Query Language Position Paper

DRAFT 1.0

Scott Oster
Ohio State University
12/8/2004

Abstract

This paper will describe the concept of a common query language within the scope of caBIG, the system impact a particular choice of language will have, and describe the relationship between: clients, the query language, and the grid infrastructure.

Query SIG Goals
The caBIG Architecture Workspace Query Special Interest group intends to come to a consensus on the requirements, properties, and details of the language which will be used to query caBIG grid resources. Furthermore, it intends to define the requirements of a query engine capable of performing the caBIG query use cases, and create/identify a query language which meets these criteria. The conclusion of this SIG should yield a clear path to implementation of an architecture capable of supporting the wide range of user level data integration queries identified in the Architecture Workspace, and by this SIG.
The Grid concept
Numerous papers have defined the concept of “The Grid” (including some which I cite below) and I will not belabor them here, although they are definitely worth reading if you have not yet read them. However, one aspect of the Grid concept is critical to the question of query language, and is worth reiterating: virtualization.
“The real and specific problem that underlies the Grid concept is coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations. The sharing that we are concerned with is not primarily file exchange but rather direct access to computers, software, data, and other resources, as is required by a range of collaborative problem solving and resource-brokering strategies emerging in industry, science, and engineering. This sharing is, necessarily, highly controlled, with resource providers and consumers defining clearly and carefully just what is shared, who is allowed to share, and the conditions under which sharing occurs. A set of individuals and/or institutions defined by such sharing rules form what we call a virtual organization.” Foster, Anatomy of the Grid

The term virtual organization defines the concept of sharing resources (data and computation), and the grid architecture aims to realize this concept. In order to obtain this level of sharing, the grid architecture must enable a new level of interoperability. The Grid architecture is a layered architecture (much as is the Internet Protocol Stack), and achieves interoperability by building interoperable layers on top of on another. At its base the grid provides interoperable components for fabric and connectivity layers, which respectively define the way local resources are connected to the grid infrastructure and the communication and authentication protocols which connect them. Building on these lower levels are the resource, collective, and application layers which address the sharing and integration of resources and the building of applications in a grid environment. By adopting existing technologies, caBIG will effectively get the lower level communication interoperability “for free.” It is in the higher layers where we must be diligent to ensure we maintain interoperability such that cross cutting, data sharing, cancer applications can be written.
It is our charge as the Query Special Interest Group, to adopt a common query language, such that we can enable the interoperable query of both single and multiple, distributed, heterogeneous data resources. The language must be consistent with the other data access and integration operations present at the resource and collective layers (such as storage, update, and basic retrieval). Luckily, we are not the first to address this problem. The OGSA Data Access and Integration Services Working Group of the GGF, henceforth DAIS, is primarily focused on defining the requirements and specifications of maintaining interoperable data layers.
DAIS extends the virtualization concept and defines the term “data virtualization” to be: “An abstract view of some data, as defined by operations plus attributes (which define the data’s structure in terms of the abstraction) implemented by a data service.” OGSA Data Services
. In DAIS’s view, all data is exposed through a grid service with operations which define the allowable functions that can be performed on the data. In this way, data resources are exposed through data service interfaces through an implementation which brokers the interfaces’ requests to appropriate calls in the underlying data resource. The agreement on the syntax and semantics of these various data service interfaces is critical to the successful interoperation of data resources. DAIS defines three base interface types: Data Access, Data Factory, and Data Management which are expected to be extended to suit specific data types or uses. The Access interfaces are responsible for defining how to access and update to data. The Factory interfaces are responsible for creating and configuring derived data sources. The Management interfaces are responsible for configuring or managing various aspects of the virtualization.

Querying in the Grid
If we are to learn from the experience of the groups above we must define a consistent and well-defined set of interfaces that enumerate the allowable operations on the data types that are exposed. Within the scope of querying, we are primarily concerned with defining the Access interfaces for our data services. To enable access and integration of the spectrum of cancer related data envisioned to be present in caBIG, we must create interfaces which are expressive enough to “virtualize” access to each of these different data sources, but are also simple and consistent enough to be able be used for all of them collectively. One such example in DAIS is the XMLCollectionAccess
 which enables XPath-, XQuery-, and XUpdate-based access to an XML Collection data virtualization. This collection of operations creates a standards based virtualization of XML-related data (recall that as it is a virtualization, it may not actually be “XML” data in the data resource being exposed).
Given that the architecture workspace has agreed that all data in caBIG will be represented as XML-schema defined XML, this interface seems like a viable candidate for virtualizing data resources as XML. If we adopted these interfaces, our choice of query language would fall out as XQuery (as XPath itself is not sufficient to address the collective layer’s requirements). We are not, however, forced to adopt these interfaces just because we are using XML. It is our charge as a group to evaluate the various options, and select a language which is most appropriate for the queries we wish to enable. We are, however, bound to a choice of query language which will maintain this level of consistency of Access interfaces, toward the ultimate goal of interoperability.
Clients in the Grid

Thus far we have identified a large collection of very complex query use cases for caBIG. It is easy to look at this daunting list and immediately dismiss the ability of a single language to convey their meaning. In fact, we have yet to prove the viability of a language like XQuery to address these use cases. If we ultimately come to the conclusion that one of these languages is sufficient to expose to clients toward the goal of addressing these queries, then our job is not that difficult. However, we may come to the difficult conclusion that no language can succinctly express these queries. In this case, we are still charged with maintaining interoperability in the grid with respect to data access, but we may also be forced to introduce another layer in our grid stack. That is, we may need to provide a single uniform data access query language, but create an “application level” API that takes a more “client-friendly” query language, and transforms it into the lower level data access language. While this will simplify client usage and high-level application development, it will add the complexity of the mapping layer. This may ultimately be necessary, as we must concurrently satisfy client use cases and the interoperability of data access. It is critical that we not make integrity sacrifices at the data access layer to enable client features, as in a layered architecture, each layer builds on the lower levels. Without sound resource and collective layers, we will not be able to create correct and functional applications.
Further Reading
For more information on how virtualization enables interoperability in the grid, read: Ian Foster's paper on the "Physiology of the Grid"
. A high level description of data in the grid can be found in a recent Grid Watch article by Thomas Myer
. A visual tour of OGSA can be found in another IBM article
.
References:
� Ian Foster's paper on the "Anatomy of the Grid"

� HYPERLINK "http://www.globus.org/research/papers/anatomy.pdf" �http://www.globus.org/research/papers/anatomy.pdf�

� OGSA Data Services

� HYPERLINK "https://forge.gridforum.org/projects/dais-wg/document/OGSA_Data_Services/en/2" ��https://forge.gridforum.org/projects/dais-wg/document/OGSA_Data_Services/en/2�

� DAIS XML Realization Specification:

� HYPERLINK "https://forge.gridforum.org/projects/dais-wg/document/XML_Realisation/en/10" ��https://forge.gridforum.org/projects/dais-wg/document/XML_Realisation/en/10�

� Ian Foster's paper on the "Physiology of the Grid".

� HYPERLINK "http://www.globus.org/research/papers/physiology.pdf" �http://www.globus.org/research/papers/physiology.pdf�.

� Grid Watch, Thomas Myer, “GGF and Grid Data”

� HYPERLINK "http://www-106.ibm.com/developerworks/library/gr-watch3.html" ��http://www-106.ibm.com/developerworks/library/gr-watch3.html�

� Layers and components in OGSA

� HYPERLINK "http://www-106.ibm.com/developerworks/grid/library/gr-visual/" ��http://www-106.ibm.com/developerworks/grid/library/gr-visual/�

