
Blurring the Inputs:

A Natural Language Approach to Sensitivity Analysis

Bil Kleb,∗ Richard A. Thompson, and Christopher O. Johnston

To document model parameter uncertainties and to automate sensitivity analyses for nu-
merical simulation codes, a natural-language-based method to specify tolerances has been
developed. With this new method, uncertainties are expressed in a natural manner, i.e.,
as one would on an engineering drawing, namely, 5.25 +/- 0.01. This approach is robust
and readily adapted to various application domains because it does not rely on parsing
the particular structure of input file formats. Instead, tolerances of a standard format are
added to existing fields within an input file.

As a demonstration of the power of this simple, natural language approach, a Monte
Carlo sensitivity analysis is performed for three disparate simulation codes: fluid dynamics
(LAURA), radiation (HARA), and ablation (FIAT). Effort required to harness each code
for sensitivity analysis was recorded to demonstrate the generality and flexibility of this
new approach.

I. Introduction

The case studies in this paper use the Monte Carlo methoda to find the sensitivity of various numerical
simulation outputs with respect to model input parameters, but the key innovation is a very tiny Domain-
Specific Language (DSL)b to express uncertainties, herein called a tolerance DSL.

The goals of this work were to develop a method of specifying uncertainties that could be readily used
with a wide range of numerical simulation codes, and to create a persistent, in situ means to document
model parameter uncertainties.

The following sections map out the approach of both the tolerance DSL and the Monte Carlo sensitivity
analysis framework. These sections are followed by statistical convergence, correlations, and sensitivities for
three disparate simulation applications.

II. Approach

The basic premise is to craft a “tolerance” and “tagging” mini-language that offers a natural, unobtrusive
presentation and does not depend on parsing each type of input file format. Ruby, a dynamic programming
language well suited to crafting DSLs,c fuels this approach, along with the software techniques of templating
and regular expressions.d

To prepare for the Monte Carlo method, each input file is marked up with tolerances and associated tags
that serve to label the input parameters (the tags) and their uncertainties (tolerances of the form +/- 0.05).
Then, for each Monte Carlo point, these “fuzzy” files are sampled by replacing the marked-up parameters
with random samples from a specified distribution, e.g., Normal or Uniform. These samples are recorded for
subsequent data reduction, e.g. correlations between inputs and outputs.

The next subsection documents the design evolution of the tolerance mini-language, while the following
subsection describes the details of the Monte Carlos framework that uses this mini-language.

∗In the electronic version of this document, dark blue text indicates a hyperlink.
aFor a general discussion of the Monte Carlo method, see wikipedia.org/wiki/Monte Carlo method, last accessed May 20th,

2007.
bSee en.wikipedia.org/wiki/Domain-specific programming language, last accessed May 20th, 2007.
cRuby comes installed on most platforms. For the remainder, packages or source can be obtained from ruby-lang.org free of

charge.
dSee wikipedia.org/wiki/Template (software engineering) and wikipedia.org/wiki/Regular expression, last accessed May

21st, 2007.

1 of 12

American Institute of Aeronautics and Astronautics

mailto:Bil.Kleb@NASA.gov?subject=Tolerance%20AIAA%20Paper&cc=R.A.Thompson@NASA.gov,Christopher.O.Johnston@NASA.gov
mailto:R.A.Thompson@NASA.gov?subject=Tolerance%20AIAA%20Paper&cc=Bil.Kleb@NASA.gov,Christopher.O.Johnston@NASA.gov
mailto:Christopher.O.Johnston@NASA.gov?subject=Tolerance%20AIAA%20Paper&cc=Bil.Kleb@NASA.gov,R.A.Thompson@NASA.gov
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Domain-specific_programming_language
http://www.ruby-lang.org/
http://en.wikipedia.org/wiki/Template_%28software_engineering%29
http://en.wikipedia.org/wiki/Regular_expression

A. A Tolerance Domain Specific Language

This section follows the evolution of the tolerance DSL developed for sensitivity analysis, which ultimately
has the form 2.3 +/- 5% ’Name’.

The initial design used Ruby’s templating system, ERB,e where each input parameter of interest would
be replaced by a specially marked field. These would be replaced by randomly sampled values during the
Monte Carlos process.

