#### Elastic Form Factors of the Nucleon: Experimental Results

Mark Jones

Jefferson Lab

The Third International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region

Gran Sasso Laboratory, March 2004

**Electron-Nucleon Elastic Scattering** 



| Nucleon vertex: $\Gamma_{\mu}(p',p)$ | $= F_1(Q^2) \gamma_{\mu} +$ | $\frac{i\kappa_p}{2M_p} F_2(Q^2) \sigma_{\mu\nu} q^{\nu}$ |
|--------------------------------------|-----------------------------|-----------------------------------------------------------|
|                                      |                             |                                                           |
|                                      | Dirac                       | Pauli                                                     |

 $F_1$  is the helicity conserving and  $F_2$  is helicity non-conserving.

$$G_E(Q^2) = F_1(Q^2) - \kappa_N \tau F_2(Q^2) \qquad \tau = \frac{Q^2}{4M_N}$$
$$G_M(Q^2) = F_1(Q^2) + \kappa_N F_2(Q^2)$$

 ${\rm At}\,Q^2=0$ 

 $G_{Mp} = 2.79, G_{Mn} = -1.91$  and  $G_{Ep} = 1, G_{En} = 0$ Extract  $G_E$  and  $G_M$  from:

- N(e, e') Cross-section measurements
- $\vec{N}(\vec{e},e')N$  Beam-target Asymmetries
- $N(\vec{e},e')\vec{N}$  Recoil polarization

### Proton $G_E$ and $G_M$ (before ~1990)



• *ep* elastic cross section

$$\frac{\sigma_r}{\mu^2 G_D^2} = \frac{d\sigma}{d\Omega} \frac{(1+\tau)\epsilon}{\tau \sigma_{Mott}} = \frac{\epsilon}{\tau} \left(\frac{G_E}{\mu G_D}\right)^2 + \left(\frac{G_M}{\mu G_D}\right)^2$$
$$G_D = (1+Q^2/.71)^{-2}$$

•  $Q^2 > 1 \text{ GeV}^2$  error on  $\mathsf{G}^p_E$  grows.

–  $\mathbf{G}_E^p$  becomes a smaller fraction of  $\sigma$ 

- At  $Q^2$  = 5,  $G_E^p$  maximum 8% contribution to  $\sigma$  (assuming  $\mu G_E^p/G_M^p$  = 1)

#### Neutron $G_M$ (before $\sim$ 1990)



Define a reduced cross-section:

 $\sigma_R = \epsilon (1+\tau) \frac{\sigma(E, E', \theta)}{\sigma_{Mott}} = R_T + \epsilon R_L$ 

- In PWIA :  $R_T \propto (G_M^n)^2 + (G_M^p)^2$  and  $R_L \propto (G_E^n)^2 + (G_E^p)^2$
- **Difficulties:** 
  - Subtraction of large proton contribution
  - Sensitive to deuteron model. In particular :
    - \* Final-State Interactions
    - \* Meson Exchange Currents
    - \* Relativistic corrections.

#### Neutron $G_E$ (before ~1990)



- Elastic  $ed: \sigma = \sigma_{Mott}[A(Q^2) + B(Q^2)\tan^2(\frac{\theta}{2})]$  with:
  - $-A(Q^2) = F_C^2(Q^2) + \frac{8}{9}\tau^2 F_Q^2(Q^2) + \frac{2}{3}\tau F_M^2(Q^2)$
  - $B(Q^2) = \frac{4}{3}\tau(1+\tau)F_M^2(Q^2)$
  - Extract  $G_E^n$  using deuteron model but very sensitive to NN potential.
- Elastic  $d(e, e')\vec{d}$  reaction to measure  $t_{20}$ , the tensor polarization.
  - $t_{20} \propto F_C$ ,  $F_M$ , and  $F_Q$ .  $\Longrightarrow$  Extract all 3 form factors.
  - $F_Q$  is insensitive to the deuteron model  $\rightarrow$   $G_E^n$

