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Abstract 
With the complexities in computing optimal low thrust trajectories, easily-computed, good 

sub-optimal trajectories provide both a practical alternative for mission designers and a starting 
point for optimisation. The present paper collects in one place for easy reference and comparison 
several exact solutions that have been obtained in the literature over the last few decades: The 
logarithmic spiral, Pinkham’s variant thereof, Forbes’ spiral, the exponential sinusoid, the case of 
constant radial thrust, Markopoulos’s Keplerian thrust arcs, Lawden’s spiral, and the analogous 
Bishop and Azimov spiral. For most of these, the shape of the trajectory, the velocity at any 
point, and the requisite thrust magnitude and direction are available analytically in terms of 
the initial conditions and any remaining free trajectory parameters. The thrust and delta-vee 
characteristics are explored for some of the solutions, with applicability to both spiralling transfers 
and interplanetary trajectories. 
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Thrust acceleration normalised by local gravitational acceleration 
1) cos(kz0 + 4) (exponential sinusoid), or 2) cos Q (Lawden’s spiral) 
Thrust acceleration, f = F / m  (ms-’) 
Acceleration due to gravity at the Earth’s surface (ms-’) 
Orbital angular momentum per unit mass (m’/s) 
Shape parameter for Pinkham’s spiral 
Scale parameter for the exponential sinusoid (m) 
Dynamic range parameter for the exponential sinusoid 
Winding parameter for the exponential sinusoid 
Spacecraft mass (kg) 
Mean motion of a conic orbit (l/s) 
Semi-latus rectum of a conic orbit (m) 
Parameter for the logarithmic spiral (q  = t any )  and related curves 
Radial distance from the central body (m) 
1) sin(kz0 + 4) (exponential sinusoid), or 2) s in0  (Lawden’s spiral) 
Physical time (s) 
Spacecraft velocity (m/s) 
Circular orbit speed at  the current radius (m/s) 
Hyperbolic excess velocity (m/s) 
Speed perpendicular t o  the thrust vector (in same sense as 6 )  (m/s) 
Rate at which the radius vector sweeps out area (m2/s) 
Arbitrary constant for trajectories using Keplerian thrust programs 
Generalised eccentric anomaly (rad.) 
Thrust (kgms-’) 
Number of revolutions 
Throttling function for Keplerian thrust (m’s-’) 
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Thrust angle (rad.) 
Flight path angle (rad.) 
Pseudo flight path angle for Pinkham’s spiral (rad.) 
Polar angle (rad.) 
Gravitational parameter of the central body (m3s-’) 
Phase angle for exponential sinusoid (rad.) 
Phase parameter for Pinkham’s spiral (rad.) 
Velocity change or characteristic velocity, Jfdt (m/s) 
Initial value 
Final value 
Value at escape from the central body 
Radial component 
Scaling quantity 
Circumferential component 
Derivative with respect to time 
Derivative with respect to a variable other than t 

1 Introduction 

In the past decade, a considerable body of research has addressed the problem of finding optimal low- 
thrust trajectories. The focus has been largely on computational aspects of the problem, as analytic solutions 
are available for only highly specialised cases. Notably, it has been found that in the cases where the thrusting 
occurs over many (e.g.  hundreds) of revolutions, or is accompanied by numerous (e.g.  three or more) gravity 
assists, the problem of optimisation becomes significantly more difficult. Given this difficulty, it seems 
prudent to investigate simple but good sub-optimal solutions as estimates in preliminary mission design and 
as guides and initial guesses in optimisation. 

The present paper collects in one place some of the exact analytic solutions that have been found over the 
last five or so decades to the planar equations of motion for a thrusting spacecraft. As suggested by several 
examples, some of these solutions could find utility in preliminary design of orbit transfers and escape or 
capture trajectories, both for the multi-revolution spiralling case and for the case of few or no revolutions. 

The analytic solutions presented are those of the logarithmic spiral [l-31, Pinkham’s logarithmic spiral 
variant [4], Forbes’ spiral [l], the exponential sinusoid [5], the case of constant radial thrust [6-91, Markopou- 
los’s Keplerian thrust programs [lo], Lawden’s spiral [11,12], and the analogous spiral of Bishop and Az- 
imov [13]. Apart from the constant radial thrust case, the solutions require a variable thrust magnitude. 
Some of the solutions, however, offer enough degrees of freedom, or are inherently so structured, as to permit 
nearly-constant thrust or thrust-acceleration. 