For example, if an input file that had a line like,

parameter = 5.0

it would be templated like so,

parameter = <%= 5.0.pm 10, :percent %>

where the pm 10, :percent was to be read like a tolerance, i.e., “plus or minus 10 percent”. Behind the
scenes, .pm was a Ruby method call on the number (5.0) that took two arguments: a tolerance (10) and
the type of tolerance (:percent).

Upon using this for only a couple of hours, however, all the dots, colons, percents, equals signs, and angle
brackets were not only ugly but tedious to type. In addition, a tagging requirement appeared,f and adding
yet another parameter to the pm method was just too much—this design had run out of steam.

After reflection and another design session,g Ruby’s ERB templating system was abandoned in favor of
a dedicated, natural tolerance language like that used on an engineering drawing. At this point, the DSL
looked like,

1 +/- 0.5
5 +/- 10%
2 +/- 1o

where % signified percent and o signified order of magnitude. Tags necessary for tracking the input-
output correlations could be added by placing a quotation-mark-delimited tag after the tolerance, e.g.,
0.7 +/- 20% ’T_effective’.

True to the nature of software development, another requirement appeared late in the game: tolerances
might have different underlying distributions, e.g., Uniform or Normal. With the new design, which adhered
to the Open-Closed Principle,h this change was trivial to accommodate by optionally appending a token
that specifies the distribution type to use for the tolerance,i

0.7 +/- 0.2U
1.4 +/- 20%N

A default distribution can be specified, so U or N are only necessary for special cases.
Finally, when applying the approach to an older simulation code, yet another requirement was unearthed:

some number fields have to be in a specified format. Originally, reverse engineering the existing field was
attempted,j but edge casesk undermined the robustness of this approach.

Upon reflection and an impromptu brainstorming session,l extending the current grammar using C-style
format specifiers was chosen. The progression went as follows, where %4.1f is a C-style format specifier:

1.35 +/- 10U ’tag’ ’%4.1f’
1.35%4.1f +/- 10U ’tag’
%4.1f 1.35 +/- 10U ’tag’
1.35:%4.1f +/- 10U ’tag’
1.35::%4.1f +/- 10U ’tag’
1.35 +/- 10U:%4.1f ’tag’
1.35 +/- 10U 4.1f ’tag’
1.35 +/- 10U_4.1f ’tag’
1.35 +/- 10U_f4.1 ’tag’
1.35 +/- 10U_4.1f ’tag’

eERB stands for Embedded Ruby—see www.ruby-doc.org/stdlib/libdoc/erb/rdoc/ for documentation, last accessed May
20th, 2007.

fTagging is necessary for labeling input-output correlations.
gBill Wood, NASA, personal communication.
hSee Ref. 1 and wikipedia.org/wiki/Open/closed principle, last accessed May 20th, 2007.
iSee the Uncertainty Distributions section of the appendix on page 10 for a short discussion of choosing distributions.
jSee blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/249911, last accessed May 20th, 2007.
kSee wikipedia.org/wiki/Edge case, last accessed June 2nd, 2007.
lBill Wood, NASA, personal communication.

2 of 12

American Institute of Aeronautics and Astronautics

http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/
http://en.wikipedia.org/wiki/Open/closed_principle
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/249911
http://en.wikipedia.org/wiki/Edge_case

Note the absence of the % character in the last 4 of the series. While necessary to be a valid C-style format
specifier string, it is not necessary for the DSL—remember we get to make the rules in DSL-land. Also note
the wobble toward the end: 4.1f to f4.1 and back. This came from a discussion about the choice between
Fortran-style formats (f4.1) and C-style (4.1f) formats. Subtle, but the underlying Ruby code uses the
C-style format, so choosing the latter avoids an error-prone translator and yet another configuration option.m

This tolerance DSL was implemented test-first2 in 58 lines of Ruby via 165 lines of unit tests. The
underlying probability distributions library is 57 lines of code via 90 lines of unit tests. Extending the DSL
to accommodate format specifiers took 2 hours, a unit test, and 4 lines of code.