## Developments

- Need make coincidence measurements
  - → continuous beam accelerators like JLab and MAMI
- Need to measure spin observables
  - $\rightarrow$  High beam polarization (70-80%) at high currents (80  $\mu$ A)
    - → Recoil polarization measurements possible
  - $\rightarrow$  Development of polarized <sup>3</sup>He, <sup>2</sup>H and <sup>1</sup>H targets
    - → Beam-Target asymmetry measurement possible
- Need to improve theory of  ${}^{3}{\rm He}(e,e')$  ,  ${}^{3}{\rm He}(e,e')n$  ,  ${}^{2}{\rm H}(e,e'n)$  and  ${}^{2}{\rm H}(e,e'p)$

Determine kinematics which reduce sensitivity to nuclear effects

- → Determine which observables are sensitive to form factors
- → Use model to extract form factors

# ${\sf G}_M^n$ from Quasi-free d(e,e'np)



- Measure ratio  $R_{meas} = \frac{\sigma(e,e'n)}{\sigma(e,e'p)}$ 
  - Proton and neutron detected in same detector simultaneously.
  - Need to know absolute neutron detection efficiency.
    - \* Bonn used  $p(\gamma, \pi^+)n \ in situ$
    - \* NIKHEF and Mainz used p(n,p)n with tagged neutron beam at PSI.
- Use model to determine  $\delta R \rightarrow$  the deviation from  $R_{PWIA}$  .
  - Sensitivity to deuteron model cancels in ratio.  $\delta R \approx$  10%.

- 
$$R_{PWIA} = R_{meas} - \delta R$$

–  $\mathbf{G}_{M}^{n}$  is extracted knowing  $\mathbf{G}_{E}^{n}$ ,  $\mathbf{G}_{M}^{p}$  and ,  $\mathbf{G}_{E}^{p}$ 

# $\mathsf{G}_M^n$ from Quasi-free ${}^3ec{He}(ec{e},e')$

- 10 $\mu$ A polarized electron beam with  $P_B$  = 75% and spin flipped at 30 hZ.
- Target polarization,  $P_T$  = 30% . Simultaneously measure elastic  ${}^3\vec{He}(\vec{e},e')$  to monitor  $P_T\cdot P_B$
- Align the target spin along the q vector and measure  $A_T = \frac{\sigma^+ \sigma^+}{\sigma^+ + \sigma^+}$
- A<sub>T</sub> sensitive to G<sup>n</sup><sub>M</sub>. Use full three-body non-relativistic Fadeev calculation of A<sub>T</sub> and G<sup>n</sup><sub>M</sub> modified within the model until agreement with data.



### Neutron Magnetic Form Factor



- Agreement between JLab  ${}^{3}ec{Heta}e(ec{e},e')$  and Mainz results
- Data has been taken in Hall B at JLab with CLAS, a large acceptance detector.
  - Deuteron and Proton target simultaneously
  - Continuous  $Q^2$  coverage from 0.3 to 5 GeV<sup>2</sup>.
  - Error bars 3-10%
  - $p(e, e'n)\pi^+$  to determined neutron efficiency

 $G_E^n$  from  ${}^3\vec{\mathrm{He}}(\vec{\mathrm{e}},\mathrm{e'n})$ 

<sup>3</sup> $\vec{He}(\vec{e},e'n)$  at quasi-free kinematic  $\rightarrow$  best approximation to free  $\vec{n}(\vec{e},e'n)$ .

$$A = P_B P_T V \frac{a \sin \theta \cos \phi G_E^n G_M^n + b \cos \theta (G_M^n)^2}{c(G_E^n)^2 + d(G_M^n)^2}$$

where  $\theta$  is the angle of the target neutron's spin relative to the momentum transfer.

When  $\theta$  = 90° :

$$A = A_{\perp} \propto G_E^n G_M^n$$

To first order when  $\theta = 0^{\circ}$ 

 $A = A_{||}$  depends only on kinematics.

$$G_E^n \approx \frac{b}{a} G_M^n \frac{(P_B P_T V)_{\parallel}}{(P_B P_T V)_{\perp}} \frac{A_{\perp}}{A_{\parallel}}$$

# $G_E^n$ from $\vec{d}(\vec{e}, e'n)$

$$A_{ed}^{V} = \frac{N^{+} - N^{-}}{N^{+} + N^{-}} = P_{B}P_{T}V \frac{-2\sqrt{\tau(\tau+1)}\tan(\theta_{e}/2)G_{E}^{n}G_{M}^{n}}{G_{E}^{n^{2}} + \tau/\epsilon G_{M}^{n^{2}}}$$

