EKASFPEVIPMFSALSEGAT

QUERY

CONSENSUS_A
A.KE.Q23-CXC-CG
A.SE.SE6594
A.SE.SE7253
A. SE.SE7535
A.SE.SE8131
A.SE.SE8538
A.SE.SE8891
A.UG.U455

CONSENSUS_B B.AU.AF128998 B.-.NL43E9 B. AU. MBC18 B.AU.MBC200
B.AU.MBC925
B. AU.MBCC98
B.AU.MBCD36
B. CN RI42
B.CN.RL42
B.DE.DA
B.DE. HAN
B.ES. 89 SP 0
B.FR.HXB2
.GA.OYI
B. GB. CAM1
B.GB.MANC
B. JP. JH31
B. JP. JH31
B.NL. B LM49
B.US. 85 WCIPR54
B.US. 85 WC
B.US.AD8
B.US.AD8
B.US.BC
B.US.DH123
B.US.JRCSF
B.US.JRFL
B.US.MNCG
B.US.NC7
B.US.NY5CG
B.US.P896
B.US.RF
B.US.SF2
B.US.WC001
B.US.WEAU160
B.US.WR27
B.US.YU2

CONSENSUS_C
C.BR. 92 BR 025
C.BW. 96BW01B22
C.BW. 96BW0402
C.BW.96BW0502
C.BW.96BW1104

EKASFPEVIPMFSALSEGAT

C. BW. 96 BW 1210
C.BW. 96 BW15B03
C.BW. 96 BW1626
C. BW. 96 BW 17 A 09
C.ET.ETH2220
C.IN. 93 IN904
C.IN. 93IN905
C.IN. 93 IN999
C.IN. 94 IN11246
.IN. 95 IN21068
CONSENSUS_D
D.CD. 84 ZRO 85
D.CD.ELI
D.CD.NDK
D.CD. $\mathrm{Z2Z} 6$

CONSENSUS_F
.BR.BZ162
.CD.VI19

CONSENSUS F1 F1.BE.VI850 F1.BE.VI850 1.BR.93BR020.1 F1.FR.MP411

CONSENSUS_F2
F2.CM.MP255
2.CM.MP255

CONSENSUS_G
G.BE.DRCBL
G.BE.DRCBL
G.FI. HH8793
G.NG.92NG08

CONSENSUS_H
H. BE.VI991
H.BE.VI997
H.CF. 90 CF056

CONSENSUS_J
J.SE.SE9173
J.SE.SE 9280

CONSENSUS_K
K.BE.VI325
K.CD.EQTB11C
K.CM.MP 535
N.CM.YBF 30

CONSENSUS_O
.CM.ANT 70 C
. CM.MVP5180
CRF01-AE.CF.90CF40

CRF01-AE.TH. 93 TH 25 CRF01-AE.TH.CM240 CRF01-AE.TH.TH022 CRF01-AE.TH.TH047 CRFO2_AG.FR.DJ263 CRF02_AG.FR.DJ264 CRFO2_AG.NG.IBNG CRF03_AB.RU.KAL15 CRF04_cpx.CY.94CY0 CRF04_cpx.GR.97PVC CRF04_cpx.GR. 97 AC.ET.E3099
AC.IN. 21301
AC.RW.92RW00
AC.SE.SE9488
AC. ZM. ZAM174-2
AC. 2M. ZAM18
ACD AD. SE. SE 6954
AD.SE.SE694 ADHU NO NOGI ADU. CD. MAI Ad NG G3 AG.NG.G3 AGHU GA VI 35 AGJ. AU BFP90 AGJ.ML. 95ML8 AGU.CD.Z321 BF.BR.93BR029 DF. CD. VI961 J.CD.VI112

CONSENSUS_CPZ CPZ.CD.CPZANT CPZ.GA.CPZGAB CPZ.US.CPZUS

MFSALSEGATPQDLNTMLNT

QUERY

CONSENSUS_A
A. KE.Q23-CXC-CG
A.SE.SE6594
A.SE.SE7253
A.SE.SE7535
A.SE.SE8131
A.SE.SE8538
A.SE.SE8891
A.UG.U455

CONSENSUS_B B.AU.AF128998
B.-. NL43E9
B. AU. MBC18
B. AU.MBC200
B. AU.MBC925
B.AU.MBCC54
B.AU.MBCC98
B.AU.MBCD3
B.CN.RL42
B.DE.DAN
B.DE.HAN
B.ES. 89 SPO
B.ES. 89SP0
B.FR. HXB2
B.GA.OYI
B. GB. CAM1
B. GB. MANC
B.JP. JH31
B. NL. 3202 A 21
B.NL. 3202 A 1
B.TW.LM49
B.US. 85 WC
B.US.AD8
B.US.AD8
B.US.BC
B.US.JRCSF
B.US.JRFL
B.US.JRFL
B.US.NC7
B.US.NY5CG
B.US.P896
B.US.RF
B.US.SF2
B.US.WC001
B.US.WEAU160
B.US.WR27
B.US.YU2

