \rightarrow Iv(22%), Z \rightarrow II(6%), Z \rightarrow vv(20%)
 - W \rightarrow jj (67%), Z \rightarrow jj(70%)
 - 2. Add all possible channels:
 - Simultaneous search for WH+ZH+VBF+ggH
 - Many good kinematic variables to separate signal from backgrounds (dijet mass, dη(j,j) etc).

NEW Result: $H \rightarrow \tau \tau$ Channel Brand New

- Use $\tau_{lep} \tau_{had}$ mode.
 - Lepton $P_T > 10 \text{ GeV}$
 - Hadronic $\tau P_T > 15 \text{ GeV}$
- 3 Neural Nets are trained: Signal vs Z-> ττ + jets Signal vs ttbar Signal vs QCD
- Then select Minimum of 3 NN scores to fit the data.

 $\sigma(\text{limit})/\sigma(\text{SM}) = 30/24 \text{ (obs./exp.)}$

- * Established background estimate & modeling.
- * Further improvement by adding 0j/1jet events.
- * Becomes more interesting at LHC.

Combined Results

- Work still in progress to combine all updated & new analyses.
- Corresponding luminosity for each analysis used in combination in this talk.

Combined	CDF	DØ
$WH{\rightarrow}Ivbb$	1.7 fb ⁻¹ (old !)	1.7 fb ⁻¹
ZH→llbb	1.0 fb ⁻¹	1.1 fb ⁻¹
ZH→vvbb	1.7 fb ⁻¹	0.93 fb ⁻¹ (old !)

- ♦ Systematic uncertainties are treated 110 as nuisance parameters with truncated Gaussian constraint. After combined, If significant excess found → Do more checks. If no excess → Set 95% C.L. Limit.
- http://arxiv.org/abs/0712.2383 Tevatron Run II Preliminary, L=0.9-1.9 fb⁻¹ 10 Limit/SM **FP** I imit **CDF** Expected DØ Expected **Tevatron Expected** C **Tevatron Observed** 10 95% SM 110 120 130 140150 160 170 180 190 200 $m_{\rm H}({\rm GeV/c}^2)$ High mass search will be shown in next talk !
- At M_H=115 GeV, Observed Limit (σ(limit)/σ(SM)) is 6.2 while expected is 4.3 ! We are getting close to exclude if No Higgs around this region !

Summary & Prospects

- We have +1.0 fb⁻¹ already on tape.
- New analysis (H $\rightarrow \tau\tau$) done.
- ♦ In low mass range, the exclusion limit is ~ x 5 to SM prediction, and improving beyond luminosity scaling.
 → Advanced technique and better understanding of data etc.
- Further improvements actively in progress in CDF/DØ :
 - Extending lepton coverage.
 - Improving btagging quality etc.
- More results coming soon !
 - Details on each analysis and combined results:
 - CDF: http://www-cdf.fnal.gov/physics/new/hdg/hdg.html
 - DØ : http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.htm

Conclusion

Yes, "Spontaneous Symmetry Breaking" might be seen at Tevatron ! Or if nature doesn't like SM Higgs, we need to exclude it a.s.a.p. ! In both cases, it is still a great time to search for SM Higgs at Tevatron.

Tagging efficiency

More Plots : Met+2jets

Double Vertex Tag (Signal Region)

Dijet Mass (GeV/c^2)

More Plots : $H \rightarrow \tau \tau$ Channel

More Plots : $H \rightarrow \tau \tau$ Channel

> 3 Neural Nets Distributions:

Further Combination

- > Results we already have now, but not used in current combination:
 - 1. WH -> lvbb(CDF):

+200pb⁻¹, 1tag improvement, forward electron inclusion.

- 2. ZH -> vvbb(CDF): Data driven QCD estimate.
- 3. ZH -> vvbb(DØ):

+1200pb⁻¹ with Boosted Decision Tree Technique.

4. Η -> ττ(CDF):

New analysis with 2.0fb⁻¹.

- All combined results coming very soon !
- > Other analysis updates (e.g. ZH->IIbb) are also ongoing and will be done shortly.