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NOMENCLATURE

Terms Definition

d distance

D field-free drift space distance. D 1 denotes first drift sDace encountered
by an ion, etc.

e electronic charge

E electric field value

i Eo value of maximum electric field associated with maximum potential on RF
grids due to sine-wave signal

I"
i F force on an ion due to electric field

m mass of an ion

N number of inicgral RF periods for the selected mass ion in a mass
spectrometer to cover a drift distance D

n summation term in Fourier series

RF radiofrequeney

s distance separating two grids in a mass spectrometer RF stage where one

grid is at a set potential and the other has an RF signal applied. In the

standard Bennett stage, a distance 2 s separates the two grids at a fixed
potential.

v ion velocity

V electric potential

V a potential through which ions are accelerated into the mass spectrometer
systems

VRF maximum peak to peak potential of sine-wave RF _ignal applied to RF grids ;

t time

W energy gain or loss in mass spectrometer system. Generally given in this
report in eV units.

set phase of 72/180 _ for one mass spectrometer approach

6 set phase of 36/180 _ for one mass spectrometer approach

RF phase at ion entry into mass spectrometer RF stage

(,_ angular frequency of applied RF signal

V

• Q

- " 19890093cJ1-005



t.

NOMENCLATURE (Concluded)

Subscripts Definition

1 first encountered
U

2 second encountered

sin used to designate values associated with the sine-wave portion of a
mass spectrometer approach which utilizes both square- and sine-wave
RF

_, V _
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TECHNICAL MEMORANDUM i

REEXAMINATION OF RADIOFREQUENCY MASS SPECTROMETERS
Center Director's Discretionary Fund Final Report

INTRODUCTION

Techniques for determining the mass constituents in a neutral or ionized gas
have been presented in the literature. Some have been developed to a sophisticated
state and are used routinely both in the laboratory and as space flight instruments.
The literature contains descriptions of many different mass analysis techniques, most
of which date from the 1950's. At that time, a major factor in determining which
techniques were developed into a useful instrument depended on the electrical and
mechanical requirements of the approach. In the last 30 years significant advances
in both of these areas have been made so that reexamination of previously undeveloped
approaches may provide insight into producing better radiofrequency (RF) mass
spectrometers.

The magnetic-sector and quadrupole-type mass spectrometers were not con-
sidered in this study. They have been developed to a high level of sophistication
and improvements in mechanical manufacturing has been incorporated into these
devices. The advantage of the RF type of mass spectrometers is their simplicity,
their high throughput, and their ability to collect measureable current without using
multipliers and high voltage. The Bennett mass spectrometer introduced in 1950 is
still in use today [1]. The electronics have improved and the wire mesh for the
grids is much finer and more uniform, but the configuration is exactly like the
Bennett mass spectrometer of 1950 [2,3]. Therefore, a reasonable question seems to
be: Can the configurationbe changed to take advantage of the advances in tech-
nology? This question is addressed in this report.

BENNETT MASS SPECTROMETER

The first practical RF mass spectrometer was introduced by Bennett in 1950 [1].
In order to consider variations on his approach and other RF mass spectrometer

designs, the Bennett mass spectrometer design willfirstbe discussed.

A single stage of the Bennett mass spectrometer consistsof three equally
spaced, parallelplane grids of fine wire mesh, as shown in Figure I. The outer two
grids are maintained at a set potentialand an RF fieldis applied to the center grid.
The set potentialmay be selectedto acceleratea specificion population into the stage
at a given velocity. A varying electricfield,

E = E sin (_t + 6) , i
o

I

exists between the firsttwo grids. The electricfieldbetween the second and third
grids is

1989009301-007
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Figure I. Single Bennett stage. (RF potential is applied to the middle
grid, relative to the first and third grid. A retarding potential
stops all ions except those which gained the maximum energy.)

E = -E sin (_t + 6)
O

If an ion enters with the right velocity and phase it will cross the center grid just
as the RF potential is changing polarity and it will gain energy in the regions between
grids one and two and two and three.

t

The energy acquired by an ion crossing two grids with an RF field applied to i
the second is given by

W = vSF dt , (1)

where F is given by the charge of the ion times the electric field. Therefore, the
energy gained by an ion transiting a single Bennett stage is

W = v Eo e sin (_,_t + 6) dt + -E o e sin (_t + _) dt ,
L 0 S/V

1989009301-008



or

Eo.v[W - cos 6 2 cos -- + _ + cos + _ , (2)
t_

with

VRF
Eo - -gg •

There is a maximum in energy gained by an ion when the condition

s--2-_+ 6 = pi = 180 degV

is fulfilled. Equation (2) is a maximum with respect to variations in w when [ 1]

