
Obtaining Hardware Performance Metrics
for the BlueGene/L Supercomputer

Pedro Mindlin, José R. Brunheroto, Luiz DeRose, and José E. Moreira�
pamindli,brunhe,laderose,jmoreira � @us.ibm.com

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598-0218

Abstract. Hardware performance monitoring is the basis of modern performance
analysis tools for application optimization. We are interested in providing such
performance analysis tools for the new BlueGene/L supercomputer as early as
possible, so that applications can be tuned for that machine. We are faced with
two challenges in achieving that goal. First, the machine is still going through its
final design and assembly stages and, therefore, it is not yet available to system
and application programmers. Second, and most important, key hardware perfor-
mance metrics, such as instruction counters and Level 1 cache behavior counters,
are missing from the BlueGene/L architecture. Our solution to those problems has
been to implement a set of nonarchitected performance counters in an instruction-
set simulator of BlueGene/L, and to provide a mechanism for executing code to
retrieve the value of those counters. Using that mechanism, we have ported a ver-
sion of the libHPM performance analysis library. We validate our implementation
by comparing our results for BlueGene/L to analytical models and to results from
a real machine.

1 Introduction

The BlueGene/L supercomputer [1] is a highly scalable parallel machine being devel-
oped at the IBM T. J. Watson Research Center in collaboration with Lawrence Liver-
more National Laboratory. Each of the 65,536 compute nodes and 1,024 I/O nodes of
BlueGene/L is implemented using system-on-a-chip technology. The node chip con-
tains two independent and symmetric PowerPC processors, each with a 2-element vec-
tor floating-point unit. A multi-level cache hierarchy, including a shared 4 MB level-2
cache, is part of the chip. Figure 1 illustrates the internals for the BlueGene/L node
chip.

Although it is based on the mature PowerPC architecture, there are enough inno-
vations in the BlueGene/L node chip to warrant new work in optimizing code for this
machine. Even if we restrict ourselves to single-node performance, understanding the
behavior of the memory hierarchy and floating-point operations is necessary to optimize
applications in general.

The use of analysis tools based on hardware performance counters [2, 5–7, 10, 12–
15] is a well established methodology for understanding and optimizing the perfor-
mance of applications. These tools typically rely on software instrumentation to obtain
the value of various hardware performance counters through kernel services. They also



PPC 440 

FXU
L1 I

L1 D

FPU

PPC 440 

FXU
L1 I

L1 D

FPU

256/512 MB
DRAM

BlueGene/L node chip

L2

Fig. 1. Internal organization of the BlueGene/L node chip. Each node consists of two PowerPC
model 440 CPU cores (PPC 440), which include a fixed-point unit (FXU) and 32KB level-1
data and instruction caches (L1 D and L1 I). Associated with each core is a 2-element vector
floating-point unit (FPU). A 4MB shared level-2 unified cache (L2) is also included in the chip.
256 or 512 MB of DRAM (external to the chip) complete a BlueGene/L node.

rely on kernel services that virtualize those counters. That is, they provide a different set
of counters for each process, even when the hardware only implements a single set of
physical counters. The virtualization also handles overflowing of counters by creating
virtual 64-bit counters from the physical (which are normally 32-bit wide) counters.

We plan to provide a version of the libHPM performance analysis library, from the
Hardware Performance Monitor (HPM) toolkit [10], on BlueGene/L. We believe this
will be useful to applications developers in that machine, since many of them are already
familiar with libHPM in other platforms. However, a deficiency of the performance data
that can be obtained from the BlueGene/L machine is the limited scope of its available
performance counters. The PowerPC 440 core used in BlueGene/L is primarily targeted
at embedded applications. As is the case with most processors for that market, it does
not support any performance counters. Although the designers of the BlueGene/L node
chip have included a significant amount of performance counters outside the CPU cores
(e.g., L2 cache behavior, floating-point operations, communication with other nodes),
there are critical data not available. In particular, counters for instruction execution and
L1 cache behavior are not present in BlueGene/L.

