





### Top quark physics at DØ



Yvonne Peters University of Wuppertal for the DØ collaboration

# Introduction

# Results for top production

Results for top decay

# The top quark



Top quark discovered 1995 at Fermilab by CDF and DØ at DØ: ~50pb<sup>-1</sup> of integrated luminosity in RunI → measured tt cross section 6.4±2.2pb

Current world average for top mass:  $170.9 \pm 1.1$  (stat) $\pm 1.5$  (syst) GeV

SM: t $\rightarrow$ Wb with ~100%



Short lifetime of the top quark (expected to be  $\sim 0.5 \times 10^{-24}$ s)  $\rightarrow$  no fragmentation of top quark before decay  $\rightarrow$  measure properties of bare quark

Will present analyses with  $\sim 1 \text{ fb}^{-1}$  integrated luminosity







#### top quark pair production

via strong interaction: 15% gluon fusion





antiprotor





# Top production







$$\label{eq:started_tilde} \begin{split} \sigma_{t\bar{t}} & \text{in dilepton \& lepton+track channel} \\ & \text{leptons give clear signature} \\ & \rightarrow \text{pure channel} \\ & \text{main background: Z+jets} \\ & \text{Signal/Background~3} \end{split}$$



### Cross section all results



#### new results up to this winter with $\sim 1 \text{ fb}^{-1}$



#### relative uncertainty

new physics may be hidden in one of the channels

 $\rightarrow$  measure  $\sigma_{_{t\bar{t}}}$  in each channel, look for agreement

all channels agree within uncertainties



## Top quark mass from cross section

theoretical cross section: mass dependent experimental cross section: acceptance slightly mass dependent

First extraction of top quark mass from measurement of  $\sigma_{t\bar{t}}$  unambiguous interpretation: top mass in pole mass definition

DØ Preliminary, 0.9 fb<sup>-1</sup>

e. g. using lepton+jets datan and Cacciari et. al.

$$m_t = 166.1^{+6.1}_{-5.3}(stat + syst)^{+4.9}_{-6.7}(theory) GeV$$

 $\rightarrow$  agrees with world average 170.9±1.1±1.5 GeV

Top Mass (GeV)

B

## Top pair production through resonance



# Top decay







Simultaneously measure  $\sigma_{_{f\bar{f}}}$  and R: no assumption of Br(t $\rightarrow$ Wb)=1





complementary information from topological discriminant in 0 b-tag bin









$$\sigma_{t\bar{t}} = 8.18^{+0.90}_{-0.84} (stat + syst) \pm 0.5 (lumi) \, pb \qquad 11\%$$
$$R = 0.97^{+0.09}_{-0.08} (stat + syst) \qquad 9\%$$

9% relative uncertainty



 ${\rightarrow}\mathsf{R}$  measurement in agreement with the SM

arXiv.org:0801.1326



### Top pair production cross section ratio

a

Ratio of cross sections

$$R_{\sigma} = \frac{\sigma (p \,\overline{p} \to t \,\overline{t})_{ljets}}{\sigma (p \,\overline{p} \to t \,\overline{t})_{dilepton}} = 1.21^{+0.27}_{-0.26} (stat + syst)$$

Interpretation: Upper limit on Br(t->Xb) with X any other particle than W boson (results before: assumption of X=W) **q** 



Simple model: charged Higgs  $H^+$  with mass ~ W boson mass,  $Br(H^+->cs)=100\%$ , similar event kinematics for  $t\rightarrow H^+b$  and  $t\rightarrow Wb$ 

B(t→H<sup>+</sup>b) < 0.35 @ 95% C.L.





- Recent results with 1fb<sup>-1</sup> of DØ data
  - measurements with high precision
  - some already systematically limited
    - e. g. top pair production cross section and top quark mass
- No evidence for new physics found in the top quark sector so far
- Coming soon: new results with up to 2fb<sup>-1</sup>