For example, consider figure 1, the markup of a portion of a chemical reaction input file per the parameter

markup

O2 + M <=> 2O + M
1.000e+22 -1.50 5.950e+04
teff1 = 2
exp1 = 0.7
t_eff_min = 1000.
t_eff_max = 50000.
O2 = 0.2
N2 = 0.2
NO = 0.2
N = 1.0
O = 1.0

kinetics_data
O2 + M <=> 2O + M
1.000e+22 -1.50 5.950e+04
teff1 = 2
exp1 = 0.7+/-0.25U 'Eta_O2'
t_eff_min = 1000.
t_eff_max = 50000.
O2 = 0.2+/-1o 'A_O2+O2'
N2 = 0.2+/-1o 'A_O2+N2'
NO = 0.2+/-1o 'A_O2+NO'
N = 1.0+/-1o 'A_O2+N'
O = 1.0+/-1o 'A_O2+O'

kinetics_data.fzy

Figure 1. Sample tolerance and tagging markup.

tolerances listed in table 1 on page 5. Not only does the DSL provide a natural method of specifying
tolerances, but it also servers as in situ documentation of model uncertainties.n Thanks to this tiny DSL,
input files (or even code) are now easily marked up with tagged tolerance fields in a natural, readable way.
And unlike prior art, a special parser for each input file is no longer required.

B. Monte Carlo Framework

The tolerance DSL provides the core mechanism to tag and specify parameter uncertainties and their dis-
tributions. The next step is to wrap these “fuzzy files” with a Monte Carlo process.

The basic steps of a Monte Carlo method are as follows:

1. Pick a simulation case to study (defines scope).

2. Assign uncertainties to model input parameters.

3. Randomly sample inputs, run, and repeat until the statistics have stabilized.

4. Compute input-output correlations, scatter plots, sensitivities, and other quantities of interest.

Each fuzzy file is randomly sampled to provide a given realization, the underlying code is run, and these
steps are repeated until statistical convergence of the outputs is reached. The overall work flow is depicted
in figure 2 on the following page.

This architecture was implemented with 120 lines of Ruby and configured with a small Yaml file.o An
example configuration file is shown in listing 1 on page 5 for the ablation application considered on page 9.

Apart from the configuration file, the user must provide a command that parses each output file specified
and returns name-value pairs on standard output. For an example of an output file parser, see listing 2 on
page 5.

mValue convention over configuration. For discussion of this tradeoff, see softwareengineering.vazexqi.com/files/pattern.html.
nThis tolerance DSL comes with a utility to strip the tolerances and tags, providing a path to the original input data file.
oIn this case, the underlying text-based database is Yaml, a very simple data serialization format—see yaml.org for more

information.

3 of 12

American Institute of Aeronautics and Astronautics

http://softwareengineering.vazexqi.com/files/pattern.html
http://www.yaml.org/

Sample and run
new case

Input files

.fzy input files

Add parameter
uncertainties & tags

Reduce data

Statistically
converged?

yes

noCollect output

Figure 2. Simulation architecture.

4 of 12

American Institute of Aeronautics and Astronautics

Listing 1: Sample Yaml configuration for the ablation application, page 9.

case_name : fiat_pica_1

max_samples : 5000

nominal_dir : Nominal

require :

 - FIAT-v2.2.1

 - main.inp

 - envir.inp

execute : FIAT-v2.2.1 >& stderr.out

outputs :

 - surf.out : parse_surf.rb

cluster_available : true

node_prefix : p1n

nodes : !ruby/range 1..20 # or [explicit array]

jobs_per_node : 4

Listing 2: Sample output parser for the radiation application, page 7.

contents = File.read('r1643.m') # load output file

variables = contents. # store variable

 scan(/^\s*(\w+)\(/).flatten # rootnames in array

node = 0 # inintialize node index

contents.split("\n").each do |line| # begin line loop

 values = line.split.map{ |e| e.to_f } # array of floats

 next unless values.size==variables.size # skip extraneous lines

 node += 1 # increment node index

 variables.each_with_index do |v,i| # begin variable loop

 name = "#{v}_#{node.to_s.rjust(3,'0')}" # add index to rootname

 puts "#{name} #{values[i]}" # emit name-value pair

 end # end variable loop

end # end line loop

III. Applications

Initially, this system of obtaining sensitivities through the Monte Carlo method was focused on a single
computational fluid dynamics code, but as the design evolved, the generality of this new approach was
recognized. To discover the extent of this flexibility, the following sections document the application of the
system to three disparate simulation codes spanning fluid dynamics, radiation, and ablation.