- 2.33 ,
V

and, therefore, 5 = 0.81. Any ion which enters the Bennett stage, does not enter
with the right phase relative to the RF, and does not have the right velocity will
gain a lesser amount of energy and may lose net energy as it traverses the region.
If allthe ions entering the Bennett stage have been acceleratedto the same energy
they willhave differentvelocitiesdue to their mass difference. A retarding grid
followingthe Bennett stage willrepel the ions not receiving the maximum energy.
By sweeping the RF or the acceleratingpotential,the condition for maximum energy
gain willoccur for differentmasses and the resultis a mass spectrometer instrument.
The angular frequency at which a selectedion willgain maximum energy is,

2.33 /2 e Va

where it is assumed the velocity of the ion is totally due to the energy gained by
accelerating the ion into the stage.

An examination of the resolution of a single Bennett stage indicates it is poor.
In order to provide sufficient resolution, a mass spectrometer of three stages
separated by two field free drift regions was designed by Bennett and has become the
standard configuration [1,2,3]. It is illustrated by Figure 2. The drift region
allows separation of the ions which travel through the previous stage with the same
phase and have similar gains in energy. The separation will occur due to the
different ion velocities. This way only the ions of the selected mass will enter the
next stage at the optimum phase. It can be shown that the distance between the two
sine-wave RF grids in two Bennett stages, separated by a drift region, must be

3

_)

II
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Figure 2. Standard three-stage two-cycle Bennett mass spectrometer.
(The standard Bennett mass spectrometer is made up of three

stages as shown in Fig. 1 separated by drift regions.)

equal to 2.695 N s in order for the favored ion to arrive at the next stage with the
proper phase.

For an ion to gain maximum energy from both stages, it must maintain a proper
phase with the RF such that it crosses the RF grid of each stage just when the RF

is changing polarity. Therefore, the time to travel between two RF grids is an
integral number of wavelengths. Now,

d=vt ,

and

d= a 2_N

therefore,

2 _N /2eVa_'_= _ m

Comparing this with the above given equation for ,, it can be seen theft,d : 2.695 i
N s. The field free drift distance (as can be seen in Fi_. 2) is therelo,'e,

D = (2.695 N 2) s

4

r-."- _........ ± ............... . P_.
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The energy gain in a three-stage Bennett mass spectrometer can be obtained by
integrating in a manner similar to the single stage. The result is

( )s_ + 6 + COS _ + 6 + COS + 6
W - g-_ cos _ 2 c_s -W v

((3s + D1) _° ) ((4s + D1) c° )
- 2 cos + 6 + cos +

v v

+ 6 2 cos + (3)+ CO'Cl V V

This expression for energy gain W and all subsequent expressions is given in units
of eV.

In the mathematics presented, the assumption is made that the velocity gained
through the mass spectrometer is insignificant compared to the initial velocity. In
practice, this is not always the case and a retarding potential is applied between
stages equal to the energy gained in the stages, so that the ions, which will gain
maximum energy, actually maintain their energy through the mass spectrometer.

OTHER RF APPROACHES

Previous Approaches Examined

Besides the Bennett mass spectrometer there were many other RF-type of
approaches which were investigated[4]. The problem with allRF approaches is
harmonics. That is, there are other ions with velocitiesand phase entry into the
RF field which still gain nearly all of the maximum energy. The Bennett is the best
RF approach at being able to deal with these harmonics. Still, the retarding grid
potential necessary to get rid of harmonic peaks reduces the spectrometer sensitivity
because some of the favored ions are also repelled. All of the ions of the mass, for
which the Bennett spectrometer is set, do not reach the collector,only those which
enter the instrument with the proper phase relative to the RF. This can be a small
percentage. As the favored ions enter farther from the optimum phase they gain
less energy. If the retarding potentialmust be set close to the maximum energy gain
to suppress harmonics, then the selectedions which enter at a non optimum phase
willalso be repelled. Other researchers have devised schemes which do sample all
of the ions of the selectedmass [5,6]. This can increase the sensitivitysignificantly
but they also have strong harmonics which cannot be reduced.

