DPE $H \rightarrow b\bar{b}$ feasibility studies at Atlas

Vojtěch Juránek

Institute of Physics, Prague

12. 7. 2007, Summer School, Copanello

Vojtěch Juránek (FZU Prague)

DPE $H \rightarrow b\bar{b}$ feasibility studies at Atlas

12. 7. 2007, Summer School, Copanello 1/2

Exclusive DPE Higgs boson production

Double pomeron exchange

- pp→p+gap+X+gap+p (at higher luminosities there will be no rapidity gaps because of pile-up)
- Both protons remain intact
- If both protons are detected in RP, proton energy lost can be measured: $\xi = 1 \frac{p'_z}{p_z}$
- Constraint on central object mass and rapidity
- $M_X \simeq \sqrt{\xi_1 \xi_2 s}$
- $y_X \simeq \frac{1}{2} \ln \frac{\xi_1}{\xi_2}$

$H ightarrow bar{b}$

- For Higgs mass around 120GeV is very interesting $H \rightarrow b\bar{b}$ channel
- H decay mostly (68%) into $b\bar{b}$ for $M_H = 120 GeV$
- "Standard" $H \rightarrow b\bar{b}$ is not possible to detect due to very huge $b\bar{b}$ background
- For *M_H* = 120*GeV* the possible channels like are τ⁺τ⁻ or γγ are the difficult ones others channels (like this diffractive one) are welcomed

Exclusive DPE Higgs boson production

Advantages:

- Precise measurement of Higgs mass
- Good signal background ratio (^{H→bb/bb}/_{bb} better in diffractive processes than in non-diffractive, in pomeron structure functions are mostly gluons)

Disadvantages:

- Small cross section (2.3fb)
- Sensitive on pile-up (more hits in RP) from other soft diffractive events

Roman pots at 220 and 420

- Roman pots detect intact protons scattered at small angles
- There are two project RP220 and FP420
- RP220 and FP420 are complementary
- Acceptance of RP220 is 0.01-0.15 in ξ ($\xi = 1 \frac{p'_2}{p_2}$)
- Acceptance of FP420 is 0.002-0.02 in ξ

- Exclusive diffractive Higgs production at Atlas, $H \rightarrow b\bar{b}$ channel
- Feasibility study of measurements in this channel
- Fast detector simulation (Atlfast)
- Higgs mass = 120GeV
- In first approximation RP220 and FP420 considered as one system
- Considered acceptance in ξ : $\xi \in < 0.002, 0.1 > (RP220 + FP420)$
- Mass resolution of this system 1.5% (the best case)

Cross sections

- Two MC generators were used: Dpemc and Exhume
- In Dpemc Bialas-Landshoff model was used
- In Exhume is implemented KMR model

$$H
ightarrow bar{b}$$

- There are uncertainties in this cross section 1-10fb
- Bialas-Landshoff σ = 2.27 fb
- KMR σ = 1.9 fb

Exclusive DPE
$$b\bar{b}$$
, $p_T^{min} = 30 GeV$

- Bialas-Landshoff σ = 520 *fb*
- KMR σ = 269 fb
- Inclusive DPE $q\bar{q}$, Dpemc $\sigma = 5.5E+04pb$ (almost completely suppressed by cuts on exclusivity, but insufficient statistics and old PDF).

Vojtěch Juránek (FZU Prague)

- More interaction in bunch crossing
- Hard event $b\bar{b}$ production, two single diffraction event detected by RP =; same signal as $H \rightarrow b\bar{b}$
- For pile-up considered σ as cross section of hard event ($b\bar{b}$ production), in Pythia σ = 7.2E+05pb
- N is number of interaction in bunch crossing
- M is number generated according to Poisson distribution with mean value N
- To each hard event generated M-1 soft events in Pythia

Jet cuts

- Detector acceptance cuts
 - Two jets, $p_T^{bjet1} > 45 GeV$, $p_T^{bjet2} > 30 GeV$
 - Jets must be central ($|\eta|$ < 2.5)
- Both jets are b-jets (effectively of b-tagging is \sim 60% => two b-jets \sim 36%)
- Jets are back-to-back (170 $< \phi_{bjet1,bjet2} <$ 180)

- $M_X \simeq \sqrt{\xi_1 \xi_2 s}$ mass of central object
- $R_{jj} = \frac{M_{dijet}}{M_X}$
- $R_j = \frac{2E_j^{P_1}}{M_X} cosh(\eta^{jet1} y_X), y_X \simeq \frac{1}{2} \ln \frac{\xi_1}{\xi_2}$
- $0.8 < R_{jj} < 1.2$
- $0.8 < R_j < 1.1$
- For cuts I'm using R_j has almost the same rejection factor as R_{jj}