CONSENSUS_C
C.BR.92BR025
C.BW.96BW01B22
C.BW.96BW0402
C.BW.96BW0502
C.BW.96BW1104

MFSALSEGATPQDLNTMLNT

C.BW.96BW1210	--T-
C.BW.96BW15B03	--T-
C.BW.96BW1626	T
C.BW.96BW17A09	T-
C.ET.ETH2220	T
C.IN.93IN904	-T
C.IN.93IN905	--T-
C.IN.93IN999	-T
C.IN. 94 IN11246	--T-----------------
C.IN.95IN21068	T-
CONSENSUS_D	
D.CD. 84 ZR 085	
D.CD.ELI	
D.CD.NDK	
D. CD. $22 \mathrm{z6}$	
D.UG.94UG1141	
CONSENSUS_F	
F.BR.BZ162	
F.CD.VI174	
F.RW.VI69	
CONSENSUS_F1	
F1.BE.VI850	T
F1.BR.93BR020.1	
F1.FI.FIN9363	
F1.FR.MP411	
CONSENSUS_F2	
F2.CM.MP255	
F2.CM.MP257	
CONSENSUS_G	x-
G.BE.DRCBL	T
G.FI.HH8793	
G.NG.92NG083	
G.SE.SE6165	-L----
CONSENSUS_H	A-
H.BE.VI991	-A----
H.BE.VI997	
H.CF.90CF056	--A----
CONSENSUS_J	
J.SE.SE9173	
J.SE.SE9280	
CONSENSUS_K	
K.BE.VI325	--AD
K.CD.EQTB11C	--------------------
K.CM.MP 535	--T
N.CM.YBF30	--M---------S-------
CONSENSUS_O	--M------??Y-I-----A
O.CM. ANT70C	--M------ISY-I-----A
O.CM.MVP5180	--M------V-Y-I-----A
CRF01-AE.CF.90CF40	-M---I
CRF01-AE.TH.93TH25	-M---I
CRF01-AE.TH.CM240	-M---I
CRF01-AE.TH.TH022	-M---I
CRF01-AE.TH.TH047	I

C. BW. 96BW1210
C.BW. 96BW15B03
C. BW. 96 BW 1626
C. BW. 96BW17A09
C.ET.ETH2220
C.IN. 93 IN905
C.IN. $931 N 999$
C.IN. 95 IN21068

ONSENSUS_D
D.CD.ELI
D.CD.NDK
D.UG.94UG114
F.BR.BZ162
.CD.VI174
F.RW.VI69

ONSENSUS_F F1. BE.VI850 1.BR.93BR020.1 F1.FR.MP411 CONSENSUS F2 2.CM.MP255 F2. CM. MP257

CONSENSUS_G G. BE.DRCBL G.FI.HH8793 G.SE.SE6165

CONSENSUS_H
H. BE.VI991
H.CF. 90 CF056

CONSENSUS_J
J.SE.SE9173

ENSUS
.CD.EQTB11C
K.CM.MP535
.CM.ANT70C
.CM.MVP5180
RFF01-AE.TH. 93 TH 25 CRF01-AE.TH.CM240 CRF01-AE.TH.TH04

CRF02_AG.FR.DJ263
CRFO2_AG.FR.DJ264
CRFO2_AG.NG.IBNG
CRF03_AB.RU.KAL15 CRF04_CPx.CY.94CYO CRF04_cpx.GR.97PVC CRF04_cpx.GR.97PVM
AC.ET.E3099G
AC.IN. 21301
AC.RW. 92 RW0 09
AC.SE.SE9488
AC. ZM. ZAM174-21
AC. ZM. ZAM184
AC. ZM. ZAM716-17
AD. SE SE 6954
AD.SE.SE6954
ADHU NO NOGII
ADU CD MAI
Ab NG G3
G.NG.G3
G.SE.SE7812

AGJ.AU. BFP90
AGJ.ML. 95ML8
AGU.CD. Z321 BF. BR 93 BRO 29 BF.BR. 93 BRO2
U. CD. VI112

CONSENSUS_CPZ
CPZ.CD.CPZANT
CPZ.CD.CPZAN CPZ.US.CPZUS

2
DEC 2000

Study Subject ID:00RCH71

Study Subject Clone:

Study Subject HLA:A1,A2,B57,B81,Cw7,Cw18
Sequence: Known reactive 20Mer0: EKASFPEVIPMFSALSEGAT p24(29-48)

Possible HLA

A1 $\mathrm{A} * 0101, \mathrm{~A} * 0102$

B57 Bw57,B*57,B*5701,B*5702,B*5703,B*5704
B81 B*8101
Cw7 Cw*0701,Cw*0702,Cw*0704,Cw*0706

Possible Epitopes based on anchor residues		
$(7-15)$	EVIPMFSAL	$\mathrm{A} * 0205$
$(8-15)$	VIPMFSAL	$\mathrm{A} * 0205$
$(7-15)$	EVIPMFSAL	$\mathrm{A} * 0214$
$(4-12)$	SFPEVIPMF	$\mathrm{Cw} * 0702$
$(7-15)$	EVIPMFSAL	$\mathrm{Cw}^{*} 0702$
$(5-12)$	FPEVIPMF	$\mathrm{Cw}^{*} 0702$
$(8-15)$	VIPMFSAL	$\mathrm{Cw}^{*} 0702$
$(3-12)$	ASFPEVIPMF	$\mathrm{Cw}^{*} 0702$
$(6-15)$	PEVIPMFSAL	$\mathrm{Cw} * 0702$

Anchor Residues Searched	
A1	XX[DE]XXXXX[Y]
A1	XX[DE]XXXX[Y]
A1	XX[DE]XXXXXX[Y]
A*0201	X[LM]XXXXXX[VL]
A*0201	X[LM] XXXXX [VL]
A*0201	X[LM]XXXXXXX[VL]
A*0202	X[L]XXXXXX[LV]
A*0202	X[L]XXXXX[LV]
A*0202	X[L]XXXXXXX[LV]
A*0204	X[L]XXXXXX[L]
A*0204	X[L]XXXXX[L]
A*0204	X[L]XXXXXXX[L]
A*0205	X[VLIMQ]XXXXXX[L]
A*0205	X[VLIMQ]XXXXX[L]
A*0205	X[VLIMQ]XXXXXXX[L]
A*0206	X[V]XXXXXX[V]
A*0206	X[V]XXXXX[V]

A*0206 X[V]XXXXXXX[V]
A*0207 X[L][D]XXXXX[L]
A*0207 X[L][D]XXXX[L]
A*0207 X[L][D]XXXXXX[L]
A*0214 X[VQL]XXXXXX[LV]
A*0214 X[VQL]XXXXX[LV]
A*0214 X[VQL]XXXXXXX[LV]
Cw*0702 XXXXXXXX[YFL]
Cw*0702 XXXXXXX[YFL]
Cw*0702 XXXXXXXXX[YFL]

Study Subject ID:00RCH71

Study Subject Clone:

Study Subject HLA:A1,A2,B57,B81,Cw7,Cw18
Sequence: Known reactive 20Mer1: MFSALSEGATPQDLNTMLNT p24(39-58)

Possible HLA

A1 $\mathrm{A} * 0101, \mathrm{~A} * 0102$

B57 Bw57,B*57,B*5701,B*5702,B*5703,B*5704
B81 B*8101
Cw7 $\mathrm{Cw}^{*} 0701, \mathrm{Cw} * 0702, \mathrm{Cw} * 0704, \mathrm{Cw}^{*} 0706$
Possible Epitopes based on anchor residues

$(10-17)$	PQDLNTML	$\mathrm{A} * 0205$
$(10-17)$	PQDLNTML	$\mathrm{A}^{*} 0214$
$(5-13)$	SEGATPQDL	$\mathrm{Cw}^{*} 0702$
$(9-17)$	TPQDLNTML	$\mathrm{Cw}^{*} 0702$
$(6-13)$	EGATPQDL	$\mathrm{Cw}^{*} 0702$
$(10-17)$	PQDLNTML	$\mathrm{Cw}^{*} 0702$
$(4-13)$	LSEGATPQDL	$\mathrm{Cw}^{*} 0702$
$(8-17)$	ATPQDLNTML	$\mathrm{Cw}^{*} 0702$

Anchor Residues Searched
A1 $\quad \mathrm{XX}[\mathrm{DE}] \mathrm{XXXXX}[\mathrm{Y}]$
A1 $\quad \mathrm{XX}[\mathrm{DE}] \mathrm{XXXX}[\mathrm{Y}]$
A1 XX[DE]XXXXXX[Y]
A*0201 X[LM]XXXXXX[VL]
A*0201 X[LM]XXXXX[VL]
A*0201 X[LM]XXXXXXX[VL]
A*0202 X[L]XXXXXX[LV]
A*0202 \quad X[L]XXXXX[LV]
A*0202 X[L]XXXXXXX[LV]
A*0204 X[L]XXXXXX[L]
A*0204 X[L]XXXXX[L]
A*0204 X[L]XXXXXXX[L]
A*0205 X[VLIMQ]XXXXXX[L]
A*0205 X[VLIMQ]XXXXX[L]
A*0205 X[VLIMQ]XXXXXXX[L]
A*0206 X[V]XXXXXX[V]
A*0206 X[V]XXXXX[V]
A*0206 X[V]XXXXXXX[V]

```
A*0207 X[L][D]XXXXX[L]
A*0207 X[L][D]XXXX[L]
A*0207 X[L][D]XXXXXX[L]
A*0214 X[VQL]XXXXXX[LV]
A*0214 X[VQL]XXXXX[LV]
A*0214 X[VQL]XXXXXXX[LV]
Cw*0702 XXXXXXXX[YFL]
Cw*0702 XXXXXXX[YFL]
Cw*0702 XXXXXXXXX[YFL]
```

This table lists epitopes that are experimentally observed to be presented by a HLA type carried by the patient, but the defned epitope has substitutions relative to the peptides from your reference strains and so might be missed by your reagents: in HXB2 for Gag, Pol; MN for Env; BRU for Nef, relative to most B clade Sequences in the database:

Protein	Epitope in Database	Epitope in Ref. strain	Epitope in Consensus B	HLA	Notes
p17(77-85)	SLFNTVATL	SLYNTVATL	SLYNTVATL	A*0201	
p24(15-23)	LSPRTLNAW	ISPRTLNAW	ISPRTLNAW	B57,B58	
p24(108-117)	TSTLQEQIGWF	TSTLQEQIGWM	TSTLQEQIGWM	B*57,B*5801	
p24(108-118)	TSTLQEQIGWF	TSTLQEQIGWM	TSTLQEQIGWM	B*5701	
RT(179-187)	VIYQYMMDL	VIYQYMDDL	VIYQYMDDL	A2	
RT(179-187)	VIYQYMMDL	VIYQYMDDL	VIYQYMDDL	A2, A*0202	
RT(308-317)	EILKEPVGHV	EILKEPVHGV	EILKEPVHGV	A*0201	
gp160(121-129)	KLTPLCVSL	KLTPLCVTL	KLTPLCVTL	A2	
gp160(192-200)	KLTSCNTSV	RLISCNTSV	RLISCNTSV	A2	
gp160(192-200)	TLTSCNTSV	RLLSCNTSV	RLISCNTSV	A2	
gp160(192-200)	TLTSCNTSV	RLISCNTSV	RLISCNTSV	A2.1	
gp160(311-320)	RGPGRAFVTI	IGPGRAFYTT	IGPGRAFYTT	A*0201	
gp160(311-320)	RGPGRAFVTI	IGPGRAFYTT	IGPGRAFYTT	A2	
gp160(311-320)	MGPKRAFYAT	IGPGRAFYTT	IGPGRAFYTT	A2	
gp160(369-375)	PEIVTHS	PEIVMHS	PEIVMHS	A2	
gp160(377-387)	NSGGEFFYSNS	NCGGEFFYCNT	NCGGEFFYCNT	A2	
gp160(700-708)	AVLSVVNRV	AVLSIVNRV	AVLSIVNRV	A2	
gp160(747-755)	RLVNGSLAL	RLVHGFLAI	RLVDGFLAL	A2	
gp160(770-778)	RLRDLLLIV	HHRDLLLIA	RLRDLLLIV	A*0201	
gp160(813-822)	SLLNATDIAV	SLLNATAIAV	SLLNATAIAV	A*0201	
gp160(813-822)	SLLNATDIAV	SLLNATAIAV	SLLNATAIAV	A2	
gp160(813-822)	SLLNATDIAV	SLLNATAIAV	SLLNATAIAV	A2.1	
gp160(814-822)	LLNATDIAV	LLNATAIAV	LLNATAIAV	A2	
Nef(136-145)	PLTFGWCFKL	PLTFGWCYKL	PLTFGWCFKL	A2	