Reference 4 provides an excellentcollectionof RF mass spectrometer approaches
and discusses them in some det_dl. In the approaches compared in Reference 4, the
Bennett is the favored RF approach. Other researchers also considered improvements
to the Bennett mass spectrometer [7 10]. Henson proposed that a single Bennett
stage be modified by making the RF grid actually two grids with a drift region
between thc, m [7]. He proposed that a square wave, fbr greater resolution, be

• _ _ i _ J

ii
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applied to these center grids and that this system has an improved resolution. Others 1
also proposed that a sawtooth or square-wave RF signal will provide greater resolu-
tion. These and other possible improvements will be discussed.

The improvement offered by Henson at first appears reasonable. It was refer-
enccd often and lauded as u significant improvement [4J. However, a close look
points out a problem with it and the use of square or sawtooth type wave functions.
In the standard Bennett, the ion does not gain an energy equal to the maximum amp-
litude of the RF because of the sine-wave shape. The sine-wave maximum amplitude
is removed in phase from the point at which it changes polarity. Therefore, as dis-
cussed earlier there is one phase with which an ion of the proper velocity must enter
a thx.ee-grid Bennett stage in order to gain maximum energ-t. For a single Bennett
stage with square-wave RF, ions of different velocities can receive the maximum energy
if they enter with a phase such that they arrive at the center grid as the RF changes
polarity. There is a phase for each ion which is less massive than the one which
traverses the stage in one RF period such that it will also gain the maximum energy.
Figure 3 shows how three ions of oifferent velocity will all gain the maximum energy
if they pass through a single Bennett stage where square RF is applied and if they
all cross the center grid as the polarity is changing. The approach proposed by
Henson has a drift region separating the positive and negative portioa of tile RF.
Therefore, ions of different velocities will be able to move through the drift region
in different integral RF periods and still gain maximum energy. Figure 4 illustrates
these points. The danger is that resolution is increased at the expense of increased
number of harmonics and their amplitude. Sawtooth RF is impossible to consider
since increasingly faster ions will sec the potential across the gap approaching adc
potential and gain an energy approaching the sawtooth amplitude.

hi
ION1 ill _:t2 _t 3

;
!
I

ION2 t I _ _t 2 _ i_t3

ION3t 1 't ;_• " _; 2 " t3

i
1

tl t2 t3 i

Figure 3. Ion transit of Bennett mass spect .... meter stage with square RF

applied. (Notice that a faster ion can also _,ain the maximum available
if it enters at a different phase relative to the RF.)

6
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ION1: : t1 !
i ! _'3
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: I
J

ION2 j :_._t1 t2 ,, _ t3
I L !

tl t2 t3

Figure 4. Ion transit of a split Bennett stage with square RF applied.

(Resolution of this single stage is improved but, as seen in Fig. 3,
faster ions can gain the maximum energy available if

they enter with the right phase.)

New Approaches

Bennett Mass Spectrometer with Square-Wave RF

Figure 5 is the energy gain curve as a function of mass for ions of an equal
energy entering a three-stage two-drift space (referred to as two cycle) standard

Bennett mass spectrometer. This is the curve typically shown in the literature for

1.0I0.9

0.8-

0.7-

0.6-

> 0.5-
z

o.4-
0 0.3->-

t
(.9 0.2-
u.l
z 0.1-
iii

-0.1

-0.2 -

-0.3 "

-0.4

-0.50----. ' _ --' , l10 20 30 40 50 60

MASS
J

riguz,e 5. Standard mass spectrometer energy gain versus

m,,ss for designed phase of entry.

7
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this type of mass spectrometer. Even though only one ion with the _roper mass and
phase can gain the maximum energy, there are others which can g ..n a large portion
of it and these form the harmonics. Figure 6 is the same as Figure 5 except now the
energy gained by an ion of specified mass is the maximum gained by that ion enter-

"_ ing at its optimum phase. Notice that tile main peaks do not cYange, indicating that
the phase of entry allowing ions to gain the most energy is the one that the spec-

W trometer has been designed for.

1.0

! 0.9

"( 0.8

i: 07 qU3

z 0,6UJ
LU

r

'_ 0.5 /

m 0.4 I

rr

o il0.2

i:
b

0.1
i:

w 0 t L t L I .....
0 10 20 30 40 50 60

t-
I,-

MASS,AMU

i Figure 6. Mass spectrometer energy gain versus mass. (With energy
gain for each mass being maximum for that

i ions optimum phase of entry.)