A. Computational Fluid Dynamics

Laura,p configured for the laminar Reynolds-Averaged Navier-Stokes equations with Park’s 5-species air
modelq was used to compute the stagnation point heating of a 3.5 m radius hemisphere flying at Mach 20.5
with a Reynolds number of 188,000.r Physical model parameters and estimated uncertainty ranges were
taken from Palmer7 and shown in table 1.

Table 1. Laura model parameter uncer-
tainties.

Reaction rates ±1 order

Vibration-dissociation 0.7± 0.25∗

Thermal-relaxation ±10%

Collision integrals ±30%

∗ With Uniform distribution to assure
samples fall in [0, 1].

After generating a nominal solution to use as a restart and spending 4 hours marking up the input files
for chemical kinetics, transport properties, and vibrational relaxation rates, 5,000 realizations were run over

pLaura stands for Langley Upwind Relaxation Algorithm and is described in Refs. 3 and 4.
qSee Ref. 5 plus updates from Ref. 6.
rThis case represents the peak heating point of a generic International Space Station ballistic return trajectory.

5 of 12

American Institute of Aeronautics and Astronautics

the course of four days on a 4-node cluster of dual-CPU computers.s

Figure 3 shows stagnation-point heating-rate statistics as a function of samples. For this case, the median

Figure 3. Stagnation point heating statistics as a function of samples.

stabilizes within the first 1,000 samples while the other moments are still gradually changing even at 5,000
samples. The output distribution not quite Normal as the Kurtosis is hovering above three and the skewness
is non-zero. This could be due in part to the Uniform distribution applied to the thermal relaxation exponent
to prevent samples from becoming non-physical.

The top 10 correlations between the stagnation point heating output and the model input parameters
are shown in table 2. For this case, the tags of the form Omega_ii_A:B were given to collision cross-section

Table 2. Top 10 correlations
for the Laura case.

Corr. Tag

0.52 Omega 11 N2:O

0.32 Omega 11 N2:N

0.03 Omega 22 N2:O

0.03 Omega 11 N:O

0.02 Omega 11 N2:N2

0.05 Omega 22 N2:N2

0.01 Omega 11 O2:O

0.01 Omega 11 N2:O2

coefficients. The collision cross section of nitrogen molecules with respect to atomic oxygen and nitrogen are
the largest, linear contributors to variations of stagnation point heating.t

Finally, the stagnation point heating sensitivities are shown as function of radial distance for the hemi-
sphere in figure 4 on the following page. Note: the “error bars” are not symmetric because the output
distribution is not Gaussian. The error bars are taken from the cumulative distribution 2.5 and 97.5 per-
centile points, giving the equivalent of a 2-sigma probability range, i.e., a 95% confidence interval.

sAutomated statistical convergence detection had not yet been implemented.
tAs Palmer argues for a similar case, these findings are expected because these collision cross sections control diffusion,

viscosity, and conduction—all of which are important for this dissociated flow where heating is driven by diffusion-rate-limited
recombination at the fully-catalytic wall. For more discussion, see Ref. 7.

6 of 12

American Institute of Aeronautics and Astronautics

Figure 4. Two-sigma surface heating sensitivities for hemisphere.

B. Radiation

The Hara codeu was used to compute the stagnation point radiative heat flux for the Fire II experiment at
1643 seconds.9

The input parameter uncertainties chosen for this demonstration were:

1. The atomic line oscillator strengths — uncertainties for each of these (over 300 considered) are published
by NISTv and range from 3 to 25%.

2. The atomic and molecular electron-impact excitation rates (over 1,000 considered) for the non-Boltzman
model were assigned order-of-magnitude uncertainties.

It took 8 hours to harness the Hara code, including marking up the input decks with uncertainties
and tags, adapting the original system for re-use, and creating a small preprocessor used to mark up large
matrices of input values with a single command.w 5,000 Hara samples took just under an hour to run on
20 dual-CPU cluster.