Hence, our solution to providing complete hardware performance data for Blue-
Gene/L applications relies on our architecturally accurate system simulator, BGLsim.
This simulator works by executing each machine instruction of BlueGene/L code. We
have extended the simulator with a set of non-architected performance counters, that are
updated as each instruction executes. Since they are implemented in the internals of the
simulator, they are not restricted by the architecture of the real machine. Therefore, we
can count anything we want without disturbing the execution of any code. Per process



and user/supervisor counters can be implemented directly in the simulator, without any
counter virtualization code in the kernel. Finally, we provide a lightweight architected
interface for user- or supervisor-level code to retrieve the counter information. Using
this architected interface, we have ported libHPM to BlueGene/L. As a result, we have
a well-known tool for obtaining performance data implemented with a minimum of
perturbation to the user code. We have validated our implementation through analytical
models and by comparing results from our simulator with results from a real machine.

The rest of this paper is organized as follows. Section 2 presents the BGLsim archi-
tectural simulator for BlueGene/L. Section 3 discusses the specifics of implementing
all layers needed to support a hardware performance monitoring tool on BGLsim, from
the implementation of the performance counters to the modifications needed to port
libHPM. Section 4 discusses the experimental results from using our performance tool
chain. Finally, Section 5 presents our conclusions.

2 The BGLsim simulator

BGLsim [8] is an architecturally accurate instruction-set simulator for the BlueGene/L
machine. BGLsim exposes all architected features of the hardware, including proces-
sors, floating-point units, caches, memory, interconnection, and other supporting de-
vices. This approach allows an user to run complete and unmodified code, from sim-
ple self-contained executables to full Linux images. The simulator supports interaction
mechanisms for inspecting detailed machine state, providing more monitoring capa-
bilities beyond what is possible with real hardware. BGLsim was developed primarily
to support development of system software and application code in advance of hard-
ware availability. It can simulate multi-node BlueGene/L machines, but in this paper
we restrict our discussion to the simulation of a single BlueGene/L node system.

BGLsim can simulate up to 2 million BlueGene/L instructions per second when
running on a 2 GHz Pentium 4 machine with 512 MB of RAM. We have found the
performance of BGLsim adequate for the development of system software and for ex-
perimentation with applications. In particular, BGLsim was used for the porting of the
Linux operating system to the BlueGene/L machine.

We routinely use Linux on BGLsim to run user applications and test programs.
This is useful to evaluate the applications themselves, to test compilers, and to validate
hardware and software designs choices. At this time, we have successfully run database
applications (eDB2), codes from the Splash-2, Spec2000, NAS Parallel Benchmarks,
and ASCI Purple Benchmarks suites, various linear algebra kernels, and the Linpack
benchmark.

While running an application, BGLsim can collect various execution data for that
application. Section 3 describes a particular form of that data, represented by perfor-
mance counters. BGLsim can also generate instruction traces that can be fed to trace-
driven analysis tools, such as SIGMA [11].

BGLsim supports a call-through mechanism that allows executing code to commu-
nicate directly with the simulator. This call-through mechanism is implemented through
a reserved PowerPC 440 instruction, which we call the call-through instruction. When
BGLsim encounters this instruction in the executing code, it invokes its internal call-



through function. Parameters to that function are passed in pre-defined registers. De-
pending on those parameters, specific actions are performed. The call-through instruc-
tion can be issued from kernel or user mode. Examples of call-through services provided
by BGLsim include:

– File transfer: transfers a file from host machine to simulated machine.
– Task switch: informs the simulator that the operating system (Linux) has switched

to a different process.
– Task exit: informs the simulator that a given process has terminated.
– Trace on/off : controls the acquisition of trace information.
– Counter services: controls the acquisition of data from performance counters.

As we will see in Section 3, performance monitoring on BGLsim relies heavily on
call-through services. In particular, we have modified Linux to use call-through ser-
vices to inform BGLsim about which process is currently executing. BGLsim then uses
this information to control monitoring (e.g., performance counters) associated with a
specific process.

The PowerPC 440 processors supports two execution modes: supervisor (or kernel)
and user. A program that executes in supervisor mode is allowed to issue privileged
instructions, as opposed to a program running in user mode. BGLsim is aware of the
execution mode for each instruction, and this information is also used to control mon-
itoring. By combining information about execution mode with the information about
processes discussed above, BGLsim can segregate monitoring data by user process and,
within a process, by execution mode.