[ A Benpett mass spectrometer using square wave RF will be designed so that
tl=e ion selected to gain the maximum energy will traverse the Bennett stage width in
one complete RF cycle. The square wave angular frequency at which the selected
ion will gain maximum energy will be defined by,

;2
sw

V

and therefore,
r,

/ eV
i _, 11 a

s m

i

8
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As shown previously, other less massive ions with the same energy will be able to "_
enter the stage at a different phase and gain the maximum energy while traversing 1

a greater physical distance. Therefore, the question is: Will a three-stage, two-
cycle Bennett mass spectrometer using square RF allow ions entering at different

, phases to gain maximum energy?

V Equation (I) gives the electric field between grids one and two for a Bennett
mass spectrometer using a sine-wave RF. A square-wave RF can be written using a
Fourier series,

n

4 _ (_l)n+l sin [n(x+6)] (4)
f(x) = _ n=l,odd n

The number of terms in the Fourier series will establish the "cleanliness" of the

square wave and the sensitivity to imperfect square wave shape can be assessed.
The energy equation for an ion moving across a single stage for this case can be
written as,

4 v Ifo s/V £

W - VRF sin (nut + n6) dt

s _ n=l,odd n

2s/v n ]

_ f _ sin (n_t + n_) dt (5)
s/v n=l,odd n

Since the functions are everywhere continuous and the summation represents a string
of individual terms, the integral can be performed term by term and the summation
sign brought outside the integral. Therefore, with

n

n= i,odd n

the energy gain analogous to equation (3) is,

i 2 v VRF (-1)n+l [ (n s _ 61 (2 n 5 _ _)
W - _ 2 cos (n_) 2 cos _+ n + cos + n

s ¢c n n v v

+ n6 2 cos + n5
+ COS V V

(6)
(Continued)

9 ,i
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( ,(4s + D1) n_ )+ n6 + cos ( (4s + D1 + D2) n_ )+ n_ _tV V ,

2 cos + n6 + cos + n6
V V

(6)
_. (Concluded)

| The maximum energy will be obtained for the ion of interest when it travels the dis-

tance between the first and third grids of a stage in one RF cycle. Therefore, the

optimum phase of entry is zero. The field-free drift regions length must be an

integral number of l_V cycles and, therefore, equal to 2 N s. Figure 7 is the same

as Figure 5 in that it represents the energy gain for a three-stage two-cycle Bennett

type mass spectrometer except for the use of the square RF. As in Figure 5, the
single phase of entry is for the maximum energy gain of the selected mass ion.

It is similar to Figure 5 and the harmonics are low enough that they can be subdued.
Figure 8 is analogous to Figure 6. Figure 8 is for the square-wave Bennett mass

spectrometer and the energy gained by a specified mass ion is that gained by the
ion entering with the optimum phase for maximum energy gain. Notice that the
curves in Figures 7 and 8 are much different since the square wave allows more

phases to obtain an opt._mum energy. Still,the three-stage, two-cycle Bennett spec-
trometer provides sufficient selection of phases so that only the selected ion with

zero phase gains ti_emaximum energy. The shape of the peaks are more triangular
and pointed. This shape difference compared to the sine wave Bennett will change
the relationship of sensitivity and resolution to the retarding potential.

1.0

-I.0

0 60

MASS, AMU

Figure 7. Square wave RF Bennett mass spectrometer energy gain
versus mass. (For zero phase of entry.)

i0

_)
,,,,mii | ,i| • ,
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0.1 _
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Figure 8. Square-wave RF Bennett mass spect_.>meter energy gain.
(Energy gain for each mass being maximum for that ion's

optimum phase of entry.)

New Approaches

If an RF mass spectrometer system can be developed with fewer stages and

drift regions, then it will be more compact, simpler, and have a greater sensitivity
due to the great,_r physical transmission of ions to the collector. Attempts were

made to find such a mass spectrometer. Several approaches were found which fit the

criteria above. Instead of nine grids as in a three-stage Bennett, approaches which
used five, six, or seven grids were found. The problem with most of them is

I harmonics. These new approaches may be useful if the researcher decides to live

with harmonics. They will occur at known positions and can be separated. The

spectra from radioactive materials and optic_d spectra must often be separated. There-

fore, these approaches are described in Appendix A and the energy gain equations

for them are given.

