
Cray XT™ Programming
Environment User's Guide
S–2396–21

© 2004–2008 Cray Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form unless permitted by
contract or by written permission of Cray Inc.

The gnulicinfo(7) man page contains the Open Source Software licenses (the "Licenses"). Your use of this software release constitutes
your acceptance of the License terms and conditions.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted
Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14
or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the
U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Cray, LibSci, and UNICOS are federally registered trademarks and Active Manager, Cray Apprentice2, Cray Apprentice2 Desktop,
Cray C++ Compiling System, Cray CX1, Cray Fortran Compiler, Cray Linux Environment, Cray SeaStar, Cray SeaStar2,
Cray SeaStar2+, Cray SHMEM, Cray Threadstorm, Cray X1, Cray X1E, Cray X2, Cray XD1, Cray XMT, Cray XR1, Cray XT,
Cray XT3, Cray XT4, Cray XT5, Cray XT5h, CrayDoc, CrayPort, CRInform, ECOphlex, Libsci, RapidArray, UNICOS/lc,
UNICOS/mk, and UNICOS/mp are trademarks of Cray Inc.

AMD is a trademark of Advanced Micro Devices, Inc. Copyrighted works of Sandia National Laboratories include: Catamount/QK,
Compute Processor Allocator (CPA), and xtshowmesh. DDN is a trademark of DataDirect Networks. FFTW is Copyright © 2003
Matteo Frigo, Copyright © 2003 Massachusetts Institute of Technology. GCC is a trademark of the Free Software Foundation, Inc.
Intrepid GCCUPC compiler is Copyright © 2007, Intrepid Technology, Inc. Linux is a trademark of Linus Torvalds. Lustre was
developed and is maintained by Cluster File Systems, Inc. under the GNU General Public License. MySQL is a trademark of
MySQL AB. Opteron is a trademark of Advanced Micro Devices, Inc. PathScale is a trademark of PathScale, Inc. PBS Professional
is a trademark of Altair Grid Technologies. PETSc, Copyright, 1995-2004 University of Chicago. The Portland Group and PGI
are trademarks of STMicroelectronics. SUSE is a trademark of SUSE LINUX Products GmbH, a Novell business. TotalView is a
trademark of TotalView Technologies, LLC. UNIX, the “X device,” X Window System, and X/Open are trademarks of The Open
Group in the United States and other countries. All other trademarks are the property of their respective owners.

New Features

Cray XT™ Programming Environment User's Guide S–2396–21

Quad-core compute nodes

Added support of Cray XT4 quad-core compute nodes (see Section 4.2.8, page 33).

Dual-socket, quad-core compute nodes

Added support of Cray XT5 dual-socket, quad-core compute nodes (see Section 4.2.9,
page 34).

Huge pages Added support of 2 MB huge pages for CNL applications (see Section 4.2.10, page 35).

Unified Parallel C (UPC)

Added support of Unified Parallel C (see Section 3.9, page 25, Section 14.5, page 122, and
Section 15.5, page 164).

Memory affinity optimization

Added support of memory affinity optimization tools for Cray XT5 applications (see Section
13.2, page 110 and Section 14.12, page 144).

CPU affinity optimization

Added support of CPU affinity optimization tools for Cray XT multicore compute nodes (see
Section 13.3, page 111 and Section 14.13, page 146).

MPI topology aware

For CNL applications, MPI now allows each process to create the most optimal messaging
path to every other process in the job, based on the topology of the given ranks (see Section
13.4.1, page 112).

Suppress INFO message

Added the XTPE_INFO_MESSAGE_OFF environment variable to allow you to suppress the
output of the target architecture INFO message (see Section 5.2, page 49).

CrayPat module name change

Documented CrayPat module name change from craypat to xt-craypat (see Section
12.2, page 104).

PAPI module name change

Documented PAPI module name change from papi to xt-papi (see Section 12.1, page 103).

PETSc Documented the external packages that the Cray implementation of PETSc is configured to
support (see Section 3.3, page 17). Added a PETSc example (see Section 14.6, page 123).

Killing processes

Documented support of the kill command and the kill() system call on CNL compute
nodes (see Section 4.2.6, page 33). Documented support of the kill() system call on
Catamount compute nodes (see Section 4.3.6, page 47).

Unsupported PGI compiler options

Added note that the -Mpfi, -Mpfo, and -Mconcur PGI compiler command options are not
supported under Catamount (see Section 4.3.11, page 48).

Running user programs on service nodes

Documented the process for compiling and running user programs on service nodes (see
Chapter 9, page 85).

Improving memory allocation

Documented the use of environment variables to make memory allocation more efficient
(see Section 4.2.11, page 37).

New job and node status display command

Documented the use of the xtnodestat command to display current job and node status
(see Chapter 6, page 57).