3 Accessing Hardware Performance Counters on BGLsim

The BlueGene/L node chip provides the user with a limited set of hardware perfor-
mance counters, implemented as configurable 32- or 64-bit registers. These counters
can be configured to count a large number of hardware events but there are significant
drawbacks. The number of distinct events that can be simultaneously counted is lim-
ited by chip design constraints, therefore restraining the user’s ability to make thorough
performance analysis with a single application run. Moreover, the set of events to be
simultaneously counted cannot be freely chosen, and some important events, such as
level-1 cache hits and instructions executed, cannot be counted at all.

As an architecturally accurate simulator, BGLsim should only implement the hard-
ware performance counters actually available in the chip. However, we found that
BGLsim allowed for much more: the creation of a set of non architected counters, which
could be configured to count any set of events at the same time.

The BGLsim non architected performance counters were organized as two sets of
64 counters. The counters are 64-bit wide. Pairs of counters, one in each set, count
the same event, but in separate modes: one set for user mode and the other set for
supervisor mode. Furthermore, we have implemented an array of 128 of these double
sets of counters, making it possible to assign each double set to a different Linux process
id (PID), thus acquiring data from up to 128 distinct Linux concurrent processes.



To provide applications with performance data, we had first to enable access to the
BGLsim non architected performance counter infra-structure to executing code. This
was accomplished through the call-through mechanism described in Section 2. Through
the counter services of the call-through mechanism, executing code can reset and read
the values of the non architected performance counters. We used the task switch and
task exit services (used by Linux) to switch the (double) set of counters being used for
counting events. We also used the knowledge of execution mode to separate counting
between the user and supervisor sets of counters. That way, each event that happens
(e.g., instruction execution, floating-point operation, load, store, cache hit or miss), is
associated with a specific process and a specific mode.

To make the performance counters easily accessible to an application, we defined
the BGLCounters application programming interface. This API defines the names of the
existing counters in BGLsim to the application, and creates wrapper functions that, in
turn, call the corresponding call-through services with the appropriate parameters. The
BGLCounters API provides six basic functions: initialize the counters, select which
counters will be active (usually all), start the counters, stop the counters, reset the coun-
ters, and read the current values of the counters.

Finally, we ported libHPM to run on BGLsim. This port was done by extending the
library to use the BGLCounters API, adding support for new hardware counters and de-
rived metrics that are related to the BlueGene/L architecture, such as the 2-element vec-
tor floating-point unit, and by exploiting the possibility of counting both at user mode
and at supervisor mode during the same execution of the program. Figure 2 displays a
snapshot of the libHPM output from the execution of an instrumented CG code, from
the NAS Parallel Benchmarks [4]. It exhibits the feature of providing the counts for
both user and kernel activities, which, in contrast with other hardware counters based
tools, is a unique feature of this version of libHPM.

Counter User Kernel

BGL INST (Instructions completed) : 308099072 9715300
BGL LOAD (Loads completed) : 31607898 1055210
BGL STORE (Stores completed) : 1207204 593399
BGL D1 HIT (L1 data hits (l/s)) : 85123481 1633792
BGL D1 L MISS (L1 data load misses) : 17041434 166502
BGL D1 S MISS (L1 data store misses) : 301437 51876
BGL I1 MISS (L1 instruction misses) : 10406 6930
BGL D2 MISS (L2 data load misses) : 149 150
BGL DTLB MISS (Data TLB misses) : 107001 201
BGL ITLB MISS (Instruction TLB misses) : 2283 0
BGL FP LOAD (Floating point loads) : 66920747 198
BGL FP STORE (Floating point stores) : 2730585 198
BGL FP DIV (Floating point divides) : 780 0
BGL FMA (Floating point multiply-add) : 32662140 0
BGL FLOPS (Floating point operations) : 33755085 0

Fig. 2. libHPM output for the Instrumented CG code running on BGLsim.