A couple of the approaches examined held more promise at controlling the har-

monics than others and the will be discussed here. One of these approaches did not

use a totally field-free region. As shown in Figure 9, it looks similar to the three-

stage Bennett except that the third grid of the first two stages is the first grid of

the next stage. What is normally the field-free drift region is not field free but the

Ii

_)
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Figure 9. Diagram illustrating single acceleration mass
spectrometer with quasi field-free drift.

ions see several RF cycles while traversing it, and the electric field is much weaker
since the same potential difference is applied over a greater distance. The energy

gain equation becomes,

/_ (2s + D1) _VRF os _ + - cos 5 + cos - v
W =V S_o

+
+ + COS V

COS V

+
+ - COS V

COS V

+

+ v+ COS V

+- COS + + _ COS V

+

- COS V I

The ions gain most of their energy on the same one half cycle of the RF. If the

quasi-drift regions allow too many RF cycles then the harmonics are large. However,
if the drift regions are a few cyc',es, the harmonics are similar t,_ the standard Bennett.

12
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These few RF cycles limit the resolution that can be obtained with this approach and _

the harmonics remain sufficiently small. Figure 10 indicates the maximum energy i
gained by each ion at its optimum phase.

.2

.I "I

0 i
O 5 I 0 I S 20 25 30 35 40 45 50 55 60 65 70

MASS

Figure 10. Energy gain curve. (Approach identified in Fig. 9.) _I

Another approach which has some merit is termed a hybrid mass spectrometer.
This is because it is composed of a standard Bennett _ype stage with square-wave RF
followed immediately by a stage as described by Henson, except that a sine wave is
applied to it. The schematic approach is shown in Figure 11. Using only square-
wave or sine-wave RF does not allow suppression of the harmonies. The sharpness
of the energy gain curve for the single Bennett stage with square RF provides an
increase in resolution as compared with the use of sine RF. Square-wave RF on ttle
split stage allows ions of different phases to gain energy, such that the harmonies
near the primary peak are very high. The application of sine wave to the split stage
does a better job of selecting those phases which gain high energy. Therefore, the
combined use o_ square- and sine-wave RF in this manner provided the best suppres-
sion of harmonics, second to the standard Bennett approach. The independent setting
of the square- and sine-wave amplitude allows some tuning for maximum harmonic
suppression. The hybrid concept uses six grids and one drift compared to the

13
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Figure Ii. Diagram indicating hybrid Bennett approach.

Bennett nine grids and two drifts. Therefore, it is more compact and transmissive,
but higher potentials must be used to suppress the harmonics. The energy gain
expression for the hybrid concept is,

W = 2 v VRF _-_'I(-l)n+l[c'__ "J n I n s + n 6)n2 os (n 6) - 2 cos co -_

+ cos 2 n _ vS + n (5 + v _ a • cos cov + 6
sin

- cos co s sin + (5 - eos co + _
v v

2 c, + 2 as1 n
+ cos _ + _ (8)v

where D = (2.695 N 2) s •sin

Since both s(tuare- and sine-wave RF are used in this approach, the grid Sel)a
rations will be different. The same frequency of RF for both must be used. For _

square wave, the maximum energy is gained by transit of a half _tage ill half an RF i
period. For the sine wave, the relation s,./v = 2.33 must be satisfied. Therefbre,
if s here is the grid separation ill a square _wave stage, the grid separation for the
sine-wave portion :; . is given by, , = 0 74 s.' Sill ' "sin "

14

.9
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Figure 12 shows the energy gain for a hybrid system with the amplitude of the
sine wave being 50 percent greater than the square wave. The energy gain by each

mass in Figure 12 is also the maximum for that ions optimum phase.

1.0

091
08

< 0.7

0.6
z
_ 0.5
w

_ O.4
w
ff 0.3

0.2

0.1

0 'Wl 1 I l
0 10 20 30 40 50

MASS,AMU

Figure 12. Energy gain curve for hybrid Bennett. (The relative gain
is shown as a function of mass. The energy gained for each mass

is the maximum for that mass's optimum phase of entry.

For 30 eV energy gain the primary peak and first
harmonic separation is approximately l eV.)

EXPERIMENTAL INVESTIGATION

In order to examine the standard Bennett and other RF mass spectrometer

approaches, the necessary laboratory apparatus was assembled as indicated in Figure

13. An electron bombardment ion source was used to produce accelerated beams of

ions which were directed into the mass spectrometer. The mass spectrometer was

designed so that the wire mesh grids were easily moveable and various configurations
could be established. The wire mesh used was electroformed nickel, 70 by 70 lines

per inch, and a physical transmission of 90 percent. The grids were configured on
the outside so that the mass spectrometer unit was also used as a retarding potential

analyzer (RPA). Fiture 14 shows a typical RPA curve obtained. A second curve

illustratesthe RPA curve obtained when one Bennett stage is active. Some of the

ions are accelerated to higher energies and some, if their mass and phase are wrong,

lose energy. Of course, the energy gain by the desired ions is what allows the mass
_pectrometer to function.

