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Abstract

There is an increased awareness of the benefits of
modeling imprecision in engineering problems, but
success is limited by two problems associated with the
calculus of imprecision:  (1) Solving equations for a
parameter is difficult because the common operators of
addition and multiplication lack true inverses.  (2) The
multiple occurrence of imprecise quantities in
engineering functions can lead to incorrectly very
imprecise results because each occurrence of the
parameter is treated as a separate parameter with the
same range rather than multiple occurrences of the
same parameter.  Results obtained in the area of interval
analysis are extended to the area of the calculus of
imprecision.  New operators are defined for functions of
imprecise quantities that alleviate these two obstacles,
and thus provide a general framework for including
imprecision directly in engineering calculations.

Keywords:  Fuzzy arithmetic fuzzy equations, fuzzy
numbers, intervals, manufacturability.

1. INTRODUCTION

There has been an increased interest in modeling
imprecision other than what can be described by
stochastic uncertainty in engineering applications.  The
foundation of this approach is that many concepts
cannot be accurately measured and modeled because
imprecision is intrinsic to the parameters and
relationships in these problems.  In these situations,
parameters can be modeled as imprecise quantities that
restrict the value of a parameter to a partially ordered
set.   This approach has been used to solve problems in
concurrent engineering and manufacturing [8, 10, 11].
When modeling these physical systems, two problems
arise due to the operator’s mathematical properties.
First there is, in general, no inverse for the extended
algebraic operators addition and multiplication.
Consequently fuzzy equations cannot be solved by

inverting the operators.  Second, when multiple
occurrences of a parameter occur in a function the
standard mathematics overstates the imprecision of the
result.  Consequently, the result contains the actual set
as a subset.  These limitations hinder the development
of systems for modeling the imprecision intrinsic to
many engineering applications.

This paper is organized as follows:  Section 2  presents
the two problems encountered in engineering models
and related work to overcome these problems.  Section
3 discusses notation and functions with imprecise
quantities.  Section 4 extends three operators from work
conducted in interval analysis to the domain of
imprecise quantities.  In section 5 an example is
provided to demonstrate the benefits of this approach in
modeling engineering systems.

2.  ISSUES AND LIMITATIONS OF FUZZY

MATHEMATICS APPLIED TO ENGINEERING SYSTEMS

This section discusses the two anomalies associated
with applying the extension principle to physical
systems.

2.1  LACK OF INVERSE PREVENTS SOLVING

EQUATIONS

Solving equations is complicated due to the lack of
inverse operators, that is ⊕ ⊗and  are not group

operators, but form a semi-group with identity 0 and 1
respectively [6].  Consequently, algebraic equations of
the form, A X B⊕ =  cannot be solved for unknown X
as X B= A.  The solution to the inverted operation
will enclose the actual solution, that is if we denote X as
the actual solution and ′X  as the solution obtained
from the inverse then X X⊆ ′ .
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2.2  MULTIPLE OCCURRENCE OF PARAMETERS IN AN

EXPRESSION RESULT IN INCREASED IMPRECISION

Multiple occurrence of parameters in an expression
causes the solution to be more imprecise, that is it

brackets the actual solution [7].  Let g x
x

x
( ) =

− 2
 and

an equivalent representation of the function is

f x
x

( ) = +
−

1
2

2
.  If x → 3 4 5, ,  then g x( ) , ,→ 1 2 5

and f x( ) . , ,→ 167 2 3 .  The function g(x) is called an

improper representation of the function because it treats
each occurrence x as a separate parameter with the same
range, when the intent is that it is the same parameter.
Therefore, g(x) obtains a more imprecise results (larger
set of values) than f(x), the proper representation [6].

2.3  RELATED WORK

Buckley and Qu [3] examine the problem of solving
linear and quadratic equations and present the
conditions governing the existence of a solution when
using the α-cut method.  The issue of multiple
occurrence of parameters in an expression was
addressed in Dong and Wong [5] as part of an
algorithm for computing fuzzy weighted averages
(FWA).  A combinatorial interval analysis scheme was
used to account for multiple occurrences of a parameter.
Inverses of functions can be determined by the FWA
discretization algorithm since all the discretized points
are stored internally by the system.  Thus, it is possible
to map the output into the input, although it is not
possible to solve equations using this algorithm.  Wood,
et al., [18] and Otto, et al. [16] have extended this
approach to encompass more functions and combination
metrics.