4 Experimental Results

In order to validate BGLsim’s hardware performance counters mechanism, we per-
formed two sets of experiments. The first validation was analytical, using the ROSE [9]
set of micro-benchmarks, which allows us to estimate the counts for specific metrics
related with the memory hierarchy, such as loads, stores, cache hits or misses, and TLB
misses. In the second set of experiments we used the serial version of the NAS Paral-
lel Benchmarks and generated code for BlueGene/L and for an IBM Power3 machine,
using the same compiler (GNU gcc and g77 version 3.2.2). We ran these programs on
BGLsim and on a real Power3 system, collecting the hardware metrics with libHPM.
With this approach, we were able to validate metrics that should match in both archi-
tectures, such as instructions, loads, stores, and floating point operations.

4.1 Analytical Comparison

The Blue Gene memory hierarchy parameters used in this analysis are: level-1 cache:
32 Kbytes with line size of 32 bytes; level-2 cache: 4 Mbytes with line size of 128 bytes;
Linux page size: 4 Kbytes; TLB: 64 entries, fully associative.

We used seven functions from the ROSE micro-benchmark set: (1) sequential stores,
(2) sequential loads, (3) sequential loads and stores, (4) random loads, (5) multiple
random loads, (6) matrix transposition, and (7) matrix multiplication. The first five
functions use a vector � with �������	� double precision elements (8 Mbytes). The
functions random loads and multiple random loads also use a vector, I, of 1024 inte-
gers (4 Kbytes), containing random indices in the range 
���� ��� . We also executed these
two functions (and sequential loads) using a vector � � with twice the size of � . Fi-
nally, we used matrices of ��������� double precision elements (32 Kbytes each) in the
matrix functions. The transposition function only uses one matrix, while the multiplica-
tion uses three matrices. We called a function to evict all matrix elements between the
two calls (transpose and multiply). Those functions perform the following operations
(where � is a constant, and � is a double precision variable):

Sequential stores: ��� �������! for �"�#��� � .
Stores 1M double precision words (8 Mbytes) sequentially; we expect approxi-
mately 2K page faults, generating 2K TLB misses. Each page has 128 Level 1 and
32 Level 2 lines. Hence, this function should generate 256K store misses at Level 1
and 64K store misses at Level 2.

Sequential loads: �$�%�'&(�*)+��� �,�- for �.�/��0 � .
Loads 1M double precision words. Again we expect approximately 2K page faults,
2K TLB misses, 256K Level 1 load misses, and 64K Level 2 misses.

Sequential loads and stores: �1� ���2�3��� ���4&5�6)+��� �879�:�- for �"�%�;0 � .
Loads 2M double precision words and stores 1M double precision words. Since it
is loading adjacent entries and always storing one of the loaded entries, we should
expect only 1 miss for every 8 loads, with a total of 256K load misses in Level 1
and no store misses. In Level 2 we expect one fourth of the misses in Level 1 (64K).

Random loads: �$�%�'&(��� <=� ���0�- >�.�/��00�@?���� .
Access 1K random elements of the vector � . We expect approximately 1K TLB



misses and 1K load misses at level 1. � has twice the Level 2 cache size and was
just traversed. Hence, accesses to its second half should hit in Level 2 cache. Since
we are dealing with random elements, we would expect that approximately half of
these accesses would cause misses. We also expect to have an additional 2 TLB
misses, 128 Level 1 misses, and 32 Level 2 misses, due to the sequential access to
< . When running this function using � � , we expect the same number of TLB and
Level 1 misses, but approximately ���!� of the accesses should miss in Level 2, since
� � is four times the size of the Level 2 cache.

Multiple random loads: � � �+&5��� < � ���4&3� � )����  �� ��? � �4�� �8�/��00�@?����
For each entry of < it accesses 32 consecutive entries from � , with a stride of
16, which corresponds to four Level 1 cache lines and one Level 2 cache line. we
expect again one Level 1 miss and ����� Level 2 miss for each load, with a total of
16K Level 1 misses and 8K Level 2 misses, but only 2K TLB misses overall1. A
similar behavior from the one described for the function Random loads is expected
for the Index vector < and the runs using � � .