Figure 15 gives the current as a function of the accelerating potential which

gives the ions their velocity entering the Bennett stages. The variation in accelerat-

ing potential provides for mass selection. The retarding potentiai is small so that all
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Figure 13. Experimental arrangement.

Z
W

! n- RF OFF
n"

rO
<
nrr"

RETARDING POTENTIAL

Figure 14. RPA curve with Bennett stage RF on and off. (With the RF off
and the grids connected for RPA only, the typicalRPA curve of the
ions is obtained. With the RF on the Bennett stage some of the ions

willgain energy and some willlose energy as indicated.)
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Figure 15. Experimental data showing primary and harmonic
for a standard Bennett mass spectrometer.

harmonics show up. It can be seen that the curve fitsthe calculated curve in Figure
6. Figure 16 is part of the spectrum of air, and tilemolecular oxygen and nitrogen
are clearly resolved. In general, the harmonic peaks were difficultto remove com-

pletely. As shown in Figure 17, there were extraneous peaks in the vacuum system
used. Some of these peaks fellexactly on the harmonic peaks. Therefore, some of
the residual peaks observed may not be totallydue to hard-to-remove harmonics but

background. High amplitudes (30 V peak-toMpeak) are required so that clean, single
peaks are obtained from the Bennett mass spectrometer [2,3].

The approach with the quasi field free drift described earlier was examined

experimentally. It was clear that the N 2 and 0 2 peaks were clearly resolved and fell

L. in exactly the calculated position. Some of the harmonic peaks, which should not

_ have been large, according to the calculations, were extremely difficultto retard out.

It was observed that, unlike the standard Bennett configuration, when the grids were
_ joined into the RPA configurations, a clean RPA curve was not obtained. Since what

I was the field-free region now has a wall with an insulating surface, some surfacecharging may be taking place. If this is so, some means to prevent this may allow
for more satisfactory operation.

i_ The hybrid mass spectrometer approach outlined above was also examined. It

_ was clear, as shown in Figure 18, that the harmonic peaks were evident. The con-

I: figuration was such that the r_umber of cycles which should have taken place in the
drift tube during the ion transit was 12. It can be observed that at a different

accelerating potential the ion,Ir_msited the drift in descending integer cycles, pro-

ducinff harmonics. The er_crimental apparatus used did not allow application of
sufficiently hi_'h RF amplitudes to retard the harmonics.

17
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Figure 16. Experimental data of Bennett mass spectrometer. (The ion source
is operating on air and tileresultingmolecular nitrogen and oxygen peaks

are obtained. The more resolved data curve utilizeda higher
retarding potentialto vary the resolution.)
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Figure 17. Vacuum system background.
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The primary and harmonic peaks were observed to have a triangular shape as
compared to the more rounded peaks when sine RF is used in the standard Bennett,
as calculated.

The fine wire mesh of the grids is used to form a plane having a known puten-

tial. The 70-by-70 wire mesh provided a high physical transmission, and the close-
ness of the wires stillprovided a potential between wires which was sufficiently close

to the potential applied to the wire. In order to increase the physical transmission

through a number of grids, wire mesh of 70-by-7 was specially constructed. The

small potential variation between grids will be slightly different from the square grid
case. The closeness of the wires in the one axis stillprovides sufficient potential

penetration into the gap. At the same time, the added 5 percent increase in physical

transmission can provide substantial increase in throughput when up to 12 grids
must be transited.

S UMMA R Y

The standard Bennett mass spectrometer hay long been used both in the labora
tory and in space. An examination of modifications, short cuts, and other RF

approaches indicates that the standard Bennett or a Bennelt using square wave RI:
probably provides the best approach. Other approa,.hes were examined which were

more compact and used fewer grids, llowcvcr, the pz_oblem of harmonic:; is evident

in all. It is necessary to have sufficient stag'cs and d_'iftsections to limit the corn

binations of ions and phases which can go through and gain all of the ma×imum nvnil

able energy to one. Some of the approaches described in the literature reported to
use the increased resolution and energy gain offered by the s(tu_,vc wave RI.'. llow
ever, ;is indicated in this paper, ions of many different phases can enter and gai),
the maximum amount of awlilable energy. Tile sawtooth will l)rovi(h. • increasiI:g'ly
greater energy to faster ions that transve,'se it when it is near i*>, maximum :,mpli
tude. The square wave can offer increased energy gnin and res()lutio,l,but cn(,ugh

stages and drift regions must l)e included in the design s()that the harmonics arc
sufficiently suppressed.