Giachetti, et al., [11] exploited the imprecision
increasing property of fuzzy equations by ordering the
constraints in a hierarchy.   The solutions to constraint
networks higher in the hierarchy were used to place an
additional constraint on the solution to lower level more
precise constraint networks.  This procedure, called
precision convergence, was used in a concurrent
engineering design problem to reduce the problem’s
imprecision.

The absence of an inverse and the multiple occurrence
of parameters are well known problems in the domain
of interval analysis [1, 14].  Ward, et al., [17] have
extensively examined the use of interval analysis in the
mechanical engineering design domain.  They
developed four operators, the range operator and three
inverses to range that are used to solve interval
equations of three parameters.  Finch and Ward [9]

extended these results to arbitrary relationships over n
parameters and show how to obtain useful information
pertinent to the analysis of physical systems.  They
accomplish this by making an important distinction
between physically dependent and independent
parameters.

3. FUZZY QUANTITIES AND MAPPINGS

An imprecise quantity Q is a partially ordered set of
real numbers.  Each element x Q∈  has an associated
membership value µ Q x( )  representing the degree x

belongs to Q.  It is a mapping [ ]µ Q x: ,→ 0 1 .  Common

practice is to impose restrictions on the shape of µ Q x( )

to either a triangular or trapezoidal distribution [4, 12].
We will use trapezoidal distributions, so then the
imprecise quantities can be represented by a quadruple
that defines the membership function’s endpoints as,

x x x x x→ , , ,      (1)

An imprecise quantity defines a set of closed intervals
called α-cut sets that are described by,

( ){ }Q x xQα µ α= ≥ , ∀  α ∈  (0, 1] .  The α-cut set at α

is represented by the interval,

Q x xα α α= [ , ] (2)

The interval [ ]x x, is the α-cut set at α=0 and is called

the support set.  The interval [ ]x x, is the α-cut set at

α=1 and is called the core set of the imprecise quantity.
Throughout this paper the double bar notation will be
used to represent the endpoints of the support set and
the single bar to represent the endpoints of the core set.

For an isotonic function f , the α-cut endpoints of the
evaluated function are equal to that function evaluated
on the α-cut endpoints of the individual parameters [6].
Formally, we state,

( )[ ] ( )f Q Q f Q Q1 2 1 2 0 1, , , ( , ]α α α α= ∀ ∈      (3)

Equation (3) provides the justification used in Section 4
to evaluate functions based on the imprecise quantity’s
endpoints given by expression (1).

3.1 FUZZY MAPPINGS

Figure 1 shows a monotonically increasing mapping
(function) f R R: →  and the inverse mapping



to appear:  7th Interational Fuzzy Systems Assiciation Congress, Prague, Czech Republic, June 25-29, 1997

f R R− →1: . The membership function ( )µ x  is

mapped by function f and induces µ( )y  defined via the

extension principle as,

( ) ( ){ }{ }µ µ µ( ) sup min , ( )y x m f x y= = (4)

µ( )y = 0  if f y− = ∅1( ) .

Let m → 1 5 2 2 2 5. , , , . , x → 5 5 5 5 5 6, . , . ,  and if the

function f is y m x= ⊗ , then it induces

y → 7 5 10 10 15. , , , .  When µ( )y  is mapped by the

inverse, f −1 , then the extension principle induces

µ( )′x  on R and not ( )µ x .  In Figure 1 the support sets

[ ]x x,  and [ ]′ ′x x, are shown on the horizontal axis and

y y,





on the vertical axis.  Note that xα  ⊆  ′xα , i.e. xα

is more precise than ′xα .  In engineering applications it

is commonly desirable to retrieve xα  but this is not

possible when strictly using the extension principle.
The extension principle is pessimistic and determines
the largest interval possible.  The reason imprecise
mappings lack an inverse is that there is more than one
forward mapping from the input to a single output
value. (e.g.  there are two combinations of x and m
values, {10, 1.5} and {6, 2.5} that map through y=mx
to y = 15).  The lack of an inverse for imprecise
quantities occurs with all functions.  The extension
principle does not differentiate between which values
are desired but in physical systems there is an important
distinction.  Oftentimes, it is desirable to obtain the
subset xα .
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Figure 1.  Mapping Imprecise Quantities