Matrix transposition: This function executes the operations shown in Figure 3a, where
N is 64. It performs �$) 
 ��� � 79����� ����?���� loads and the same number of stores.
Since the matrix fits exactly in the Level 1 cache, we expect approximately 1 load
miss for every 8 loads, and no store misses. Also, since the matrix has 32 Kbytes,
we expect 9 TLB misses.

Matrix multiplication: Executes the operations shown in Figure 3b, assuming the ma-
trix B is transposed. It loads matrices A and B 64 times, and matrix C once. Hence,
it performs � �
	 ) ����� loads and ����� stores. We would expect 8 TLB misses for
each matrix, with an extra TLB miss to compensate for not starting the arrays at a
page boundary. In each iteration the outer loop traverses B completely. Since B has
exactly the size of the level-1 cache, and one row of A and C are also loaded per
iteration, there would be no reuse of B in subsequent iterations of the outer loop.
B should generate 
 �����@��� � Level 1 misses in each iteration of the outer loop. The
rows of of A and C are reused during the iterations of the two inner loops. This
function should generate approximately 
 ���'& � &5� �4) ���,���!� level-1 misses (66K).
Since all three matrices fit in Level 2, we expect to have approximately � )+���-��,� �
Level 2 misses (768).

for (i = 0; i < N; i++) for (i = 0; i < N; i++)
for (j = 0; j < N; j++) for (j = 0; j < N; j++)
if (i != j) � for (k = 0; k < N; k++)
aux = B[i][j]; C[i][j] += A[i][k]*B[j][k];
B[i][j] = B[j][i];
B[j][i] = aux;�

(a) (b)

Fig. 3. Pseudo-codes for matrix transposition (a) and matrix multiplication (b)

1 Unless the first access to � hits the beginning of a page, a page boundary will be crossed
during the span of 32 accesses, causing the second TLB miss for each entry of � .



Table 1 summarizes the expected values for each function and presents the error
(difference) between observed and expected counts. In all cases the measured values
are close to the expected numbers, with the largest differences being less than 2%. Also,
the expected numbers for functions random loads and multiple random loads should be
viewed as upper bounds, because they deal with random entries. The larger the vector
� gets, the closer the measured value should be from these bounds.

Stores Loads Total TLB
FP L1 Misses FP FX L1 Misses L2 Misses Misses

functions exp. error exp error exp. error exp error exp. error exp error exp. error
seq stores 1M 0 256K +1 0 +1 0 0 0 +1 64K +8 2K +1
seq loads 0 0 0 0 1M +1 0 0 256K +2 64K +4 2K +2
seq ld & st 1M -1 0 0 2M -1 0 0 256K +2 64K +8 2K +1
random ld � 0 0 0 0 1K 0 1K 0 1152 -53 544 +8 1K -37
random ld ��� 0 0 0 0 1K 0 1K 0 1152 -53 800 +3 1K -37
mult rnd ld � 0 0 0 0 32K 0 1K 0 32896 -244 16416 +242 2K -23
mult rnd ld ��� 0 0 0 0 32K 0 1K 0 32896 -367 24608 +119 2K -31
transpose 8064 0 0 0 8064 0 0 0 1K +298 252 +14 9 0
matrix mult 4K 0 0 0 516K 0 0 0 66K +1153 768 +3 25 -1

Table 1. Expected counts and error (difference) between expected and observed counts for the
micro-benchmark functions.

4.2 Validation Using a Real Machine

Table 2 shows the counts for the 8 codes in the NAS Parallel Benchmarks. (We used
the serial version of these benchmarks, which run on a single processor.) The programs
were compiled with the GNU gcc (IS) and g77 (all the others) compilers, with -O3 opti-
mization flag. We ran the Class S problem sizes for the serial versions of the benchmarks
on both an IBM Power3 system and on BGLsim. Due to the architectural differences
in the memory hierarchy of the BlueGene/L and the Power3 systems, we restricted this
comparison to metrics that should match in both architectures (floating-point opera-
tions, load, stores, and instructions).