Polar coordinates are used in the analyses, with various geometrical quantities defined in Fig. 1. With 
these definitions, the familiar equations of motion (EOMs) are 

f sina 

I d  
r dt 
--(A) = f c o s a  

Some of the analyses may be described as shape-based, that is, rather than trying to determine the 
trajectory followed due to an arbitrarily chosen thrust, the trajectory shape is itself directly assumed, with 
the requisite thrust computed a posteriori. By making a wise choice for the type of shape to use, only a 
few shape parameters will be needed to obtain a variety of realistic trajectory arcs. The thrust profile will 
typically not be unique, unless additional assumptions are made, such as constraining the thrust to lie along 
the velocity vector. The shape-based approach might be generalised to include any assumption regarding 
the orbit (other than thrust), not just the shape of the orbit, which allows the equations of motion to be 
simplified. The constant radial thrust case clearly does not fall in this category, and nor do the analyses of 
Lawden, Markopoulos and Bishop and Azimov. 
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Fig. 1 Geometry of a two-dimensional, thrusting arc in polar coordinates. 

2 The shape-based approach 

In the case where the shape of the orbit is known (or assumed), by substituting the shape function r(8)  
into the EOMs, we can obtain an expression governing the angular rate, 4: 

where the prime, ( I ) ,  here denotes differentiation with respect to 8, the flight path angle, 7,  is easily shown 
to be 

1 d r  r' t an7  = -- - 
r d 8  r 

and a is the ratio of the thrust acceleration to the local gravitational acceleration: 

f 
p / r 2  

a = -  

(4) 

(5) 

The quantity a may be thought of as the thrust to local-weight ratio, or as the thrust acceleration expressed in 
units of local central-body "gee's." The differential equations governing the requisite a and a may be derived 
from Eq. 3 and the EOMs, but these are rather lengthy and we therefore restrict ourselves to simplifications 
for particular shapes below. Typically, one would want a to be a small number. For example, NASA's Deep 
Space 1 spacecraft had a maximum a of around 0.04 just after launch from Earth. The normalisation by the 
local gravitational acceleration is particularly convenient for interplanetary studies involving solar electric 
propulsion, as the maximum thrust often depends almost linearly on the ion engine input power from the 
solar arrays (within the throttle range of the thruster), which, in turn, drops off roughly in proportion to 
l/r2. Thus, the maximum a remains roughly constant, except for its gradual increase due to  the reduction 
of spacecraft mass from propellant expenditure. 

3 The logarithmic spiral 

Perhaps the first instance in the literature of an assumed orbit shape is the logarithmic spiral, given in 
polar coordinates by 

Low-thrust travel along the logarithmic spiral was mentioned as early as 1950 by Forbes [l] and 1959 
by Tsu [2]. Unfortunately, while various analytic results are available for the logarithmic spiral, having 
essentially just one free parameter, q, the shape is rather restrictive and of limited practical utility. However, 

(6) r 1 roeq(@--80) 
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it is interesting to note that in the case where both the thrust to local-weight ratio, a, and the thrust angle, 
a, are constant, radius and polar angle are available as explicit functions of time: 

r 

where, for convenience, we define what might be termed the logarithmic mean motion as 

[(qcosa - sina)a + 11 
(1 + q2)  

(9) 

We note that ii is constant, since a, a, and q are all constant. In references [3,5], an expression is given for 
a in terms of r ,  when only a and q are assumed constant, only that in this case r and 0 are not available 
as explicit functions of time. However, even in the most general case, where also a is allowed to vary, an 
expression is supplied which shows that compared to a Hohmann transfer, a logarithmic spiral transfer will 
always have either a much longer time of flight, or a much larger launch vm, or both. This drawback may 
also be seen geometrically: Due to the constant flight path angle, a considerable AV is required to transfer 
from a circular orbit onto the spiral, or the converse, unless the flight path angle is exceedingly small, which 
would mean very long flight times for any meaningful excursions in radius. One interesting observation for 
the logarithmic spiral is that the AV expended whilst thrusting on the spiral from radius r1 to radius r2 > r1 

is exactly 
AV = vCl - vC2 

for the case where tangential thrust acceleration, proportional to l / r 2 ,  is assumed. This AV does not include 
any AV required for enjoining the spiral or departing from it. 