3.2 MODELS OF PHYSICAL SYSTEMS

The parameters in engineering application models have
a domain specific connotation.  The causality between
the imprecise engineering parameters can be exploited
to achieve better results in domain specific models.
Dubois, et al., [8] discuss the significance of
controllable versus uncontrollable parameters in the
context of job-shop scheduling.  If the parameter is
controllable then the fuzzy set represents preference for
a value.  Fuzzy sets of uncontrollable parameters
represent a possibility distribution that constrain the
values the parameter can assume.  Likewise, the
partitioning of parameters into design, tuning, and
noise parameters has been advantageously applied by
Otto and Antonsson [15] for mechanical engineering
design.  The distinction of the causality of parameters is
significant to the interpretation of these engineering
models.  Physically independent parameters are those
that temporally occur first and determine the physically
dependent parameter values.  The physically dependent
parameters cannot be directly specified by the designer.
This notion of dependency does not correspond to the
typical mathematical definition.

4.  OPERATORS TO PERFORM MAPPINGS WITH

IMPRECISE QUANTITIES

This section presents three operators adapted from [9]
in the terminology relevant to imprecise quantities that
will be used to evaluate engineering functions.

4.1 DECREASING AND INCREASING PARAMETERS

SUBSET

The decreasing parameters subset, Df  is the subset of

parameters for the function denoted by the subscript
such that the function ( )f q qn1 , ...,   is monotonically

decreasing. ( )f x q qn, , ...,1  is monotonically decreasing

w.r.t. x if and only if for x > ′x  and when qi,...,qn is

constant, then ( )f x q qn, , ...,1 < ( )f x q qn′, , ...,1  [2].

The increasing parameters subset, I f  is the subset of

parameters for when the function ( )f q qn1 , ...,  is

monotonically increasing.  A function ( )f x q qn, , ...,1

is called monotonically increasing w.r.t. x if and only if
for x > ′x and when qi,...,qn is constant, then

( )f x q qn, , ...,1  ≥ ( )f x q qn′, , ...,1 .
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4.2 IMAGE DEFINITION

The image determines the possibility distribution of the
physically dependent output from the input domain.
This is equivalent to the extension principle and is
considered “pessimistic” since it finds the largest
possible set resulting from the physically independent
parameters.  It is included here to maintain a consistent
notation with the inverses to image.

( )Image: ,...,f q q pn1 =  then

( ) ( )p f D I f D I f D I f D If f f f f f f f→ 









, , , , , , ,

If x Df∈  then the notation D f  denotes the parameters

in Df  at their x  values according to expression (1).

4.3 DOMAIN DEFINITION

An inverse of the image is the domain operator.
Domain determines the physically independent
parameter such that the forward mapping will always be
restricted by the physically dependent parameter p.

( )Domain: f q q p qn k
− =1

1, ..., ,
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Where { }D pf − −1 denotes the set of parameters when

the expression ( )f q q pn1, ..., ,  is decreasing less the

parameter p.  { }I pf − ∪1  denotes the set of

monotonically increasing parameters and the parameter
p.

4.4 SUFFICIENT ELEMENTS

The independent parameters are partitioned into
uncontrolled ′q and controlled ′′q  subsets.  Sufficient

elements is an inverse of the image that determines the
physically independent parameter sets in one partition
such that parameters in the second partition will always
map into the physically dependent parameter set.

( )SufElements: f q q p qk
− ′ ′′ =1 , ,

( )
( )

for p D then q

f I D p D I

f I D p D I

f I D p D I

f I D p D I
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f f f f

f f f f

f f f f

f f f f
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for p I then q

f D I p I D

f D I p I D
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These three operators show how to obtain the
parameters of expression (1).  The entire membership
function can be obtained via two methods, discretization
[5, 16, 18] or the parametered fuzzy numbers approach
[12].  Both methods are approximations but they reduce
the computational complexity and obtain useful results.
Giachetti and Young [12] analyzed fuzzy algebraic
operators and set forth guidelines for determining the
accuracy of the parametered fuzzy number approach.

They defined a spread ratio, as λ = 





x
x  for the left

spread and ρ = 





x
x

 for the right spread.  When λ <

1.3 and ρ > 0.8 then a linear approximation for α-cut
endpoints between 0 and 1 yields results within 10% of
the actual value.
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5. MACHINING EXAMPLE PROBLEM

A manufacturing process capability is the physical
ability of a manufacturing process to perform one or
more feature-generating operations to some level of
accuracy and precision.  A commonly encountered
engineering problem is to provide the design engineer
an indication of the machine capability so that he can
specify part features such that they are easy to
manufacturing (i.e. well within the machine
capabilities) [10].  In slab milling the theoretical
arithmetic average surface roughness when upmilling is
Ri (mm) and is determined by an equation derived by
Martellotti [13],

R
f

d fni
t

=
+

0 125

2

2.