We observe that for some benchmarks (e.g., CG and IS) the agreement between
Power3 and BGLsim is excellent, while for others (e.g., EP and LU) the difference is
substantial. We are investigating the source of those differences. It should be noted that,
even though we are using the same version of the GNU compilers in both cases, those
compilers are targeting different machines. It is possible the compilers are perform-
ing different optimizations for the different machines. As future work, we will pursue
executing the exactly same object code on both targets, to factor out compiler effects.

We also compared the wall clock time for executing the 8 benchmarks on the
Power3 machine and on BGLsim, running on a 600 MHz Pentium III processor. The
wall clock slowdown varied from 500 (for IS) to 3000 (BT).

5 Conclusions

Performance analysis tools, such as the HPM toolkit, are becoming an important com-
ponent in the methodology application programmers use to optimize their code. Central
to those performance tools is hardware performance monitoring. We are interested in



Counters
Code System Instructions FX loads FP loads Total loads FX stores FP stores Total stores FP ops FMAs

Power3 603,174K 215,921K 92,015K 228,617K 13,671K
BT BGLsim 530,599K 335K 157,081K 157,417K 9,993K 80,923K 90,916K 210,607K 11,475K

difference 12.03% 27.10% 1.19% 7.88% 16.06%
Power3 306,865K 98,616K 3,970K 33,762K 32,663K

CG BGLsim 308,099K 31,607K 66,920K 98,528K 1,207K 2,730K 3,937K 33,755K 32,662K
difference 0.4% 0.09% 0.83% 0.02% 0.00%
Power3 5,893,189K 1,248,195K 363,302K 2,501,740K 391,379K

EP BGLsim 6,267,337K 403,626K 743,087K 1,146,714K 617,816K 338,413K 956,230K 1,431,830K 350,281K
difference 6.35% 8.13% 50.28% 42.77% 10.50%
Power3 551,146K 109,204K 97,260K 160,806K 37,226K

FT BGLsim 524,995K 7,585K 95,145K 102,730K 2,917K 93,361K 96,278K 147,363K 37,225K
difference 4.74% 5.93% 1.01% 8.36% 0.00%
Power3 8,767K 2,008K 1,352K

IS BGLsim 8,770K 2,007K 2,007K 1,351K 1,352K
difference 0.03% 0,01% 0,00%
Power3 291,671K 94,758K 27,351K 108,157K 18,560K

LU BGLsim 233,270K 4,432K 66,677K 71,109K 8,860K 27,798K 30,659K 77,100K 15,470K
difference 20.02% 24.96% 12.09% 28.79% 16.65%
Power3 20,827K 5,072K 2,581K 5,517K 367K

MG BGLsim 16,956K 271K 3,860K 4,131K 1,257K 1,131K 2,388K 3,516K 367K
difference 18.59% 18.54% 7.47% 36.27% 0.00%
Power3 276,419K 88,658K 28,278K 78,299K 13,884K

SP BGLsim 263,325K 726K 71,592K 72,318K 2,274K 26,893K 29,168K 75,812K 13,884K
difference 4.74% 18.43% 3.15% 3.18% 0.00%

Table 2. Counts from the NAS benchmark, when running on a Power3 and on BGLsim. Note that
counts are in units of one thousand (K).

providing such performance analysis tools for the new BlueGene/L supercomputer as
early as possible, so that applications can be tuned for that machine.

In this paper, we have shown that an architecturally accurate instruction-set simu-
lator, BGLsim, can be extended to provide a set of performance counters that are not
present in the real machine. Those nonarchitected counters can be made available to
running code, and integrated with a performance analysis library (libHPM), providing
detailed performance information on a per process and per mode (user/supervisor) ba-
sis.

We validated our implementation through two sets of experiments. We first com-
pared our results to expected values from analytical modes. We also compared results
from our implementation of libHPM in BlueGene/L to results from libHPM in a real
Power3 machine. Because of differences in architectural details between the Blue-
Gene/L PowerPC 440 processor and the Power3 processor (caches size and associa-
tivity, TLB size and associativity), we restricted our comparison to values that should
match in both architectures (numbers of floating-point operations, load, stores, instruc-
tions). Through both sets of experiments, we have shown coherent results from libHPM
in BGLsim in some codes from the NAS Parallel Benchmarks.