New core status display

Documented the use of the apstat -n option to display core status (see Section 7.2,
page 69).

Core dump file may be truncated

Documented conditions under which a core dump file for a Catamount application may be
truncated without user notification (see Section 4.3.7, page 47).

CRAFFT library

Documented support of the CRay Adaptive Fast Fourier Transform (CRAFFT) library (see
Section 3.2.5, page 16).

Fast_mv library

Documented support of the Fast_mv library of high- performance math intrinsic functions
(see Section 3.6, page 20).

lgdb debugger

(Deferred implementation) Documented support of lgdb, the GNU debugger for CNL
applications (see Section 11.2, page 99).

Record of Revision

Version Description

1.0 December 2004
Draft documentation to support Cray XT3 early-production systems.

1.0 March 2005
Draft documentation to support Cray XT3 limited-availability systems.

1.1 June 2005
Supports Cray XT3 systems running the Cray XT3 Programming Environment 1.1
and UNICOS/lc 1.1 releases.

1.2 August 2005
Supports Cray XT3 systems running the Cray XT3 Programming Environment 1.2
and UNICOS/lc 1.2 releases.

1.3 November 2005
Supports Cray XT3 systems running the Cray XT3 Programming Environment 1.3
and UNICOS/lc 1.3 releases.

1.4 April 2006
Supports Cray XT3 systems running the Cray XT3 Programming Environment 1.4
and UNICOS/lc 1.4 releases.

1.5 August 2006
Supports limited availability (LA) release of Cray XT systems running the Cray XT
Programming Environment 1.5 and Cray Linux Environment (CLE)1.5 releases.

1.5 November 2006
Supports general availability (GA) release of Cray XT systems running the Cray XT
Programming Environment 1.5 and UNICOS/lc 1.5 releases.

2.0 June 2007
Supports limited availability (LA) release of Cray XT systems running the Cray XT
Programming Environment 2.0 and UNICOS/lc 2.0 releases.

2.0 October 2007
Supports general availability (GA) release of Cray XT systems running the Cray XT
Programming Environment 2.0 and UNICOS/lc 2.0 releases.

S–2396–21 i

Cray XT™ Programming Environment User’s Guide

2.1 July 2008
Supports limited availability (LA) release of Cray XT systems running the Cray XT
Programming Environment and CLE 2.1 releases.

2.1 November 2008
Supports general availability (GA) release of Cray XT systems running the Cray XT
Programming Environment and CLE 2.1 releases.