Table 1: $\mathbf{p} 17$

HXB2 Location	Author Location	Sequence	Immunogen	Species(HLA)	References
p17(77-85)	Epitope SL9: CTL responses in three individuals with non-clade B infections were studied, 2 with subtype A infections, 1 with subtype C - their infections all originated in East Africa This epitope is most commonly SLYNTVATL in B subtype, and CTL from the C subtype infection did not recognize B clade gag or the 3Y form of the epitope, but do recognize the predominant A and C clade form, SLFNTVATL				

Table 2: p24

HXB2 Location	Author Location Sequence	Immunogen	Species(HLA)	References
p24(15-23)	- 11/16 heavily HIV exposed but persistently seronegative sex-workers in Nairobi had HIV-specifc CD8 gamma-IFN responses in the cervix - systemic CD8+ T cell responses tended to be to the same epitopes but at generally lower levels than cervical CD8+ T cell responses - Low risk individuals did not have such CD8+ cells - CD8+ epitopes T cell DTVLEDINL (3 individuals), SLYNVATL (4 individuals), LSPRTLNAW (3 individuals) and YPLTFGWCF (4 individuals) were most commonly recognized by the HIV-resistant women			
p24(108-117)	- Response to this epitope was found in 4 slow progressing HLA-B*57 individuals, in 2 it was dominant or very strong - For one donor (from Zimbabwe) this was defned as the optimal peptide - This epitope can be presented in the context of the closely related HLA molecules B*5801 and B*57			
p24(108-118)	p24(240-249 LAI) TSTLQEQIGWF - C. Brander notes this is a $\mathrm{B} * 5701$ epitope	HIV-1 infection	human(B*5701)	[Brander \& Goulder(2001)]

Table 3: RT

HXB2 Location	Author Location	Sequence	Immunogen	Species(HLA)	References
RT(179-187)	- A CTL response was found in exposed but uninfected prostitutes from Nairobi using previously-defned B clade epitopes that tended to be conserved in A and D clades - such cross-reactivity could protect against both A and D and confer protection in Nairobi where both subtypes are circulating - The A and D consensus sequences are both VIYQYMMDL				
RT(179-187)	- HIV-specifc CTL were found in exposed seronegative prostitutes from Nairobi - these CTL may confer protection - Seroprevalence in this cohort is $90-95 \%$ and their HIV-1 exposure is among the highest in the world - Most isolated HIV strains are clade A in Nairobi, although clades C and D are also found - B clade epitopes are often cross-reactive, however stronger responses are frequently observed using A or D clade versions of epitopes - This epitope is conserved among A, B and D clade viruses				
RT(308-317)	- Recognized by CTL from a long-term survivor, SPIETVPVKL was also recognized - Recognized by CTL from a progressor, EELRQHLLRW and TWETWWTEYW were also recognized				

Table 4: gp160

HXB2 Location	Author Location	Sequence	Immunogen	Species(HLA)	References
gp160(311-320)	- Individual was immunized with rec vaccinia gp160 SIMI and boosted with purifed recombinant gp160 SIMI - P18 MN and RF peptides were able to stimulate the HIV-specifc CTL that arose in response to the SIMI vaccination, thus the P18 MN peptide (IGPGRAFYTT) and the P18 RF peptide (KGPGRVIYAT) could cross-react - The P18 IIIB peptide does not cross-react (RGPGRAFVTI in the epitope region) - gp160 SIMI primed immune cells could generate a signi£cantly broader specifcity when stimulated with P18 MN or P18RF peptides, but not P18 IIIB				
gp160(369-375)	gp120(374-380 BRU) Defned through blocki	PEIVTHS g CTL activity, and	HIV-1 infection	human(A2)	[Dadaglio (1991)]
- Peptides recognized by class I restricted CTL can bind to class II					[Hickling (1990)]
gp160(700-708)	gp41(705-714) This epitope is process	AVLSVVNRV d by a TAP1/2 dep	HIV-1 infection	human(A2)	[Ferris (1999)]
gp160(747-755)	gp41(747-755) Studied in the context	RLVNGSLAL HLA-A2 peptide	HIV-1 infection	human(A2)	[Parker (1992)]
gp160(770-778)	- CTL responses in six patients to four Env epitopes were studied: D2: LLNATAIAV, 5.3: RLRDLLLIV, D1: KLTPLCVTL, and 4.3: QMHEDIISL - all have A2 anchor residues - The C terminal epitopes (D2 and 5.3) were highly variable and the variability was considered responsible for limited CTL response, while D1 and 4.3, N-terminal epitopes, were much more conserved and gave evidence of high levels of CTL response in vitro - Peptides 5.3 and D2 bound to HLA A*0201 with low af£nity and were variable, particularly D2;				
gp160(813-822)	gp41(814-823 LAI) Of two CTL clones, on Noted to be A*0201 in	SLLNATDIAV reacted only with Brander et al., 1999	MN rec gp160 with 814-823 and	$\begin{aligned} & \text { human }(\mathrm{A} * 0201) \\ & 23 \end{aligned}$	[Dupuis (1995)]

HXB2 Location	Author Location	Sequence	Immunogen	Species(HLA)

gp160(813-822)	- Ten HIV-1+ HLA A2 asymptomatic individuals were given two courses of HIV-1 MN rgp160 vaccine over a 2 year period - Two hundred and £fty three HIV-1 peptides of 9 or 10 aa possessing the HLA-A2.1 binding motif (Leu at position 2, Val at the C terminus) were identi£ed in gp160, of which 25 had a high or intermediate binding af£nity - Eleven peptides were studied that had high HLA-A2 binding affnity - a CTL response was detected to 9/11 peptides in at least 1 individual - CTL responses after reimmunization may include recall responses - only individuals with vaccine cross-reactive sequences prior to vaccination showed detectable CTL responses - CTL to overlapping peptides in this region gave a positive response in the greatest number of patients - ALTERNATIVE EPITOPES: LLNATDIAV and LLNATDIAVA - CTL were induced by vaccine in those that had the sequence SLLNATAIAVA in their own infection, but not in those with: NLLNTIAIAVA or NLFNTTAIAVA or SLLNATAITVA				
gp160(814-822)	gp41(815-823 LAI) - Of two CTL clones, on	LLNATDIAV reacted only with	MN rec gp160 with 814-823 and 8	$\begin{aligned} & \text { human(A2) } \\ & 23 \end{aligned}$	[Dupuis (1995)]