Figure 5 on the next page shows stagnation-point radiative heating-rate statistics as a function of samples.
With final Kurtosis of three and a skewness of zero, the output distribution is Normal. This distribution
was reached within 2,000 samples despite the large number of input variables sampled (1,500). This is due
to the nature of this simulation code where many of the input parameters are not in play for a particular
type of case.

The top 10 correlations for the Fire II 1643s case stagnation point radiative heating flux are shown in
table 3 on the following page. The N## and O## each correspond to an atomic line as defined by Wiese et
al.10 The variability in N46 is correlated with 18% of q_m’s variability, while N69 is responsible for 12%, with
other nitrogen lines contributing to a diminishingly smaller extent. Only the 3rd and 5th lines listed are
located in the vacuum ultraviolet (VUV), which indicates a relatively small sensitivity to the VUV atomic
lines.

The top 8 uncertainty contributors listed in table 3 are atomic-lines that Johnston had previously iden-
tified as the top contributors to the radiative flux for lunar-return shock layers.8 They all have uncertainties
of 10% (the strong lines that have only 3% uncertainties fall near the bottom of the list). Also, the non-
Boltzmann rates contribute very little to the uncertainty (and do not appear in table 3). This is expected

uHara stands for High-temperature Air Radiation and is described in Ref. 8.
vSee physics.nist.gov.
wThis preprocessor is shown in the Markup Helper section of the appendix, beginning on page 10.

7 of 12

American Institute of Aeronautics and Astronautics

http://physics.nist.gov/

Figure 5. Stagnation point radiative heating statistics as a function of samples.

Table 3. Top 10 correlations for the Hara case.

Corr. Tag

0.18 N46

0.12 N69

0.07 N15

0.07 N51

0.06 N29

0.03 N39

0.02 N52

0.02 N81

0.01 N12

0.01 O60

8 of 12

American Institute of Aeronautics and Astronautics

because the Fire II 1643s case is close to thermochemical equilibrium throughout most of the shock layer.
The non-Boltzmann rates should be more significant for the relatively nonequilibrium Fire II 1636s case.

C. Ablation

The Fiat code11 was used to compute the surface recession of a PICA tile subject to a 30-second arcjet
pulse (one of the sample cases bundled with the code).

It took about 4 hours to harness the Fiat code, including extending the DSL to handle fixed-formatted
fields and adding tolerances and tags to the input deck per table 4. Note: only materials involved with

Table 4. Fiat model parameter uncer-
tainties.

Resin volume fraction ±5%∗

Decomposition rate ±1 order

Virgin conductivities ±20%

Virgin emissivities ±0.05∗

Char conductivities ±100%

Char emissivities ±0.10∗

Pyrolysis enthalpies ±20%

∗ With Uniform distribution to as-
sure samples fall in [0, 1].

this case were marked up: PICA, RTV adhesive, and Al 2024. 5,000 Fiat cases required an hour and ten
minutes to run on a 20 dual-CPU cluster.

Figure 6 shows statistics of the surface recession as a function of samples. While the output distribution

Figure 6. Surface recession statistics as a function of samples.

is only slightly skewed, it is less peaked than a Normal distribution, having a platykurtic Kurtosis of just
under 2. This indicates that variability is characterized by frequent, modestly-sized deviations as opposed
to infrequent, extreme variations. These modestly-sized deviations may be the reason that the mean and
the median are still gradually rising even after 5,000 samples.

Table 5 on the next page shows the top 10 correlations for surface recession of the PICA sample. The
variability in PICA_(air)_EC13, the char emissivity at 6,000 R, correlates with 90% of the variability in
surface recession while everything else is largely uncorrelated. As shown in table 4, this quantity was was
assigned an uncertainty of ±0.10 with a Uniform distribution to prevent realizations outside the physically

9 of 12

American Institute of Aeronautics and Astronautics

Table 5. Top 10 correlations for
the Fiat case.

Corr. Tag

0.90 PICA (air) EC13

0.01 PICA (air) GAMA

0.01 PICA (air) EC12

0.01 PICA (air) KC12

0.004 PICA (air) KC11

0.002 PICA (air) KC13

0.002 PICA (air) KC09

0.002 RTV-560 KC08

0.001 RTV-560 KC22

0.001 PICA (air) BHp2 04

meaningful range of [0, 1]. This single, predominate correlation is plausible as the surface energy balance, i.e.
how much energy gets into the TPS versus how much is re-radiated, is directly proportional to the emissivity.