Extract  $G_E^n$  from  $A_{ed}^V$ :

- Use full model of Arenhovel to predict  ${\cal A}^V_{ed}$  .
- Modify  $G_E^n$  to have agreement with the measured  $A_{ed}^V$





- Helicity dependent outgoing proton spin components:
  - $P_l$  is along the proton momentum direction
  - $P_t$  is in-plane transverse to momentum direction
  - $P_n$  is out-of-plane transverse to momentum direction  $P_n = 0$

$$\frac{G_E}{G_M} = -\frac{P_t}{P_l} \frac{(E_e + E_{e'})}{2M} \tan\left(\frac{\theta}{2}\right)$$



- Outgoing neutrons scatter in CH<sub>2</sub> which is the analyzer for the secondary reaction.
- The analyzer can only measure spin components perpendicular to the incoming particle's momentum.  $a_T = A_y P_x$
- To measure  $P_l$  need to precess the neutron spin in a magnetic field so transverse polarization at the  $CH_2$  is:

$$P_x = P_l \sin \chi + P_t \cos \chi$$



#### **Neutron Electric Form Factor**



• Planned experiment at JLab in Hall A to use  ${}^{3}\vec{He}(\vec{e},e'n)$  quasi-free reaction to measure  $G_{E}^{n}$  to  $Q^{2} = 3.4 \text{ GeV}^{2}$ .



• Both momentum and spin vector precess in the magnet.

• Precession angle, 
$$\chi = \gamma \kappa_p \theta_{\text{bending}}$$
  
 $P_T^{fp} = P_T^{tgt}$   
For simple dipole  
and in general  $P_N^{fp} = -P_L^{tgt} \sin(\chi) + P_N^{tgt} \cos(\chi)$   
but for proton,  $P_N^{tgt} = 0$  so  
 $P_N^{fp} = -P_L^{tgt} \sin(\chi)$ 

• Unlike neutron recoil polarization measure  $P_L^{tgt}$  and  $P_L^{tgt}$  separately and simultaneously.



-0.2 L

¢ (deg)



- $G_E/G_M$  from polarization measurement falls linearly with  $Q^2$ .
- Disagreement between G<sub>E</sub>/G<sub>M</sub> extracted from cross section data.





- Global analysis of previous experiments by J. Arrington indicates no inconsistencies between experiments.
- When trying to combine the cross section data and polarization data, the global fit has a larger  $\chi^2$  indicating that the data are inconsistent with each other.
- New measurements at JLab in Hall C at consistent with previous experiments.

### Comparison to Global Fit



- A dedicated measurement at JLab in Hall A has preliminary results which also agree with previous experiments. Detected the elastically scattered proton instead of electron which has advantages:
  - Proton momentum fixed at each  $\epsilon$
  - Cross section is nearly constant with  $\epsilon$
  - Reduces size of  $\epsilon$ -dependent radiative corrections
  - Reduces systematic error on beam energy and scattering angle

## Two-photon Contributions

• John Arrington (nucl-ex/0311019) looked at  $\frac{\sigma_{e^+p}}{\sigma_{e^-p}}$  data for Q<sup>2</sup> < 2 but covered wide  $\epsilon$  range. Determines a slope of -(5.7 ± 1.8)%.



Calculation by Blunden, Melnitchouk and Tjon (PRL 91,142304 (2004)).
 Only includes nucleon intermediate states.







Di-Quark, B.-Q. Ma, D. Qing, and I. Schmidt, Phys. Rev. C 65, 035205 (2002)

Soliton, G. Holzwarth, Z. Phys. A 356, 339 (1996), hep-ph/0201138

Light Front Cloudy Bag, G. A. Miller, Phys. Rev. C 66, 032201(R) (2002)

VMD, E. L. Lomon, Phys. Rev. C 66, 045501 (2002)

CQM in Point Form Spectator App. , S. Boffi et al. , Eur. Phys. J. A 14, 17 (2002)



VMD+ hard part , F. lachello, A.D. Jackson, A. Lande, Phys. Let. 43B (1973)

CQM + OGE, F. Cardarelli, E. Pace, G. Salme, S. Simula, Nucl. Physc. A666 (2000)

CQM + OGE, F. Cardarelli and S. Simula, Phys. Rev. C 62, 065201 (2000)



# Comparison to Lattice QCD