Table 5: Nef

HXB2 Location	Author Location	Sequence	Immunogen	Species(HLA)	References
Nef(136-145)	- Cross-clade CTL response was studied by determining the CTL activity in seven patients from Bangui, (6 A subtype, and 1 AG recombinant infections) and one A subtype infection from a person living in France originally from Togo, to different antigens expressed in vaccinia - Pol reactivity: $8 / 8$ had CTL to A subtype, and $7 / 8$ to B subtype, and HIV-2 Pol was not tested - Gag reactivity: 7/8 reacted with A or B subtype gag, $3 / 8$ with HIV-2 Gag - Nef reactivity: 7/8 reacted with A subtype, and 5/8 with B subtype, none with HIV-2 Nef - Env reactivity: $3 / 8$ reacted with A subtype, $1 / 8$ with B subtype, none with HIV-2 Env - Patient B18 had the greatest breadth and diversity of response, and recognized Gag SLYNTVATL and Nef PLTFGWCFKL				

Table 6: All De£ned Epitopes within the 20mer, regardless of HLA type

HXB2 Location	Author Location Sequence	Immunogen	Species(HLA)	References
p24(30-37)	p24(162-170 LAI) KAFSPEVI - C. Brander notes this is a $\mathrm{B} * 5703$ epitope	HIV-1 infection	human(${ }^{*} 5703$)	[Brander \& Goulder(2001)]
p24(30-37)	- Two strong clonal CTL responses were generated in donor 026-BMC (HLA A3/-, B42/B57, Cw7/17) against different optimal versions of this epitope, one 8 amino acids long, one 11 - Improved stabilization of the B57-peptide complex was demonstrated by the 11 mer which $£$ ts the B57 binding motif, relative to the 8 mer, which does not - B57 tolerates marked difference in optimal peptide length - and B57 is associated with non-progressive infection			
p24(30-40)	- Study examines the effect of highly active antiretroviral therapy (HAART) on HIV-1 plasma viral load, CTLp and CTLe frequencies in 8 infected children - CTLp (precursors) were measured by stimulating in culture and assaying using 51 Cr release, against vaccina expressed IIIB Env, Gag, Pol, Nef, and CTLe were measured by ELISPOT - CTL against B*57-KAFSPEVIPMF was a de novo response observed in one of the children when viral load increased as a result of stopping therapy - HIV-1 specifc CTL responses initially increased in children with complete viral suppression, but then decreased, suggesting viral replication is needed to maintain CTL responses			
p24(30-40)	- This peptide was recognized by CTL from £ve slow progressors - Peptide defned on the basis of B*5801 binding motif, yet not cross-restricted except at high concentrations - This epitope is highly conserved			
p24(30-40)	p24(162-172 LAI) KAFSPEVIPMF - C. Brander notes this is a $B * 5701$ epitope	HIV-1 infection	human(B*5701)	[Brander \& Goulder(2001)]
p24(30-40)	p24(162-172 LAI) KAFSPEVIPMF - C. Brander notes this is a $B * 5703$ epitope	HIV-1 infection	human($\mathrm{B}^{*} 5703$)	[Brander \& Goulder(2001)]

HXB2 Location	Author Location	Sequence	Immunogen	Species(HLA)	References
p24(35-43)	p24(167-175)	EVIPMFSAL	HIV-1 infection	human(A26)	[Betts (2000)]
	- Only $4 / 11$ HLA-A2+ HIV+ individuals had CTL that reacted to SLYNTVATL, calling into question whether it is immunodominant - Ninty $\mathfrak{£ v e}$ optimally defned peptides from this database were used to screen for gamma interferon responses to other epitopes - $1 / 11$ of the A2+ individuals that didn,,t respond to SLYNTVATL reacted with seven other epitopes including this epitope				
p24(36-43)	p24(168-175 LAI) VIPMFSAL - C. Brander notes this is a C*0102(Cw1) epitope		?	human($\mathrm{C} * 0102(\mathrm{Cw} 1)$)	[Brander \& Goulder(2001)]
p24(36-43)	p24(168-175 LAI)	VIPMFSAL		human($\left.\mathrm{Cw}^{*} 0102, \mathrm{Cw} 1\right)$	[Goulder (1997)]
p24(36-43)	p24(168-175)	VIPMFSAL	HIV-1 infection	human(Cw01,Cw02)	[Betts (2000)]
	- Only $4 / 11$ HLA-A2+ HIV+ individuals had CTL that reacted to SLYNTVATL, calling into question whether it is immunodominant - Ninty $£$ ve optimally de£ned peptides from this database were used to screen for gamma interferon responses to other epitopes - $1 / 11$ of the A2+ individuals that didn,,t respond to SLYNTVATL reacted with seven other epitopes including this epitope				