Exclusivity cuts: $\Delta \eta$ cut

- Cut on $\Delta\eta = (\eta_{bjet1} + \eta_{bjet2})/2 y_X pprox 0$
- y_X is rapidity of central object, $y_X \simeq \frac{1}{2} \ln \frac{\xi_1}{\xi_2}$

Cut |Δη| < 0.1

 Other 2 exclusivity cuts (on p_x and p_y) weren't used because of background has very similar distributions of this quantities

Vojtěch Juránek (FZU Prague)

- Cut on number of charged particles (tracks) coming from primary vertex, suggested by Andrew Pilkington
- N_C is number or charged particles outside dijet (outside cone with some radius around dijet axis)
- N[⊥]_C is number of charged particles outside of dijet but transverse to the leading jet
- By transverse is meant that $\frac{\pi}{3} < |\phi_{track} \phi_{jet1}| < \frac{2\pi}{3}$ or $\frac{4\pi}{3} < |\phi_{track} - \phi_{jet1}| < \frac{5\pi}{3}$
- Full simulation is needed

N_C and N_C^{\perp} , no pile-up

Number of events outside dijet for various R (dijet generated by Herwig)

I've chosen following cuts:

- Cone radius R = 0.7
- $N_C < 4 \wedge N_{C\perp} < 3$

As cut on p_T taken Atlfast default:

• $p_T^{Track} > 0.5 \text{GeV}$

Generator comparison

Total multiplicity of tracks ($p_T^{track} > 0.2 \text{GeV}$)

Multiplicity of tracks ($p_T^{track} > 0.5 \text{GeV}$)

Generator comparison

- Mean value of tracks multiplicity as function of track p_T (only cut on jet p_T was applied)
- Big differences between generators tuning according to the first data is needed

Pile-up+bb background (3.5 int. in bunch crossing)

0.36

0.97

0.97

 $N_{\rm C} \wedge N_{\rm C}^{\perp}$

0.38

 η 0.94

0.94

DPE $H \rightarrow b\bar{b}$	Kin.	B-jets	RP accept	back to back	Γ
Dpemc	0.42	0.35	0.68	0.88	Г

0.76

0.68

0.68

0.87

mass window

Acceptance factors for cut flow

DPE bb	Kin.	B-jets	RP a	accept	back to	back	Rj
Dpemc	0.09	0.36	0.76		0.86		0.79
Exhume	0.04	0.4	0.71		0.9		0.67
	η	N _C	$\wedge N_{C}^{\perp}$	mass	window		
	0.9	0.95	5	0.05			
	0.9	0.96	6	0.04			

Pile-up	Kin.	B-jets	RP accept	back to back	Rj
Herwig	0.17	0.075	0.005	0.37	0.114
Pythia	0.21	0.32	0.005	0.53	0.11
Jimmy	0.21	0.074	0.005	0.37	0.12

η	$N_C \wedge N_C^{\perp}$	mass window
0.054	0.117	0
0.054	0.07	0.021
0.056	0.026	0

Vojtěch Juránek (FZU Prague)

Exhume

12. 7. 2007, Summer School, Copanello

Ri

0.87

0.88

- Integrated luminosity $30 f b^{-1} \sim 1.5$ year of running at $2 * 10^{33} cm^{-2} s^{-1}$
- $1 * 10^{33} cm^{-2} s^{-1} \sim 3.5$ interactions in bunch crossing
- $2 * 10^{33} cm^{-2} s^{-1} \sim 7$ interactions in bunch crossing
- $5 * 10^{33} cm^{-2} s^{-1} \sim 17.5$ interactions in bunch crossing

Pile-up and $b\bar{b}$ background (Pythia DWT)

Pile-up and $b\bar{b}$ background (Pythia DWT)

- Exclusive Higgs boson production
- Exclusive bb production
- Pile-up+dijet (2 b-jets from non-difractive event (Pythia) + hits in RP from pile-up, 3.5 interactions in bunch crossing)

20/21

- Physical cuts (exclusivity, N_C) kill only small amount of signal
- Signal is mostly killed due to detector acceptance and b-tagging
- All cuts have similar rejection factor except $N_C \wedge N_C^{\perp}$ cut
- The range of rejection factor for $N_C \wedge N_C^{\perp}$ cut is from 8.5 for Herwig, 14.7 for Pythia to 38.5 Jimmy (resp. 46 at higher luminosities where was bigger statistics)
- The generators must be tuned first data from LHC are needed
- To improve cuts full simulation is needed in progress
- MSSM Higgs even much more promissing (10 times bigger cross section)