(10) 

4 Pinkham's logarithmic spiral variant 

A remarkable variant on the logarithmic spiral is given by Pinkham [4], who finds that if the thrust- 
acceleration components are given by 

where q is a constant and p is the semi-latus rectum of the osculating orbit, then the equations of motion 
have the solution 

p = pseqe (13) 

(14) 

where p,, I C ,  and w are arbitrary constants. Unlike the logarithmic spiral, Pinkham's spiral has three 
constants (apart from scaling and phasing factors) available for matching particular boudary conditions or 
for optimisation. Also unlike the logarithmic spiral, hyperbolic speeds can be attained on this shape after 
an initial spiralling period. The thrust is seen to be tangential, and vary approximately as l/r2, making 
this shape suitable for solar electric propulsion on interplanetary legs where available power is less than the 
engine's maximum input power. The flight path angle is easily obtained from Eq. 14 as 

where 
tan yq = q 
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The polar angle rate is found from Eqs. 3 and 14 to be given by 

Pinkham’s spiral can be used, for example, to escape from an initially circular orbit, or from any point 
on an elliptic orbit. In this case, only one of the three parameters remains free, most conveniently taken as 
q. A polar plot of departure from a circular orbit is shown in Fig. 2 for q = 0.1. The corresponding speed, 
normalised by the local circular speed, m, is shown as a function of polar angle in Fig. 3. The thrust 
magnitude for this trajectory is shown in Figs. 4 and 5 as a function of polar angle and radius respectively. 
While thrust is not a single-valued function of radius, it does indeed drop-off roughly as l / r 2 .  As evident 
from the shape and thrust equations, a higher value for the parameter q would translate to higher thrust 
levels, and escape in fewer revolutions. The freedom to choose the parameter q, given initial position and 
veIocity vectors, makes this shape much more useful than the logarithmic spiral. Apart from this noteworthy 
solution, Pinkham also gives simple equations for using his spiral as a reference trajectory in cases where 
the thrust does not obey precisely the requisite form of Eqs. 11 and 12. 

Fig. 2 Pinkham’s spiral, with q = 0.1 and starting in circular orbit. 

5 Forbes’ spiral 

Turning now to assumptions other than trajectory shape, we note Forbes’ [l] observation that practical 
and analytic results can be obtained if the thrust is assumed collinear with the velocity (sin(7 - a) = 0 ) ,  
and the circumferential speed, we, is assumed equal to the local circular speed, w,., (e2 = p/ r3 ) .  His results 
can be reproduced from within the present analytical framework by noting from Eq. 3 that the assumptions 
result in 

r2 r r f f  -2 r  = O 

which may be solved to give: 
TO r =  

1 - (e - e,) tanyo 
Forbes gives the requisite thrust acceleration as 

f=-.- P tan2yo 
r i  2siny 

Exact analytic expressions are also available for the time of flight and the speed. 
to spiralling outwards after starting with an arbitrarily small initial flight path 

(19) 

These results are applicable 
angle and a0 M 70/2. 
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Fig. 3 Speed on Pinkham’s spiral of Fig. 2, normalised by local circular speed. 

Fig. 4 Normalised thrust acceleration as a function 
of polar angle for the Pinkham spiral of Fig. 2. 

Fig. 5 Normalised thrust acceleration as a function 
of radius for the Pinkham spiral of Fig. 2. 

Moeckel[14] also studies the vg = v, assumption, but without the tangential thrust requirement. With the 
simplifications afforded to the equations of motion, he is able to assume T to be an arbitrary function of time, 
and determine the thrust profile therefrom. He gives the example of a circle to circle orbit transfer, and the 
selection of a simple function ~ ( t )  which satisfies the boundary conditions on the transfer arc. Presumably, 
arbitrary constants could be retained in the chosen function, so as to permit some sort of optimisation. 

