Measurement of Top Quark Mass in Dilepton Channel at CDF and D0

Tuula Mäki

University of Helsinki and Helsinki Institute of Physics

for CDF and D0 collaborations

Introduction

Direct measurements of m_t:

- tests SM predictions
- constrains SM Higgs mass
- key to EWSB

Tuula Mäki

Higgs mass tied to m_t and m_W

Measurement of m_t in dileptonic channel important consistency check

 any discrepancy between top mass measurements in different channels could indicate new physics

Top quark production and decay

- Top mass measurements use pair produced top quarks
- Dileptonic events: 5% BR in total
 - + clean signature
 - + only two possible parton-jet assignments
 - lowest statistics
 - two neutrinos in final state ⇒ underconstraint system for fitting of top mass

Techniques

Template methods

- Scan kinematic variables to compensate under-constraint system
- Reconstruct event-by-event
 m_{reco}
- Create templates using events simulated with different m_t values
- Perform likelihood fit to extract measured m_t

Matrix element method

- Build likelihood from matrix element, PDFs and transfer functions
- Integrate over unmeasured quantities
- Calibrate measured m_{reco} and uncertainty using simulation
- Determination of m_t by joint
 likelihood maximum

Tuula Mäki

Dileptonic template methods

Tuula Mäki

Dileptonic template methods at CDF

Method	Scanning variable	Distribution of variable
Kinematic	P_z of tt system	Gaussian distribution with σ =180 GeV/c ²
NWA-η	η_1 and η_2 of the two neutrinos	Gaussian distribution with σ = 0.998
NWA- ϕ	ϕ_1 and ϕ_2 of the two neutrinos	Flat

NWA = Neutrino Weighting Algorithm

Kinematic: $P_z(t\bar{t})$

- Assume Gaussian distribution of P_z(tt̄) with sigma value of 180 GeV/c
- Scan over P_z(tt̄), parton energies and missing E_T
- Perform kinematic reconstruction of m_t at each point
- Pick the most probable value of m_t as m_{reco}

 $m_{top} = 170.2 + 7.8 / -7.2 (stat) \pm 3.8 (syst) \text{ GeV/c}^2$ $\int \mathcal{L} = 340 \text{ pb}^{-1}$

Measured masses

Method	Data sample	Measured top mass
Kinematic	340 pb⁻¹	$170.2+7.8/-7.2(stat) \pm 3.8 (syst) \text{ GeV/c}^2$
NWA-η	359 pb⁻¹	$170.6+7.1/-6.6(stat) \pm 4.4 (syst) \text{ GeV/c}^2$
NWA- ϕ	340 pb⁻¹	$169.8+9.2/-9.3(stat)\pm 3.8(syst)GeV/c^{2}$

Tuula Mäki

Matrix element method at CDF

- Use LO Matrix Element for t production and decay to build differential crosssection $P(\mathbf{x}|M_t) = \frac{1}{\sigma(M_t)} \frac{d\sigma(M_t)}{d\mathbf{x}}$
- Parametrize detector response to jets by constructing **Transfer Functions** which map parton energies to observed jet energies $P(\mathbf{x}|M_t) = \frac{1}{N} \int d\Phi_6 |\mathcal{M}_{t\bar{t}}(p;M_t)|^2 \prod_{i \in Is} f(p_i, j_i) f_{PDF}(q_1) f_{PDF}(q_2)$
- Evaluate differential cross-sections for backgrounds
- Weld together the above pieces to get expression for m_t posterior distribution (given data)

$$P(\mathbf{x}|M_t) = P_s(\mathbf{x}|M_t)P_s + P_{bg1}(\mathbf{x})P_{bg1} + P_{bg2}(\mathbf{x})P_{bg2}\dots$$

Tuula Mäki

Matrix element

 Integrate over 6 unmeasured CDF Run2 Prelim. $\int L dt = 340 \text{ pb}^{-1} (33 \text{ evs})$ 0.01 parton quantities: 2x3 (neutrino Ļ momentum) + 2x1 (quark energy) 10 -2 (p_T conservation) 140 160 180 200 Calibrate the result 0.005 $\int \mathcal{L} = 340 \text{ pb}^{-1}$ 150 ${}^{180}_{M_t} [GeV]$ 140 160 $m_{top} = 165.2 \pm 6.1 (stat) \pm 3.4 (syst) \text{ GeV/c}^2$ 170

D0 template

$$W(M_{top}) = \sum_{solution} PDF_{a/p}(x_1) \cdot PDF_{b/\overline{p}}(x_2)$$
$$\times p(E_l^* \mid M_{top}) \cdot p(E_{\overline{l}}^* \mid M_{top})$$

• Assume
$$x_1, x_2$$
, scan over the values

- Calculate weight
- Weight comes from Matrix Element
- Pick m_t with largest weight as m_{reco}

 $\int \mathcal{L} = 230 \text{ pb}^{-1}$

 $m_{top} = 155 + 14/-13(stat) \pm 7 (syst) \text{ GeV/c}^2$

Combination of CDF results

Weight achieved via studies of correlation in pseudo-experiments which model data