The quasi field free drift approach ")ffersn system with fewer _ri(Is _ind low

harmonics but the resolution is seriously restricted. Tim hyt)ri(l approach describe(l
in this report is not unlike a two sta_'e,one cycle Bennett ma:ss sl)ectro,neterin

performance. It is siml)ler and more (.'omlmet th:tn the standard three stage I_erl1.(_tt,
but it is very difficult to prevent the harmonic peaks from showing,, ut).

Some ,)l' the apt)t_uaches which were trie(l had l'ew,_r g'rids than tile stazl(lav(l
l_ellrictt but had the two drift reghms for ion SCl)all'althm. [h)wevel', hgl|'[ll()nics w('r(.'
Ill()l'e ()i ;i [)roblem still than with tile stand_,rd Bennett configuv;iti(m. "l'tlis is b_,au>,e
a split _taFe was use(l. The fm:t that there is a drift gap ill a .sinlgh' sial'.',' :dh)w'_
1\)I" IlttlI+C !l+tl'll|Ol)iCS. Faster' i()llS Cilll tl';iverse tlltP g;l l) ill t't}wt:r illtt:g'r_tl Ill." tJt.'ri,)tl.+
end, thevet'()re, still gain tnaximui0 energy.

It" ());,_ is willing to liw_ with harmonics, .s,)im, of tlm al)l))'oacl,es lziv(:n i)) tit,'
t)(),ly ,){ thi.- eel)()rt :_n(l in the Al)l)(,ndix may be us(.'ful. In m()sl c:,s(,s the t)arm()ni(:s
al)l),.':,r ,'h);(. to the primalvy l)enk which will mg,ke i(hmtificati,m (,I' h:u'monic peaks !
simt)l(,_'.
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APPENDIX

In an effort to find a mass spectrometer which offers the desired resolution,
sensitivity, and minimum harmonics with a reduced number of grids and drift regions,

I many approaches, which appeared feasible, were examined analytically. Because the

harmonics continued to exist in all of these approaches, and this was undesirable, no
. further examination of these concepts was undertaken. It did not seem worthwhile

to include this work in the body of the paper, but for completeness and for those
who may be interested in pursuing some of these same concepts, they are briefly
described in this appendix and the energy gain equation is given. In the descrip-
tions of these approaches, it is always assumed that there exists an upstream
grounded grid such that the grids with set potential define the ion energy entering
the system.

A pulsed approach with a single Bennett stage was considered. Initially, the
first four grids in this arrangement are at the same set accelerating potential. The
first three grids are close together and the region between the third and fourth
grids is a field-free drift region. A pulsed potential is applied to the first and
second grid. The ions between them will exit and see an increased electric field
between the second and third grids while the pulse is on. The grids following grid
four make up a standard Bennett stage, retarding grid, and collector. Therefore,
the pulse of ions with additional energy will separate in the drift region and only
those ions with the selected phase will enter the standard Bennett so as to gain maxi-
mum energy. If the time separation between pulses is sufficient, then this approach
will work. However, it was observed that if the grids are pulsed frequently, then
the slower and faster ions from different pulses can be at the same position in the
drift region and harmonics still exist since the single Bennett stage has a low resolu-
tion. If the pulse rate is reduced, then the duty cycle is low and the throughput
is not attractive.

An approach similar to the hybrid Bennett spectrometer was examined. The
first three grids make up a Bennett stage with square-wave RF applied. The separa-
tion between the third and fourth g_.ids and the fifth and sixth grids is very small.
_f the phase of the square RF and sine RF (applied to the fourth and fifth grids) is
correct, the ions passing the split stage will see a near dc field which coincides with
the maximum potential of the sine-wave RF. For a drift region which must be an
integral amount plus a half and for a grid separation for the split stage of 0.2 of
the square-wa':e stage, the energy gain equation is

W = 2 v VRF Z ('l)n+l . s + n c + cos 2 n w - + n 5
s _ n n 2 os (n 6) - .. cos n _ _ v

Vsln os 2 ,_ _s + 6 + - cos
+ vi 2 Ssi n _ v v

• + D 2 s + 2 asm
2 s + Ssm + 6 + + cos J + _ + (A-l)

- COS w V V

_2

J
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with

72 36
_= 18]--__ , 6 =-i--_--__ , and D = 2 N s + B s-_ 0.4 s

For a total energy gain of 36 eV, the nearest harmonic is approximately 0.5 eV lower
in energy. The other harmonics maximum energy reduces quickly.