IV. Concluding Remarks

A lightweight, flexible sensitivity analysis capability has been demonstrated for three disparate simu-
lation codes. Reactions from customers so far are positive and include, “This is a great step—shows the
power of your DSL approach.” and “That was fast! Sounds like you’ve developed a great system. This is
very interesting and extremely useful.” As shown by the demonstration section, the small, simple idea to
standardize the format of the input parameter uncertainties as opposed to developing a new parser for each
type of input file, allowed sensitivity analysis of entirely new classes of simulation codes in under a day with
very few lines of code.

Contributing to the ability to rapidly adapt to new simulation codes was the extensive use of test-driven
design. This technique, where no production code is written without a failing, automated unit test indicating
production code needs to be written or changed, allowed confident, rapid evolution of the system design as
new requirements were discovered. The battery of unit tests also serves as executable documentation of the
system requirements, as opposed to code comments or static documentation that rapidly lose their efficacy
when a system is subject to change.

Some areas of future work are clear: more thorough documentation, user testing, and error checking as
well as a more formal system to facilitate tolerance markup, including a method to accommodate groups of
inputs associated with table lookups. For the latter, applying a single tolerance to whole columns worth of
inputs is one solution and could be accomplished by allowing duplicate tags.

Appendix

A. Uncertainty Distributions

What is meant by uncertainty, ? Typically this invokes thoughts of a normal distribution, . But

should it be interpreted as a large-number statistics interpretation, , or a small-number statistics inter-

pretation, ? If it is the later, then we need a new distribution function.

B. Markup Helper

To facilitate marking up tolerances for matrices of values used by the Hara code, the Ruby code shown
in listing 3 on the next page converts .mta files to .fzy files. A .mta file recognizes order of magnitude
tolerances of the form: [i,j]+/-2o ’tag_#{i},{#j}’ where #{i} and #{j} are filled in with the appropriate
indices for each value in the matrix of numbers.

10 of 12

American Institute of Aeronautics and Astronautics

Listing 3: Ruby code used to convert .mta to .fzy format.

Dir['*.mta'].each do |file|

 File.open(file.sub(/mta$/,'fzy'), 'w') do |f|

 matrix_tolerance = false

 tol_string = ''

 i = j = 0

 IO.foreach(file) do |line|

 match = line.match(/\[i,j\]\+\/-\d+o\s*(['"]).*\1/)

 if match then

 matrix_tolerance = true

 tol_string = match.to_s[5..-1]

 next

 end

 if matrix_tolerance then

 fields = line.split

 if fields.empty? then

 matrix_tolerance = false

 tol_string = ''

 i = j = 0

 f.puts line

 next

 else

 i += 1

 fields.each_with_index do |e,m|

 j = m+1

 e = e << eval("\"#{tol_string}\"")

 end

 f.puts fields.join(' ')

 end

 else

 f.puts line

 end

 end

 end

end

Acknowledgments

The authors would like to acknowledge: Grant Palmer of ELORET Corporation for samples of prior
art and the following fellow NASA employees: Eric Walker for discussions concerning distributions in the
absence of data, Michael Hemsch for remedial statistics lessons, Brian Hollis, Ron Merski, Mike Wright, the
Vision for Space Exploration for a challenging problem and the freedom to solve it, Clyde Gumbert and
James Moss for manuscript reviews, and Bill Wood for software design and implementation discussions.

About the Authors

Bil Kleb, a lifetime AIAA member, has worked in the area of computational aerothermodynamics
at NASA’s Langley Research Center for the past 17 years. During this time, he pioneered the first
full-vehicle reentry simulation of the Shuttle Orbiter and earned an MBA from The College of
William and Mary and a PhD of Aerospace Engineering from the University of Michigan.