Table 7: All De£ned Epitopes within the 20mer, regardless of HLA type

HXB2 Location	Author Location Sequence	Immunogen	Species(HLA)	References
p24(30-37)	p24(162-170 LAI) KAFSPEVI - C. Brander notes this is a B*5703 epitope	HIV-1 infection	human($\mathrm{B}^{*} 5703$)	[Brander \& Goulder(2001)]
p24(30-37)	- Two strong clonal CTL responses were generated in donor 026-BMC (HLA A3/-, B42/B57, Cw7/17) against different optimal versions of this epitope, one 8 amino acids long, one 11 - Improved stabilization of the B57-peptide complex was demonstrated by the 11 mer which $£$ ts the B57 binding motif, relative to the 8 mer, which does not - B57 tolerates marked difference in optimal peptide length - and B57 is associated with non-progressive infection			
p24(30-40)	- Study examines the effect of highly active antiretroviral therapy (HAART) on HIV-1 plasma viral load, CTLp and CTLe frequencies in 8 infected children - CTLp (precursors) were measured by stimulating in culture and assaying using 51 Cr release, against vaccina expressed IIIB Env, Gag, Pol, Nef, and CTLe were measured by ELISPOT - CTL against $\mathrm{B}^{* 57-K A F S P E V I P M F ~ w a s ~ a ~ d e ~ n o v o ~ r e s p o n s e ~ o b s e r v e d ~ i n ~ o n e ~ o f ~ t h e ~ c h i l d r e n ~ w h e n ~ v i r a l ~ l o a d ~ i n c r e a s e d ~ a s ~ a ~ r e s u l t ~ o f ~}$ stopping therapy - HIV-1 specifc CTL responses initially increased in children with complete viral suppression, but then decreased, suggesting viral replication is needed to maintain CTL responses			
p24(30-40)	- This peptide was recognized by CTL from £ve slow progressors - Peptide defned on the basis of B*5801 binding motif, yet not cross-restricted except at high concentrations - This epitope is highly conserved			
p24(30-40)	p24(162-172 LAI) KAFSPEVIPMF - C. Brander notes this is a B*5701 epitope	HIV-1 infection	human(B*5701)	[Brander \& Goulder(2001)]
p24(30-40)	p24(162-172 LAI) KAFSPEVIPMF - C. Brander notes this is a $\mathrm{B} * 5703$ epitope	HIV-1 infection	human(B *5703)	[Brander \& Goulder(2001)]

HXB2 Location	Author Location	Sequence	Immunogen	Species(HLA)	References
p24(35-43)	p24(167-175)	EVIPMFSAL	HIV-1 infection	human(A26)	[Betts (2000)]
	- Only $4 / 11$ HLA-A2+ HIV+ individuals had CTL that reacted to SLYNTVATL, calling into question whether it is immunodominant - Ninty $\mathfrak{£ v e}$ optimally defned peptides from this database were used to screen for gamma interferon responses to other epitopes - $1 / 11$ of the A2+ individuals that didn,,t respond to SLYNTVATL reacted with seven other epitopes including this epitope				
p24(36-43)	p24(168-175 LAI) VIPMFSAL - C. Brander notes this is a C*0102(Cw1) epitope		?	human($\mathrm{C} * 0102(\mathrm{Cw} 1)$)	[Brander \& Goulder(2001)]
p24(36-43)	p24(168-175 LAI)	VIPMFSAL		human($\left.\mathrm{Cw}^{*} 0102, \mathrm{Cw} 1\right)$	[Goulder (1997)]
p24(36-43)	p24(168-175)	VIPMFSAL	HIV-1 infection	human(Cw01,Cw02)	[Betts (2000)]
	- Only $4 / 11$ HLA-A2+ HIV+ individuals had CTL that reacted to SLYNTVATL, calling into question whether it is immunodominant - Ninty $£$ ve optimally de£ned peptides from this database were used to screen for gamma interferon responses to other epitopes - $1 / 11$ of the A2+ individuals that didn,,t respond to SLYNTVATL reacted with seven other epitopes including this epitope				

p17 CTL Map

MGARASVLSGGELDRWEKIRLRPGGKKKYKLKHIVWASRELERFAVNPGL
1
10
20
40
50

p24 CTL Map

$\stackrel{21}{\text { DEC } 2000}$

p2p7p1p6 CTL Map

AEAMSQVTNSATIMMQRGNFRNQRKIVKCFNCGKEGHTARNCRAPRKKGC
start
p2 end ${ }^{<>}$p7 start

Protease CTL Map

RT CTL Map

Integrase CTL Map

Rev CTL Map

QILVESPTVLESGTKE
110

gp160 CTL Map

1
60
1
70
80
90
100

KGEIKNCSFNISTSIRGKVQKEYAFFYKLDIIPIDNDTTSYKLTSCNTSV
160170
180
190
200

ITQACPKVSFEP IP IHYCAPAGFAILKCNNKTFNGTGP'CTNVSTVQCTHG

1	1	1	1	1
210	220	230	240	250

NNTRKRIRIQRGPGRAFVTIGKIGNMRQAHCNISRAKWNNTLKQIASKLR 310

320
330
340

STEGSNNTEGSDTITLPCRIKQIINMWQKVGKAMYAPPISGQIRCSSNIT
$\begin{array}{ccccc}1 & 1 & 1 & 1 & 450\end{array}$

GLLLTRDGGNSNNESEIFRPGGGDMRDNWRSELYKYKVVKIEPLGVAPTK
460
470
480
490
500

A2
AKRRVVQREKRAVGIGALFLGFLGAAGSTMGAASMTLTVQARQLLSGIVQ $\begin{array}{cc}1 & 1 \\ 510 & 520\end{array}$