6 Exponential sinusoid 

The exponential sinusoid was developed [5] in an attempt to correct the shortcomings of the logarithmic 
spiral - namely its constant flight path angle. The shape is given in polar coordinates by 

(21) kl sin(kz@+$) T = koe 

Having two parameters, kl and kz, apart from the scaling and phase parameters, gives the shape more 
flexibility than the logarithmic spiral, but not quite as much as Pinkham’s spiral. The flight path angle on 
the shape is given by: 

tany  = klkzc (22) 
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An example of the shape is shown in Fig. 6. By adjusting the parameter kg, a smaller or greater number of 
revolutions may be obtained betweeen periapsis and apoapsis. The fewer (or no) revolution spiral is suitable 
for interplanetary transfers, and the many-revolution spiral is suitable for orbit transfer, in particular between 
circular orbits. One of the simplest cases studied is that of tangential thrust, which results in the following 
expressions for angular rate and normalised thrust acceleration: 

where n is chosen as 0 or 1 so as to make a positive; the thrust is then directed either along (a = y) or 
against (a = y + ?r) the velocity according to 

a = y + n x  (25) 

For small values of kl and kp, the thrust will typically. be directed along the velocity vector for outbound 
spacecraft, and against the velocity for inbound spacecraft. 
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Fig. 6 Part of an exponential sinusoid arc. 

To use the exponential sinusoid shape for transferring between two circular orbits, it is most advantageous 
to enjoin and leave the exponential sinusoid at its apses, since the required velocity at these points on the 
exponential sinusoid is parallel and almost equal to the local circular velocity. In particular, supposing the 
initial orbit to be of radius TI and the final orbit of radius ~2 > TI ,  we find from Eq. 23 the following AVs: 

where AV1 is the impulsive velocity increment needed to enjoin the exponential sinusoid at its periapsis from 
the circular orbit at TI,  AV2 is the corresponding velocity increment needed to enter circular orbit at r2, and 
N is the number of revolutions around the central body required for the transfer. The AV expended whilst 
thrusting on the exponential sinusoid arc itself, denoted AVa, is found by integrating Eq. 24: 
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It should be noted that the following constraint must be met in order to travel along the exponential sinusoid 
using tangential thrust: 

N t / G  (29) 

This requirement is most easily seen by noting the singularity that occurs in Eq. 26 when Ic1Ic; 2 1. 
For illustrative purposes, the variation of thrust acceleration over polar angle is shown in Fig. 7 for a 

sample 200-revolution transfer with a five-fold increase in radius. The thrust acceleration is normalised 
by the acceleration due to gravity at T I ,  rather than by the local gravity, since, for an orbit transfer, one 
might expect constant power and thrust levels to be available for the duration of the transfer, unlike the 
interplanetary case. For comparison, the normalised acceleration is about for a lOOkg spacecraft using 
an NSTAR engine at maximum thrust (about 95”) in low Earth orbit. For the same spacecraft on the 
surface of the asteroid Vesta, the normalised acceleration would be about 3.4 x Greater insight can be 
gained from Fig. 8, which shows how the maximum thrust required on the transfer varies with the number of 
revolutions and the ratio of final to initial radius. Also, Fig. 9 shows that the total AV required for transfer 
(ie., A& + AV, + AV2) is slightly less than vCl - v,2. 

Fig. 7 Thrust profile for a 200 revolution exponential-sinusoid transfer. 

7 Radial thrust 

Tsien [6] shows that exact analytic solutions, in terms of elliptic integrals, are available for the case of 
constant radial thrust (see also Battin [7,8]). Unfortunately, from an initially circular orbit, this thrust 
scheme requires very high thrust levels to obtain any significant excursions in radial distance (see also the 
more recent analysis by Prussing and Coverstone-Carroll[9]). Perhaps the equations could find utility in the 
case of near-radial motion (such as near the asymptotes of hyperbolas, or along highly elongated ellipses), 
since radial thrust would nearly maximise the rate of change of energy of such motion. The related case 
of radial thrust acceleration inversely proportional to the square of the radius, while obviously tractable 
analytically, is also of little practical utility. Whittaker [15] notes that all central forces depending only on 
radial distance permit solutions to the EOMs in terms of quadratures. 