	ME	NWA	KIN	PHI
Weight	42%	31%	16%	12%

Combined dilepton top mass from CDF

 $m_{top} = 168.2 \pm 4.5(stat) \pm 3.7 (syst) \text{ GeV/c}^2$

In the current top mass world average, dileptonic measurements have 11% weight

Systematics

Matrix ElementTemplate (KIN)TemplateIrm mJES2.63.25.6b-jet modeling0.50.6N/AISR0.50.6N/AFSR0.50.3N/APDFs1.10.50.9Generators1.00.63.0Bckg shape0.81.51.0MC statistics1.30.81.1Total3.63.86.7				B	
JES 2.6 3.2 5.6 pd b-jet modeling 0.5 0.6 N/A 1 ISR 0.5 0.6 N/A 1 FSR 0.5 0.3 N/A 1 PDFs 1.1 0.5 0.9 3 Generators 1.0 0.6 3.0 3 Bckg shape 0.8 1.5 1.0 N MC statistics 1.3 0.8 1.1 N Total 3.6 3.8 6.7 3		Matrix Element	Template (KIN)	Template	In m
b-jet modeling0.50.6N/AISR0.50.6N/AFSR0.50.3N/APDFs1.10.50.9Generators1.00.63.0Bckg shape0.81.51.0MC statistics1.30.81.1Total3.63.86.7	JES	2.6	3.2	5.6	po
ISR 0.5 0.6 N/A FSR 0.5 0.3 N/A PDFs 1.1 0.5 0.9 Generators 1.0 0.6 3.0 Bckg shape 0.8 1.5 1.0 MC statistics 1.3 0.8 1.1 Total 3.6 3.8 6.7	b-jet modeling	0.5	0.6	N/A	
FSR 0.5 0.3 N/A m PDFs 1.1 0.5 0.9 Sn Generators 1.0 0.6 3.0 Sn Bckg shape 0.8 1.5 1.0 N/A MC statistics 1.3 0.8 1.1 N/A Total 3.6 3.8 6.7	ISR	0.5	0.6	N/A	In
PDFs 1.1 0.5 0.9 sr Generators 1.0 0.6 3.0 sr Bckg shape 0.8 1.5 1.0 No MC statistics 1.3 0.8 1.1 Description Total 3.6 3.8 6.7 Sr	FSR	0.5	0.3	N/A	m
Generators1.00.63.0Bckg shape0.81.51.0NMC statistics1.30.81.1DDTotal3.63.86.7	PDFs	1.1	0.5	0.9	sn
Bckg shape 0.8 1.5 1.0 No.6 MC statistics 1.3 0.8 1.1 benchmark benchmark	Generators	1.0	0.6	3.0	
MC statistics 1.3 0.8 1.1 b. Total 3.6 3.8 6.7	Bckg shape	0.8	1.5	1.0	No
b- Total 3.6 3.8 6.7 ch	MC statistics	1.3	0.8	1.1	
Total 3.6 3.8 6.7 ch	•••				b-,
	Total	3.6	3.8	6.7	ch

s with U

s with ta and algorithm

h

ergy scale can be with Z→bb

Tuula Mäki

Projected statistical uncertainty

- Projection is only for CDF matrix element method
- With 2.5 fb⁻¹ of data, the projected statistical error is of the same order than the current systematic error from the method
- Dilepton top mass becomes precision measurement

Summary

- Comparison of top mass in 1+jets and dilepton channels has sensitivity to new physics
- Top mass measurement in dileptonic channel has potentially smaller systematics than in other top decay channels.
- The combined CDF top mass measurement in dileptonic channel

 $m_{top} = 168.2 \pm 4.5(stat) \pm 3.7 (syst) \text{ GeV/c}^2$ $\int \mathcal{L} = 340 - 359 \text{ pb}^{-1}$

D0 top mass measurement in dileptonic channel

 $m_{top} = 155 + 14/-13(stat) \pm 7 (syst) \text{ GeV/c}^2$ $\int \mathcal{L} = 230 \text{ pb}^{-1}$

With 2.5 fb⁻¹ of data, the statistical error is expected to be of the same order than the current systematic error (matrix element method)

Tuula Mäki

Backup

Tuula Mäki

Tevatron Run II

- 1 fb⁻¹ of data per experiment on tape
- Peak luminosity 1.5 x 10³²cm⁻²s⁻¹
- Presented analysis use 200-350 pb⁻¹

Tuula Mäki

CDF and D0 detectors

Both are multi-purpose detectors, designed for precision measurement and search for new physics

- Tracking in magnetic field
- Precision tracking with silicon
- Calorimeters
- Muon chambers

CDF

 $\eta =$

η = 0

Calorimeter

Toroid

Muon Scintillators Muon Chambers

Shielding

D()

 $\eta = 2$

 $\eta = 3$

NWA-ŋ

- Assume η_1 , η_2 of the two neutrinos and m_t
- Integrate over unknowns Lepton-jet pairing Neutrino η Missing energy
- Calculate the probability of measuring the observed missing E_{T}
- \bullet m_{reco} is the m_t with largest probability

NWA- ϕ

$$\chi^{2} = \sum_{i=l,jets} \frac{(P_{T}^{i,fit} - P_{T}^{i,meas.})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(UE_{j}^{j,fit} - UE_{j}^{j,meas.})^{2}}{\sigma_{j}^{2}} + \frac{(M_{l_{y_{1}}} - M_{W})^{2}}{\Gamma_{W}} + \frac{(M_{l_{2}y_{2}} - M_{W})^{2}}{\Gamma_{w}} + \frac{(M_{l_{y_{1}b_{1}}} - M_{top})^{2}}{\Gamma_{top}} + \frac{(M_{l_{2}y_{2}b_{2}} - M_{top})^{2}}{\Gamma_{top}}$$

- Assume ϕ_1 , ϕ_2 of the two neutrinos, scan over plane
- Calculate X^2
- Weight each point in ϕ_1 ϕ_2 space by e^{-x2/2}
- Select mean of reconstructed m_t distribution as m_{reco}

Top mass world average

- The mass of top quark is known with accuracy of 1.7%
- In the current top mass world average (only the best measurement from each channel/experiment used), dileptonic measurements have 11% weight