530
540
550
gp120 end <> gp41 start

Nef CTL Map

[Achour (1996)] A. Achour, F. Bex, P. Hermans, A. Burny, \& D. Zagury Induction of anti-gp160 cytotoxic T cells cross-reacting with various V3 loop P18 peptides in human immunodefciency virus type 1 envelope-immunized individuals. J Virol 70:6741-6750, 1996. (Medline: 96386561).
[Alexander-Miller (1996)] M. A. Alexander-Miller, K. C. Parker, T. Tsukui, C. D. Pendleton, J. E. Coligan, \& J. A. Berzofsky. Molecular analysis of presentation by HLA-A2.1 of a promiscuously binding V3 loop peptide from the HIV-1 Envelope protein to human cytotoxic T lymphocytes. Int Imтипоl 8:641-649, 1996. (Medline: 96324787).
[Betts (2000)] M. R. Betts, J. P. Casazza, B. A. Patterson, S. Waldrop, W. Trigona, T.-M. Fu, F. Kern, L. J. Picker, \& R. A. Koup. Putative immunodominant human imunodefciency virus-specifc CD8+ T cell responses cannot be predicted by major histocompatibility complex class I haplotype. J Virol 74:9144-9151, 2000. (Medline: 20438112).
[Brander (1996)] C. Brander, G. Corradin, T. Hasler, \& W. Pichler. Peptide immunization in humans: a combined CD8+/CD4+ T cell-targeted vaccine restimulates the memory CD4 T cell response but fails to induce cytotoxic T lymphocytes (CTL). Clin Exp Immunol 105:18-25, 1996. (Medline 96280772).
[Brander \& Goulder(2001)] C. Brander \& P. Goulder. The evolving feld of HIV CTL epitope mapping: New approaches to the identifcation of novel epitopes. HIV Molecular Immunology Database pages IV-1, 2001. Notes: This review article in the annual HIV Molecular Immunology Compendium presents the table of Optimal CTL Epitopes that has been curated by Brander and others for several years.
[Brander (1995)] C. Brander, W. J. Pichler, \& G. Corradin. Identifcation of HIV-protein derived CTL epitopes for their potential use as synthetic vaccine. Clin Exp Immunol 101:107-113, 1995. (Medline: 95347061)
[Dadaglio (1991)] G. Dadaglio, A. Leroux, P. Langlade-Demoyen, E. M Bahraoui, F. Traincard, R. Fisher, \& F. Plata. Epitope recognition of conserved HIV envelope sequences by human cytotoxic T lymphocytes. J Immunol 147:2302-2309, 1991. (Medline: 92013025) Notes: Using synthetic peptides, six conserved epitopes on gp120 Env were identifed, recognized by polyclonal human CTL in association with HLA-A2 class I. Conserved epitopes: RIQRGPGRAFVTIGK, IIIB; LWVTVYYGVPVWKEATTTLFCA; TTSYTLTSC NTSVITQACPK; SVEINCTRPNNNTRKSI; PEIVTHS; KNCGGEFFYCNS; LPCRIKQFINMWQEVGKAMY; VKIEPLGVAPTKAKRRVVQR. Control: gag, YKRWIILGLNKIVRMYSPT, HLA B27.
[Dorrell (1999)] L. Dorrell, T. Dong, G. S. Ogg, S. Lister, S. McAdam, T. Rostron, C. Conlon, A. J. McMichael, \& S. L. Rowland-Jones. Distinct recognition of non-clade B human immunodefciency virus type 1 epitopes by
cytotoxic T lymphocytes generated from donors infected in Africa. J Virol 73:1708-14, 1999. (Medline: 99099071).
[Dupuis (1995)] M. Dupuis, S. K. Kundu, \& T. C. Merigan. Characterization of HLA-A*0201-restricted cytotoxic T cell epitopes in conserved regions of the HIV type 1 gp160 protein. J Immunol 155:2232-2239, 1995. (Medline: 95363191) Notes: Five HLA-A2 HIV-1 seropositive HIV-1 MN rec gp160 vaccinees had their CTL activity assessed using peptides known to bind with high af£nity to HLA-A*0201. Four of the patients had speci£c CTL activity for a minimum of at least three epitopes, thus the response appears heterogeneous. One of the four peptides was confrmed to be HLA A2 restricted. Epitopes were highly conserved.
[Durali (1998)] D. Durali, J. Morvan, F. Letourneur, D. Schmitt, N. Guegan, M. Dalod, S. Saragosti, D. Sicard, J. P. Levy, \& E. Gomard. Cross-reactions between the cytotoxic T-lymphocyte responses of human immunodefciency virus-infected African and European patients. J Virol 72:3547-53, 1998. (Medline: 98216712).
[Ferris (1999)] R. L. Ferris, C. Hall, N. V. Sipsas, J. T. Safrit, A. Trocha, R. A. Koup, R. P. Johnson, \& R. F. Siliciano. Processing of HIV-1 envelope glycoprotein for class I-restricted recognition: dependence on TAP $1 / 2$ and mechanisms for cytosolic localization. J Immunol 162:1324-32, 1999. (Medline: 99138809).
[Garboczi (1992)] D. N. Garboczi, D. T. Hung, \& D. C. Wiley. HLA-A2peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc Natl Acad Sci USA 89:3429-3433, 1992. (Medline: 92228799).
[Goulder (1996a)] P. Goulder, C. Conlon, K. McIntyre, \& A. McMichael. Identifcation of a novel human leukogen antigen A26-restricted epitope in a conserved region of Gag. AIDS 10(12):1441-1443, 1996a. (Medline: 97057743) Notes: This paper is correspondence brieay describing the identifcation and characterization of an immuno-dominant A26-CTL epitope in an asymptomatic HIV+ individual.
[Goulder (2000a)] P. J. Goulder, C. Brander, K. Annamalai, N. Mngqundaniso, U. Govender, Y. Tang, S. He, K. E. Hartman, C. A. O'Callaghan, G. S. Ogg, M. A. Altfeld, E. S. Rosenberg, H. Cao, S. A. Kalams, M. Hammond, M. Bunce, S. I. Pelton, S. A. Burchett, K. McIntosh, H. M. Coovadia, \& B. D. Walker. Differential narrow focusing of immunodominant human immunodefciency virus gag-specifc cytotoxic T-lymphocyte responses in infected African and caucasoid adults and children. J Virol 74:5679-90, 2000a. (Medline: 20283828).
[Goulder (1997)] P. J. Goulder, M. Bunce, G. Luzzi, R. E. Phillips, \& A. J. McMichael. Potential underestimation of HLA-C-restricted cytotoxic T-lymphocyte responses. AIDS 11(15):1884-1886, 1997. (Medline: 98074190).