An approach using essentially two split stages was examined. The first grid
is at a set potential. The second and third grid have an applied square RF and the
distance between them is a drift region. The third grid and fourth grid are spaced
the same as between grids one and two. The fourth and fifth grids also have an
applied square RF and a drift region between them. The two _quare RF potentials
that are applied to the pair of grids is 180 deg out of phase. The energy gain
equation is,

(W = 2 v _ _] n2 cos (n _) cos n Sv w + n + 2 cos n _--v

s + D 1 + n + cos n _ D1 D2 + n
+n - 2cos __ v

cos n w v + n (A-2)

For the condition described which leads to equation (A-2), except with sine-
wave RF, the energy gain equation is,

VRF 2 s + D 1 + - 2 cos .)
W = v _s_-g-"_] os (5) cos + + 2 cos ,_ v v

+ _ + cos + cos _._ + (A-3)
V V

For a hybrid Bennett with square-wave RF applied to both the standard stage
and the splitstage, the energy gain equation is,
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v.F (n ,)( ) 'Z i co _ 'i
W = 4 v s __ n _n os (n _) - 2 cos s --v + n + cos 2 n s -v + n _ ,

+ c°s ((2 s + D1 ) n _-+nv _)- 2 c°s((3 s + D1 ) n _- +nv _)
E:

+ cos (4 s + DI) n _ + n + cos 4 s + + D 2) n _ + nv

2 c°s ((5 s + D1 + D2)n _ + n 6)+ e°s ((6 s + D1 + D2)n _ + n_/]v _ . (A-4)

The following two approaches tried to reduce the number of grids by merging
the RF and sine-wave energy gain in the same region. Instead of having grids at
fixed potentials to provide the electric field betweep them and the grids with RF
applied, one RF was applied to a grid and another RF was applied to the adjacent
grid. The phase was selected for maximum energy gain by selected ions. Some of
the harmonics still gain nearly the maximum available energy.

In one of these approaches, the first grid is at a set potential. The second
and fifth grid have a square-wave RF applied at the same phase. A sine-wave RF

is applied to grids three and four. An ion traversing these grids sees a square
wave RF between grids one and two, both the square- and sine-wave RF between

grids two and three, a drift region between grids three and four, again both square-
and sine-wave RF between grids four and five, end the square-wave RF between
gr_ds five and six. The energy gain equation for this case is,

w2vvRFZn [ ss w n2 cos (n 6 ) - I + cos n _ - + nsin v

?
i

(':n)" )( ) +° )s + SSl n S s + 2 Ssm
+ cos (_ + n 6 - l + _ cos _ + n 5

, v Ssi n v

( s+Ssn+O(n  +Osni cos n (,_ + n + cos (_) �n+ "si v v

+ v _r--_-_---. cos ,_ - + 6 + COS :,_ + _ cos _ +
sin v v v

+ COS ,I + 6v (A-5)
7.
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A similar approach has a set potential on the first grid and a square RF on

the second grid. A sine RF is applied to the third and fourth grid and the fifth
grid is at a set potential. An ion sees the square RF potentials between the first

and second and second and third grids. The sine RF field is experienced also

between the second and third grids with only the sine field seen by the ion between

the forth and fifth grids. The energy gain equation is,

w2vvRF n[ (s)= cos (n _) - 1 + cos n _. - + n 6
s w n 2 si v

+ cos _ s +vssin + n 5 + v 2 02Ssm. Sv

+ cos sin + - cos + + cos ,_, +
v v v

(A-6)

In order to have an additional drift region to aid in ion separation, the follow-

ing approach was considered. A Bennett stage with square-wave RF applied is
followed by a drift region which is then followed by a split stage with a sine RF

applied to it. The energy gain equation for this case is given by

s aJ _ cos (n 5) - 2 cos _ _ + n + cos n (z

• 2 s + D 1 2 s + Ssm 1 + 5
Vsln cos _ v v

+ - cos

+ v 2 Ssin
.

2 s + Ssm D 1 D 2 sm l 2
_ cos _ + + cos L_ + . (A-7)v v

Numerous other approaches were considered. However, most all of them are

variations of those already reported, some with various combinations of sine, square,

and even other types of wave equations. In general, these variations produced minor

differences in performance and there is no need to report all the variations here.
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