Our implementation of libHPM on BGLsim has already been successfully used to
investigate the performance of an MPI library for BlueGene/L [3]. We want to make it
even more useful by extending it to measure and display multi-chip performance infor-
mation. Given the limitations of performance counters in the real BlueGene/L hardware,
we expect that libHPM in BGLsim will be useful even after hardware is available. The
simultaneous access to a large number of performance counters, and consequently to



a large number of derived metrics, allows the user of BGLsim to obtain a wide range
of performance data from a single application run. Most hardware implementations of
performance counters limit the use to just a few simultaneous counters, forcing the user
to repeat application runs with different configurations.

The BGLsim approach can be used as a tool for architectural exploration. We can
verify the sensitivity of performance metrics of applications to various architectural
parameters (e.g., cache size), and guide architectural decisions for future machines.

References

1. N. Adiga et al. An Overview of the BlueGene/L Supercomputer. In Proceedings of SC2002,
Baltimore, Maryland, November 2002.

2. D. H. Ahn and J. S. Vetter. Scalable Analysis Techniques for Microprocessor Performance
Counter Metrics. In Proceedings of SC2002, Baltimore, Maryland, November 2002.

3. G. Alm ási, C. Archer, J. G. Castaños, M. Gupta, X. Martorell, J. E. Moreira, W. Gropp,
S. Rus, and B. Toonen. MPI on BlueGene/L: Designing an efficient general purpose mes-
saging solution for a large cellular system. Technical report, IBM Research, 2003.

4. D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and M. Yarrow. The NAS
Parallel Benchmarks 2.0. Technical Report NAS-95-929, NASA Ames Research Center,
December 1995.

5. S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A Scalable Cross-Platform In-
frastructure for Application Performance Tuning Using Hardware Counters. In Proceedings
of Supercomputing’00, November 2000.

6. B. Buck and J. K. Hollingsworth. Using Hardware Performance Monitors to Isolate Memory
Bottlenecks. In Proceedings of Supercomputing’02, November 2000.

7. J. Caubet, J. G. J. Labarta, L. DeRose, and J. Vetter. A Dynamic Tracing Mechanism for Per-
formance Analysis of OpenMP Applications. In Proceedings of the Workshop on OpenMP
Applications and Tools - WOMPAT 2001, pages 53 – 67, July 2001.

8. L. Ceze, K. Strauss, G. Alm ási, P. J. Bohrer, J. R. Brunheroto, C. Caşcaval, J. G. C. nos,
D. Lieber, X. Martorell, J. E. Moreira, A. Sanomiya, and E. Schenfeld. Full circle: Simulating
linux clusters on linux clusters. In Proceedings of the Fourth LCI International Conference
on Linux Clusters: The HPC Revolution 2003, San Jose, CA, June 2003.

9. L. DeRose. The Reveal Only Specific Events (ROSE) Micro-benchmark Set for Verification
of Hardware Activity. Technical report, IBM Research, 2003.

10. L. DeRose. The Hardware Performance Monitor Toolkit. In Proceedings of Euro-Par, pages
122–131, August 2001.

11. L. DeRose, K. Ekanadham, and J. K. Hollingsworth. SIGMA: A Simulator Infrastructure to
Guide Memory Analysis. In Proceedings of SC2002, Baltimore, Maryland, November 2002.

12. C. Janssen. The visual Profiler. http://aros.ca.sandia.gov/˜cljanss/perf/vprof/. Sandia Na-
tional Laboratories, 2002.

13. J. M. May. MPX: Software for Multiplexing Hardware Performance Counters in Multi-
threaded Programs. In Proceedings of 2001 International Parallel and Distributed Process-
ing Symposium, April 2001.

14. M. Pettersson. Linux X86 Performance-Monitoring Counters Driver. http://
user.it.uu.se/˜mikpe/linux/perfctr/. Uppsala University - Sweden, 2002.

15. Research Centre Juelich GmbH. PCL - The Performance Counter Library: A Common Inter-
face to Access Hardware Performance Counters on Microprocessors. http://www.fz-
juelich.de/zam/PCL/.