[Goulder (2000b)] P. J. Goulder, Y. Tang, S. I. Pelton, \& B. D. Walker. HLA-B57-Restricted cytotoxic T-lymphocyte activity in a single infected subject toward two optimal epitopes, one of which is entirely contained within the other. J Virol 74:5291-9, 2000b. (Medline: 20261752).
[Goulder (1996b)] P. J. R. Goulder, M. Bunce, P. Krausa, K. McIntyre, S. Crowley, B. Morgan, A. Edwards, P. Giangrande, R. E. Phillips, \& A. J. McMichael. Novel, cross-restricted, conserved and immunodominant cytotoxic T lymphocyte epitopes in slow HIV Type 1 infection. AIDS Res and Hum Retroviruses 12:1691-1698, 1996b. (Medline: 97118362) Notes: HLA-B*57 is over-represented in slow progressors. HLA $* 5801$ is a closely related molecule, and while the defned anchor residues of HLA*5801 can be used to predict epitopes in HIV-1 proteins, the CTL from HLA-B*57 positive individuals have limited cross-presentation capacity with HLA*5801 targets. In this paper £ve new HLA-B*57 epitopes were de£ned.
[Hickling (1990)] J. K. Hickling, C. M. Fenton, K. Howl and, S. G. Marsh, \& J. B. Rothbard. Peptides recognized by class I restricted T cells also bind to MHC class II molecules. International Immunology 2:435-441, 1990. (Medline: 91197875) Notes: Peptides shown to be presented in the context of MHC class I proteins by mouse or human CD8+ T lymphocytes could also bind to HLA-DR molecules on the surface of B lymphoblastoid cell lines (B-LCL). Four out of $£ v e$ class I-restricted T cell determinants bound, including the HIV-1 gp120 epitope.
[Kaul (2000)] R. Kaul, F. A. Plummer, J. Kimani, T. Dong, P. Kiama, T. Rostron, E. Njagi, K. S. MacDonald, J. J. Bwayo, A. J. McMichael, \& S. L. Rowland-Jones. HIV-1-specifc mucosal CD8+ lymphocyte responses in the cervix of HIV-1- resistant prostitutes in Nairobi. J Immunol 164:1602-11, 2000. (Medline: 20109119).
[Kmieciak (1998)] D. Kmieciak, I. Bednarek, M. Takiguchi, T. J. Wasik, J. Bratosiewicz, A. Wierzbicki, H. Teppler, J. Pientka, S. H. Hsu, Y. Kaneko, \& D. Kozbor. The effect of epitope variation on the pro£le of cytotoxic T lymphocyte responses to the HIV envelope glycoprotein. Int Immunol 10:1789-99, 1998. (Medline: 99100990).
[Kundu (1998a)] S. K. Kundu, M. Dupuis, A. Sette, E. Celis, F. Dorner, M. Eibl, \& T. C. Merigan. Role of preimmunization virus sequences in cellular immunity in HIV- infected patients during HIV type 1 MN recombinant gp160 immunization. AIDS Res Hum Retroviruses 14:1669-78, 1998a. (Medline: 99085868).
[Kundu (1998b)] S. K. Kundu, E. Engleman, C. Benike, M. H. Shapero, M. Dupuis, W. C. van Schooten, M. Eibl, \& T. C. Merigan. A pilot clinical trial of HIV antigen-pulsed allogeneic and autologous dendritic cell therapy in HIV-infected patients. AIDS Res Hum Retroviruses 14:551-60, 1998 b. (Medline: 98252383).
[Menendez-Arias (1998)] L. Menendez-Arias, A. Mas, \& E. Domingo. Cytotoxic T-lymphocyte responses to HIV-1 reverse transcriptase (review). Viral Imтипоl 11:167-81, 1998. (Medline: 99203068).
[Parker (1992)] K. C. Parker, M. A. Bednarek, L. K. Hull, U. Utz, B. C. H. J. Zweerink, W. E. Biddison, \& J. E. Coligan. Sequence motifs important for peptide binding to the human MHC class I molecule, HLA-A2. J Immunol 149, 1992. (Medline: 93056532).
[Rowland-Jones (1998a)] S. Rowland-Jones, T. Dong, P. Krausa, J. Sutton, H. Newell, K. Ariyoshi, F. Gotch, S. Sabally, T. Corrah, J. Kimani, K. MacDonald, F. Plummer, J. Ndinya-Achola, H. Whittle, \& A. McMichael. The role of cytotoxic T cells in HIV infection. Dev Biol Stand 92:209-14, 1998a. (Medline: 98214896) Notes: In this paper CTL response to previously de£ned conserved epitopes was found in exposed but uninfected prostitutes in Nairobi. Subtypes A and D are circulating in this regions, and the reactive epitopes tended to be conserved. Similarly previous studies in the Gambia showed that exposed but uninfected prostitutes tended to have B35 presented CTL epitopes conserved between HIV-1 and HIV-2. It was suggested that what was special about B35 is simply that it presents epitopes found both in HIV-1 and HIV-2.
[Rowland-Jones (1998b)] S. L. Rowland-Jones, T. Dong, K. R. Fowke, J. Kimani, P. Krausa, H. Newell, T. Blanchard, K. Ariyoshi, J. Oyugi, E. Ngugi, J. Bwayo, K. S. MacDonald, A. J. McMichael, \& F. A. Plummer. Cytotoxic T cell responses to multiple conserved HIV epitopes in HIV- resistant prostitutes in Nairobi [see comments]. J Clin Invest 102:1758-65, 1998b. (Medline: 99021675).
[Spiegel (1999)] H. M. Spiegel, E. DeFalcon, G. S. Ogg, M. Larsson, T. J. Beadle, P. Tao, A. J. McMichael, N. Bhardwaj, C. O'Callaghan, W. I. Cox, K. Krasinski, H. Pollack, W. Borkowsky, \& D. F. Nixon. Changes in frequency of HIV-1-specifc cytotoxic T cell precursors and circulating effectors after combination antiretroviral therapy in children. J Infect Dis 180:359-68, 1999. (Medline: 99326733).
[van der Burg (1997)] S. H. van der Burg, M. R. Klein, O. Pontesilli, A. M. Holwerda, J. Drijfhout, W. M. Kast, F. Miedema, \& C. J. M. Melief. HIV-1 reverse transcriptase-speci£c CTL against conserved epitopes do not protect against progression to AIDS. J Immunol 159:3648-3654, 1997. (Medline: 97461484).
[Zarling (1999)] A. L. Zarling, J. G. Johnson, R. W. Hoffman, \& D. R. Lee. Induction of primary human CD8+ T lymphocyte responses In vitro using dendritic cells. J Immunol 162:5197-204, 1999. (Medline: 99244883).