Since 1999, Bil has been a part of the Agile software development community,x and for the past five
years, a steward of the FUN3D software development team.y

Email: Bil.Kleb@NASA.gov
Richard Thompson, is a senior AIAA member with a degree in Aerospace Engineering from
Virginia Tech. He has worked in NASA Langley Research Center’s Aerothermodynamics Branch
since 1983.
Email: R.A.Thompson@NASA.gov
Christopher Johnston, an AIAA member with a Ph.D. in Aerospace Engineering from Virginia
Tech, has been a member of NASA Langley Research Center’s Aerothermodynamics Branch since
2006.
Email: Christopher.O.Johnston@NASA.gov

xagilemanifesto.org, last accessed May 20th, 2007.
yfun3d.larc.nasa.gov, last accessed May 20th, 2007.

11 of 12

American Institute of Aeronautics and Astronautics

mailto:Bil.Kleb@NASA.gov?subject=Tolerance%20AIAA%20Paper&cc=R.A.Thompson@NASA.gov,Christopher.O.Johnston@NASA.gov
mailto:R.A.Thompson@NASA.gov?subject=Tolerance%20AIAA%20Paper&cc=Bil.Kleb@NASA.gov,Christopher.O.Johnston@NASA.gov
mailto:Christopher.O.Johnston@NASA.gov?subject=Tolerance%20AIAA%20Paper&cc=Bil.Kleb@NASA.gov,R.A.Thompson@NASA.gov
http://www.agilemanifesto.org
http://fun3d.larc.nasa.gov

Colophon

This document was typeset in Computer Modern font with the LATEX typesetting system using the
handout option of the AIAA package,z version 3.8. Also employed were the array, booktabs, color,
fancyvrb, hyperref, svninfo, threeparttable, varioref, and wrapfig packages.

References

1Robert C. Martin, Agile Software Development, Principles, Patterns, and Practices, Prentice Hall, 2002.
2Kent Beck, Test Driven Development: By Example, Addison-Wesley Professional, 2002.
3Peter A. Gnoffo, et al., Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical

Nonequilibrium, NASA TP 2867, 1989.
4Peter A. Gnoffo, An Upwind-Biased, Point-Implicit Relaxation Algorithm for Viscous, Compressible Perfect-Gas Flows,

NASA TP 2953, 1990.
5Chul Park, Nonequilibrium Hypersonic Aerothermodynamics, Wiley-Interscience, 1990.
6Chul Park, “Review of chemical-kinetic problems of future NASA missions. I—Earth entries”, AIAA Journal of Ther-

mophysics and Heat Transfer, 7(3), 1993, pp. 385–398.
7Grant Palmer, Uncertainty Analysis of CEV LEO and Lunar Return Entries, AIAA Paper 2007–4253, 2007.
8Christopher O. Johnston, Nonequilibrium Shock-Layer Radiative Heating for Earth and Titan Entry, Ph.D. thesis,

Virginia Polytechnic Institute and State University, 2006.
9Christopher O. Johnston, et al., Nonequilibrium Stagnation-Line Radiative Heating for Fire II, AIAA Paper 2007-3908,

2007.
10W. L. Wiese, et al., “Atomic Transition Probabilities of Carbon, Nitrogen, and Oxygen: A Critical Data Compilation”,

Journal of Physical Chemistry Reference Data, 1996.
11Y.-K. Chen and Frank S. Milos, “Ablation and Thermal Response Program for Spacecraft Heatshield Analysis”, Journal

of Spacecraft & Rockets, 36(3), 1999, pp. 475–483, also AIAA Paper 98–0273, Jan. 1998.
12Edward R. Tufte, The Visual Display of Quantitative Information, Graphics Press, 1983.
13Edward R. Tufte, Envisioning Information, Graphics Press, 1990.
14Edward R. Tufte, Visual Explanations: Images and Quantities, Evidence and Narrative, Graphics Press, 1997.
15Edward R. Tufte, Beautiful Evidence, Graphics Press, 2006.
16Richard Phillips Fyenman, Lectures in Physics, Addison Wesley Longman, 1970.

zwww.ctan.org, last accessed May 20th, 2007.

12 of 12

American Institute of Aeronautics and Astronautics

http://www.ctan.org/

	Introduction
	Approach
	A Tolerance Domain Specific Language
	Monte Carlo Framework

	Applications
	Computational Fluid Dynamics
	Radiation
	Ablation

	Concluding Remarks
	Uncertainty Distributions
	Markup Helper