8 Markopoulos’s Keplerian thrust programs 

While studying the problem of optimal, powered spacecraft motion, Markopoulos [lo] happened upon 
a class of analytic solutions, separate from the optimisation problem, which have close analogues to pure 

8 



Fig. 8 Maximum thrust acceleration as a function of the number of revolutions required for exponential- 
sinusoid transfer for various ratios of final to initial radius. 

1 0' 1 0' 
Number of revolutions required fcf transfer 

Fig. 9 The total exponential-sinusoid transfer AV compared with (wcl - wc2) as a function of number of 
revolutions, for various ratios of final to initial radius. 
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Keplerian motion. Markopoulos defines the term “Keplerian thrust” to mean a thrust program wherein 

Q fe = - r 
Q1: + h 2Qr f r  = 

and Q is an arbitrary, explicit, differentiable function of time. It is worth interjecting here that Forbes [l] 
makes a more general observation regarding an extension to Kepler’s second law of planetary motion. From 
the equations of motion he finds that 

f -  A --- 
i s i n y  A 

This clearly reduces to “equal areas in equal time” when f = 0. Eq. 32 is certainly very elegant and worthy 
of further study. Forbes himself obtains solutions for f in the special cases noted in previous subsections, 
and states that “undoubtedly, further relations can be found which would lead to solutions.” Markopoulos 
finds such solutions, apparently unaware of Forbes’ remarks. He terms his thrust profile Keplerian because 
he is able to reduce the shape of the orbit, .(e), to functional forms akin to Kepler’s conic relations, both 
elliptic and hyperbolic. Using the normalisations ? = r / r ,  and h = h / m ,  the shape of the elliptic-type 
trajectory is given by 

where, B E (0 , l )  is an arbitrary constant, E is what Markopoulos terms the generalised eccentric anomaly, 
and the angular momentum h is given by 

rt 
h = ho + lo Qdt 

The angular momentum is also related to E by 
..f _. 

1 . [E - Eo - B(sin E - sin EO)] 
(1 - B2)3/2 

l- i d f  = 

(35) 

where the normalisation f = t m  has been used. Analogous results are available for the case of B > 1, 
describing hyperbolic-type trajectories, and simple results are available for the special cases B = 0 and 
B = 1. 

Markopoulos notes that when Q = &O is constant, the thrust is tangential. The thrust acceleration is 
then found from Eqs. 30 and 31 to be: 

f=- VO 
r cosy (37) 

The angular momentum for the tangential thrust case may also be expressed as a function of E ,  using Eqs. 
35 and 36: 

’Q0 . [E - EO - B(sinE - sinEo)] + 1 
(1 - B2)3/2 

where QO = Q0/(p/rs). 
Other functional forms for Q will typically only permit the h of Eq. 33 to be defined implicitly in 

terms of E from Eqs. 35 and 36 (each of which involve a quadrature). While the thrust profile cannot be 
chosen explicitly as a function of time, by choosing a suitable form for Q, a desired thrust profile could be 
approximated. This drawback aside, there are two main advantages to this formulation, apart from the clear 
functional similarities to the conic orbits. The first is the analytic nature of the equations, which makes 
them suitable for preliminary mission design - for example, by assuming Q is a polynomial in time, its 
coefficients can be used to meet a large variety of boundary conditions, such as would arise in problems of 
escape, transfer, and rendezvous. The second advantage is that, according to Markopoulos, Keplerian thrust 
programs are “near optimal” with regard to propellant, for power-limited systems. 
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9 Lawden's spiral 

For the case of constant I sp ,  but variable, limited thrust, Lawden [ll, 121 has shown that arcs of inter- 
mediate thrust can satisfy necessary condtions for optimality with regard to propellant mass for time-free 
transfers. In particular, Lawden found a specific, two-dimensional spiral which satisfied the necessary condi- 
tions. Although later research (see for example Refs. [l6-191) has shown Lawden's spiral to be non-optimal 
on account of various additional necessary conditons not being met, it is worth examining its characteristics. 
Lawden's spiral is given by: 

e = e 0 - 4 a - 3 C O t a  

p 6(1 -2s2)c 
v r  = 6. s2(3 - 592) 

(27 - 75s2 + 60s4) 

AV = const - 

(44) 

(45) 

Although Lawden's spiral was developed with transfer between two arbitrary states in mind, the spiral does 
not offer enough degrees of freedom to accomplish this. For example, if an initial radius and flight path angle 
are specified, then all other quantities on the spiral are determined. Fig. 10 shows a portion of the spiral, 
where the initial radius is taken as unity, and the initial a is taken as 5", which corresponds to y M 10". The 
required thrust to local-weight ratio at this initial flight path angle is very high, however. 

