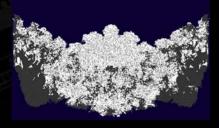
Commodity-based Scalable Visualization: Graphics Cluster Components

Randall Frank

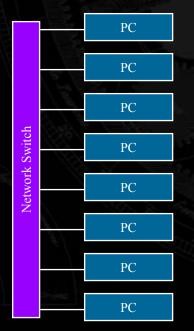
Lawrence Livermore National Laboratory

UCRL-VG-143528


Scalable Rendering Clusters

What makes a scalable rendering cluster unique?Generation of graphical primitives

- Graphics computation: primitive extraction/computation
- Multiple rendering engines
- Video displays
 - Routing of video tiles
 - Aggregation of multiple rendering engines
- Interactivity (not a render-farm!)
 - Real-time imagery
 - Interaction devices, human in the loop
- Unique I/O requirements
 - Access patterns/performance

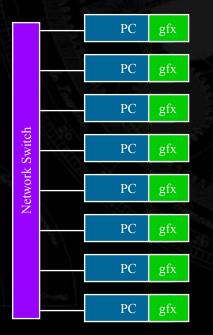


469M Triangle Isosurface

Graphics Cluster Anatomy: The Cluster

Start with a basic computational cluster

- COTS computational nodes
- High-speed interconnect
 - GigE, Myrinet, ServerNet II, Quadrics, InfiniBand...



SIGGRAPH 2001

Graphics Cluster Anatomy: Rendering

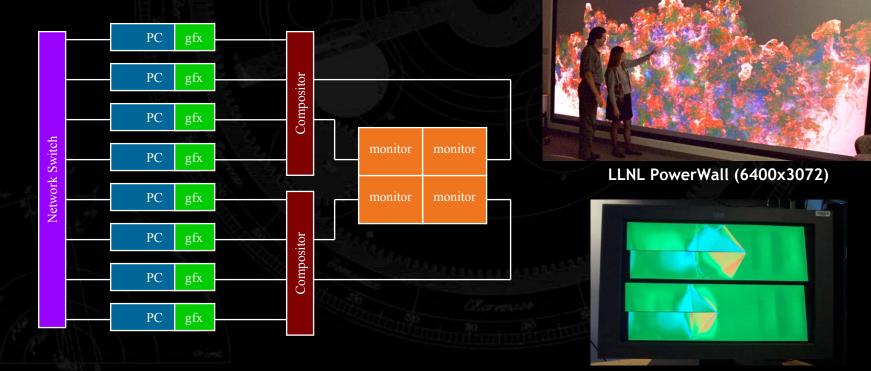
Add multiple rendering resources

- Software rendering (Mesa, custom, ...)
- Hardware rendering cards
 - nVidia, ATI, 3dfx, intense3d, ...

Graphics Cluster Anatomy: Displays

Attach one or more displays

- Direct display monitors
- Tiled displays (PowerWalls)


• Composite displays: M renderers, N displays

Graphics Cluster Anatomy: Displays

Advanced layouts

Combinations of tiling and compositing

IBM T220 "Bertha" (3840x2400) rjf, Page 6

PC Graphics Cards: What are they?

PCI and AGP commodity graphics cards

- Cluster-capable PC architectures
 - Intel CPUs + AGP + independent PCI 64/66 (e.g. i840 chipset)
- Common 3D Graphics APIs: OpenGL/DirectX

Why are we interested?

- Large numbers of cards low cost
- Games + fast PC hardware speed
- Graphics "innovation" leadership

Broad categories

- Consumer Games, Media playback
- Professional CAD, Media generation

PC Cards: Consumer

Consumer: nVidia, ATI, 3Dfx, Matrox

Pros

- High fill rates (600-2000Mpixels)
- Hardware T&L (8-25Mtris) in most recent versions
- Innovations: cube maps, texture combiners, vertex programs
- Cheap (<\$400), price sensitive/competitive market
- Cons
 - Driven by games
 - OpenGL can be a secondary consideration
 - Poor line drawing rates/quality
 - Windowing issues
 - Readback and buffer access issues
 - Difficult to achieve "ultimate" performance
 - Bit depth issues good enough quality
 - Screen and pipeline (e.g. Texture compression)

nVidia GeForce 2

PC Cards: Professional

Professional: HP, IBM, 3DLabs/Intense3D, nVidia?

Pros

- Full accelerated OpenGL 1.2: 3D texture support
- Finer attention to OpenGL detail
- Deeper intermediate computations
- Non-game features
 - Higher line drawing performance/quality
 - Larger memory
 - Concurrent multi-bit depth/screen support
 - Enhanced video output options (e.g. genlock)
- Cons
 - Lower fill rates (100-400Mpixels, application market bias)
 - Fewer "innovative" extensions: Cube mapping
 - (More) Expensive

PC Cards: What should you expect?