( / ) ( / )π
 (5)

where f = chip load (mm/tooth); d = diameter of milling
cutter (mm); and nt = number of teeth on cutter.
Information pertinent to the machine capabilities can be
obtained by evaluating expression (5) with the image,
domain and sufficient elements operators.  Using the
terminology of [9] the parameters in the machining
example are classified based on their physical causality.
The surface roughness is a physically dependent
parameter since it is determined by the feed rate and
tool geometry.  Consequently, it is determined using the
image operator.  Both chip load and cutting tool
diameter and number of teeth are physically
independent in expression (5) since they are determined
first by the manufacturing expert.  If a desired surface
roughness is specified first then the physically
independent chip load to achieve it can be found with
the domain operator.  If the tool diameter is selected
first then it is classified as uncontrollable.  The chip
load f is controllable since it can be adjusted on the
machine.  These terms are used in the sufficient
elements operator to solve for the tool diameter such
that for any chip load in the set f the desired surface
roughness will be achieved.  Note that this notion of
physical dependency is different than mathematical
dependency since expression (5) could be rewritten to
solve for d as a function of surface roughness but d
would still be physically independent even though it is
mathematically dependent on Ri.

5.1 EVALUATION OF MACHINE CAPABILITIES

5.1.1 Image

The physically dependent parameter surface roughness
is determined using the image operator.  Let the
parameters be defined as; d → 58 60 62 64, , ,  mm,

nt → 4 5 5 6, , , teeth, and f → 0 30 0 35 0 0. , . , .40, .45

mm/tooth.

According to definition 4.1 the set of increasing
parameters I f  is {f} and the set of decreasing

parameters D f  is {nt, d}.  Although f occurs multiple

times in expression (5) it is treated here as a single
parameter.  The image of expression (5) is,

Ri → 0 35 0 0 66 0 85. , .49, . , .  µm

This is the induced preference range of surface
roughness that can be expected if the machinist stays
within the preference functions for chip load and cutter
tool diameter.

5.1.2 Domain

The physically independent chip load is determined
such that it is restricted to map forward into the desired
surface roughness output.  Expression (8) is rewritten to
obtain the quadratic equation in f as,

0 125
2

02. f
R n

f
R di t i− − =

π
(9)

Equation (9) is solved for f and the increasing subset of
parameters I

f −1  is {Ri, nt, d} and the decreasing subset

of parameters D
f −1  is {∅ }.  The physically dependent

parameter p is Ri.  The domain expression is used and
the chip load is obtained as,

f → 0 30 0 35 0 0. , . , .40, .45  mm/tooth.

If the extension principle was used then the resulting
chip load would be,

′ →f 0 29 0 34 0 0. , . , .41, .47  mm/tooth.

Note that f f⊆ ′ .  If the machinist relied on ′f  then a

possible result is that the roughness would not be within
the desired range.  The extended result ′f  indicates the

machinist has a greater range of possible chip loads for
attaining the surface roughness than what actually
exists.   Consequently, we see the need for an inverse to
the image operator.

5.1.3 Sufficient Elements

The sufficient elements is used to determine the tool
diameter such that the chip load can be adjusted and
still yield the desired surface roughness.  Equation (5) is
rewritten as a function of d,
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d
f

R

n f

i

t= −0 25 22.

π

The sufficient elements are,

d → 58 59 3 61 631.4, . , .4, .  mm.

The extension principle would result in,

′ →d 57 8 59 3 61 63 5. , . , .4, . mm.

d d⊆ ′ with the possible result of falling outside of the
desired range of surface roughness if ′d was used.

6. CONCLUSION

This paper extended the operators developed by Finch
and Ward [9] to fuzzy quantities.  It demonstrated how
these operators can be used to overcome two common
problems encountered when evaluating fuzzy equations;
the lack of an inverse and the multiple occurrence of
parameters in a relationship.  The operators developed
have applicability to a wide range of functions.  The
operators can be applied to trigonometric functions
limited to domains where they are monotonically
increasing or decreasing.  A significant range of
problems can be tackled using this methodology to find
more precise resulting sets.  Further work is required to
classify engineering parameters to better evaluate
models that contain imprecision.
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