Fig. 10 A portion of Lawden's spiral. 

More realistic thrust to local-weight ratios require much smaller initial flight-path angles. The required 
thrust acceleration does decrease, however, as radial distance increases. These two characteristics are indi- 
cated in Fig. 11 which shows the variation of the thrust acceleration (normalised by the initial gravitational 
acceleration) as a function of revolutions made around the central body, for various initial flight-path angles. 
Fig. 12 shows the same curves, but as a function of time on the spiral (normalised by the period of a circular 
orbit at the initial radius). Normalised thrust above is only required for a relatively short initial period, 
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compared to the time needed for escape. The corresponding AV that is expended whilst travelling along the 
spiral is shown in Fig. 13 as a function of the number of revolutions. The vertical axis in the figure shows the 
fraction by which the AV is less than (vcl - w,), that is, the difference between the initial circular orbit speed 
and the circular orbit speed at the current radius. Contours are shown for various initial flight-path angles, 
and also for various excursions in radial distance as well as the point of escape. For example, a hundred-fold 
increase in initial radius requires about 590 turns if the initial flight path angle is 0.05', whereas it requires 
about 420 turns for 
on the y1 contours. 

y1 = 0.07'. The TITI and escape contours are shown as linear fits between data points 

0 50 100 150 200 250 300 350 400 450 500 
N (number of revs) 

Fig. 11 Thrust acceleration for the Lawden spiral, normalised by initial gravitational acceleration, as a 
function of revolutions completed around the central body, for various initial flight-path angles. 

Fig. 12 Thrust acceleration for the Lawden spiral, normalised by initial gravitational acceleration, as a 
function of time travelled on the spiral, for various initial flight-path angles. 
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Fig. 13 AV expended on Lawden’s spiral, compared to (wcl - w,) as a function of revolutions completed 
around the central body for various initial flight-path angles and including contours for various increases in 
radial distance. 

We see graphically in Fig. 13 that 
AV M wC1 - W, 

for shallow initial flight-path angles. This same result can be found by examining Eq. 45. It should be 
noted, however, that if we include the AV required to enjoin Lawden’s spiral from a circular orbit and to 
circularise once a certain radius is reached, then the total AV will exceed (vel - w,) by much more than 
1% for revolutions below about 100, and by about 0.1-0.2% for revolutions above about 400, for the initial 
flight-path angles shown in Fig. 13. 

10 Bishop and Azimov spiral 

The case of a power-limited, variable-I,, engine operating at maximum power and inside (not on) the 
I,, bounds is studied by Bishop and Azimov [13]. Based on the assumptions, the thrust is also between an 
upper and a lower bound, paralleling the intermediate-thrust case of Lawden, except that c rather than /3 
is now the control providing the variable thrust. Bishop and Azimov obtain an explicit analytic description 
of planar spiral trajectories that are optimal in terms of propellant mass. The equations are parametrised 
using the thrust angle a, just as in the case of the Lawden spiral. They state that their spiral can be used 
to transfer optimally between ellipses, but not between perfectly circular orbits. We note, however, that 
just as in the case of Lawden’s spiral, there is no general analytic criterion which specifies when the use of 
intermediate thrust actually satisfies the necessary conditions for optimality. 

11 Conclusions 

A number of special solutions to the planar equations of motion of a thrusting spacecraft have been 
collected from the literature. Some of their characteristics are described in detail, others left for the interested 
reader to pursue further. The solutions cover a spectrum of characteristics, permitting the mission designer 
to choose the most appropriate one for the problem at hand, whether that be a rough estimate of key 
parameters for a specific trajectory type, an initial guess for use in optimisation, or even an automated 
search for low-thrust trajectories over varied boundary conditions. 
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