- Are they really Infinite Reality[™] pipes?
 - Basic rendering and raw speed: for most measures, yes
 - Image quality/integrity: no, improving
 - Flexible output options: no + DVI, improving, but no DG5-8s
 - System bandwidths: maybe
- Easily rival present desktop workstation graphics
 - Vendors are shipping them as options
- System stability issues (Read the game torture test reviews)
- High fill rates (Not high enough, thank the BSP tree)
- Future feature sets
 - Exceed the IR in many ways, can be raw and complex
 - Extensions: increase the difficulty in writing portable code

Graphics Cluster Anatomy: Issues

- System bus contention
 - Simultaneous graphics AGP bandwidth and interconnect PCI bandwidth
 - Careful selection of motherboards (e.g. i840)
- CPU options (number/speed)
 - System overhead (e.g. TCP/IP stacks)
- Core system interconnect
 - Bandwidth/latency
- Operating system selection
 Drivers/cluster management software

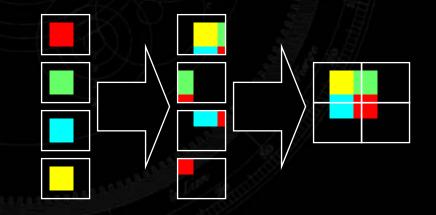
Aggregation: Tiling Vs Compositing

Goal: aggregate multiple rendering engines, combining their outputs on a single display to scale rendering "performance"

• 2D - "screen space"

- "Sort-first" rendering model
- Targets display scalability, higher frame rates

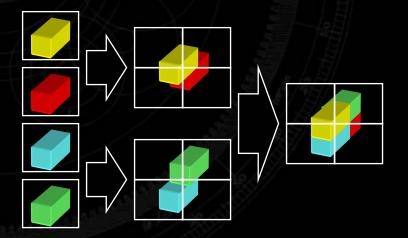
3D - "data space"


"Sort-last" rendering model

• Targets large data scalability, higher polygon counts

Aggregation: Tiling

Tiling (2D decomposition in screen space) Route portions of a final aggregate display to their final destination with no overlap

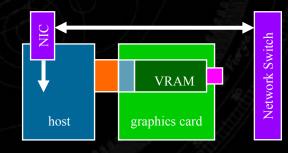

- Order independent
- Destination determines bandwidth
- Graphics primitives may be moved, replicated or sorted for load balancing
- RGB data

Aggregation:Compositing

Compositing (3D decomposition in data space) 3D blocks that are combined using classic graphics operators (e.g. Z-buffering, alpha blending, etc)

- Z, α , stencil enhanced pixels
- Fixed 3D data decompositions (data need not move)
- Bandwidth exceeds that of output display (3D vs 2D)
- Hierarchy trades bandwidth for latency
- Ordering may be critical

Implementing Aggregation


Composition datapaths are targets for specialized parallel and asynchronous interconnects

Basic operation

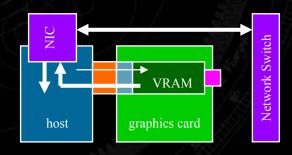
- Access the rendered imagery in digital form
- Route image fragments to composition mechanism
- Composite the fragments
- Display the results

Approaches

- Reuse the cluster interconnect
- Utilize digital video interface (DVI) output
- Use a dedicated interconnect

Reuse Core Cluster Interconnect

Compositing/tiling directly on the nodes


- Image or primitive exchange over the interconnect
- Readback of graphics card buffers (RGB, z, α , stencil)
- Flexible computation of aggregate imagery by host CPU

Current solutions

- Quadrics, Myrinet, ServerNet, GigE
- MPI, VIA, TCP/IP,GM

Issues

- Processor overhead (second CPU?)
- Available bandwidth and latency
- Framebuffer readback performance

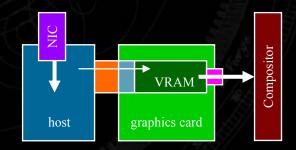
Myricom Myrinet 2000

Digital Video Interface Interconnect

Video based solutions

- Ideally suited to tiling, DVI inputs/outputs
- Asynchronous operation, Avoids readback

Examples


• Stanford: Lightning-2, U. Texas: MetaBuffer

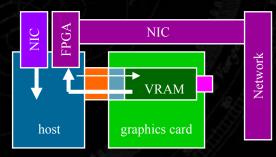
lssues

- Synchronization issues
 - Tagged imagery
 - Auxiliary signals
- DVI signal and pixel format limits
- Limited compositing functions/ordering options
- Scalability of mesh architectures

Lightning-2

Dedicated Compositing Interconnect

Secondary interconnect dedicated to compositing


- Need not be fully connected (data decomposition)
- Offload operation from host onto custom chips (FPGA)
- General pixel formats, programmable composition functions
- Interconnect switch for ordering

Examples

• Compaq: Sepia, IBM: SGE

Issues

- Framebuffer readback
- Additional host bus demand
- Bandwidth-pixel count/format

Sepia-2

Composition and Interconnects: Issues

- Multi-pass rendering algorithms
- Framebuffer readback
 - Performance and availability of graphics APIs
 - Limitations of DVI: distance, pixel formats, bandwidth
- Graphics card bit depth limitations (e.g. global Z)
- Latency and ultimate framerate issues
- Protocol/API inefficiencies
 - TCP/IP: High overhead, Jumbo frames (M-VIA over gigE?)
 - MPI: Design issues for streaming transport
- Flexible/scalable software interfaces
 - Data partitioning: The "zoom" problem
 - Anisotropic rendering environments