ii S–2396–21

Contents

Page

Preface xi

Accessing Product Documentation xi

Conventions . xii

Reader Comments . xiii

Cray User Group . xiii

About the Cray XT Development Environment [1] 1

About the Cray XT System Environment 1

About the Cray XT Programming Environment 2

About Cray XT Documentation . 4

Setting Up Your Environment [2] 7

Setting Up a Secure Shell . 7

Setting up RSA Authentication with a Passphrase 7

Setting up RSA Authentication without a Passphrase 8

Using Modules . 9

Modifying the PATH Variable . 10

Using the Lustre File System . 11

About Libraries and Functions [3] 13

About the C Language Run Time Library 13

About the Cray Scientific Library . 13

About the BLAS and LAPACK Libraries 13

About the ScaLAPACK and BLACS Libraries 14

About the Iterative Refinement Toolkit (IRT) 15

About the SuperLU Library . 16

About the CRay Adaptive Fast Fourier Transform (CRAFFT) Library 16

S–2396–21 iii

Cray XT™ Programming Environment User’s Guide

Page

About the PETSc Library . 17

About the AMD Core Math Library (ACML) 19

About the FFTW Libraries . 19

About the Fast_mv Library . 20

About the Cray MPT Library . 21

About the MPICH2 Library . 21

About the SHMEM Library . 22

About the OpenMP Library . 24

About the UPC Functions . 25

Cray XT Programming Considerations [4] 27

Programming Considerations for all Developers 27

About PGI Compilers . 27

About Default MPICH2 and SHMEM Libraries 27

About Unsupported C++ Header Files 28

About Restrictions on Large Data Objects 28

About the FORTRAN STOP Message 28

Suppressing PGI Vectorization 29

About the PGI Debugger . 29

About the PathScale Fortran Compiler 29

About Little-endian Support . 30

About the Portals Message Size Limit 30

About Shared Libraries . 30

Programming Considerations for CNL Users 30

About CNL glibc Functions . 30

About I/O Support Operations under CNL 31

Connecting to External Services under CNL 32

About Timing Functions under CNL 32

About Signal Support under CNL 32

Killing Processes under CNL . 33

About Core Files under CNL . 33

iv S–2396–21

Contents

Page

Using Cray XT4 Quad-core Processors 33

Using Cray XT5 Compute Nodes 34

Using Huge Pages and Base Pages under CNL 35

Allocating Memory under CNL 37

About Resource Limits under CNL 39

About the One Application Per Node Limitation under CNL 39

About Parallel Programming Models under CNL 39

About the Modified Copy-on-write Process under CNL 39

About Unsupported PGI Compiler Command Options under CNL 40

Programming Considerations for Catamount Users 40

About Catamount glibc Functions 40

About I/O Support Functions under Catamount 42

Improving Fortran I/O Performance under Catamount 42

Improving C++ I/O Performance under Catamount 43

Improving stdio Performance under Catamount 43

Improving the Performance of Large File, Sequential I/O under Catamount 43

Using Stride I/O Functions to Improve Performance under Catamount 44

Reducing Memory Fragmentation under Catamount 45

About the Limitations of External Connectivity under Catamount 45

About Timing Functions under Catamount 45

About Signal Support under Catamount 46

Killing Processes under Catamount 47

About Core Files under Catamount 47

Changing Page Size under Catamount 47

About Resource Limits under Catamount 48

About the Limitations on Parallel Programming Models under Catamount 48

About Unsupported PGI Compiler Command Options under Catamount 48

Using Compilers [5] 49

Setting Your Target Architecture . 49

Using the Compiler Driver Commands 49

S–2396–21 v

Cray XT™ Programming Environment User’s Guide

Page

Using PGI Compilers . 50

Using GNU Compilers . 52

Using PathScale Compilers . 53

Getting Compute Node Status [6] 57

Running CNL Applications [7] 61

Using the aprun Command . 61

Using the apstat Command . 69

Using the cnselect Command . 71

Understanding How Much Memory is Available to CNL Applications 72

Launching an MPMD Application 73

Managing Compute Node Processors from an MPI Program 74

About aprun Input and Output Modes 74

About aprun Resource Limits . 75

About aprun Signal Processing . 76

Running Catamount Applications [8] 77

Using the yod Command . 77

Using the cnselect Command . 78

Understanding How Much Memory is Available to Catamount Applications 79

Launching an MPMD Application 80

Managing Compute Node Processors from an MPI Program 82

Using Input and Out Modes under yod 82

About yod Signal Handling . 82

Associating a Project or Task with a Job Launch 83

Running User Programs on Service Nodes [9] 85

Using PBS Professional [10] 87

Creating Job Scripts . 87

Submitting Batch Jobs . 88

vi S–2396–21

Contents

Page

Using aprun with qsub . 88

Using yod with qsub . 89

Terminating Failing Processes in an MPI Program 89

Getting Job Status . 90

Removing a Job from the Queue . 91

Debugging an Application [11] 93

Using the TotalView Debugger . 93

Using TotalView to Debug an Application 94

Using TotalView to Debug a Core File 96

Using TotalView to Attach to a Running Process 97

Using TotalView to Alter Standard I/O 98

About the Limitations of TotalView on Cray XT Systems 99

Using the GNU Debugger . 99

Using the lgdb Debugger . 100

Using the xtgdb Debugger . 100

Troubleshooting Catamount Application Failures 101

Analyzing Performance [12] 103

Using the Performance API (PAPI) 103

Using the High-level PAPI Interface 103

Using the Low-level PAPI Interface 104

Using the Cray Performance Analysis Tool (CrayPat) 104

Running Tracing and Sampling Experiments 106

Visualizing Performance Data . 108

Optimizing Applications [13] 109

Using Compiler Optimization Options 109

Using aprun Memory Affinity Options 110

Using aprun CPU Affinity Optimizations 111

Optimizing Process Placement on Multicore Nodes 112

Optimizing MPI and SHMEM Applications Running under CNL 112

S–2396–21 vii

Cray XT™ Programming Environment User’s Guide

Page

Optimizing MPI and SHMEM Applications Running under Catamount 113

Example CNL Applications [14] 115

Running a Basic Application under CNL 115

Running an MPI Application under CNL 116

Using the Cray shmem_put Function under CNL 118

Using the Cray shmem_get Function under CNL 120

Running a UPC Application under CNL 122

Running a PETSc Application under CNL 123

Running an OpenMP Application under CNL 135

Running a PBS Professional Interactive Job under CNL 138

Running a PBS Professional Job Script under CNL 139

Running Multiple Sequential Applications under CNL 140

Running Multiple Parallel Applications under CNL 142

Using aprun Memory Affinity Options 144

Using the aprun -S Option . 144

Using the aprun -sl Option . 144

Using the aprun -sn Option . 145

Using the aprun -ss Option . 145

Using aprun CPU Affinity Options 146

Using the aprun -cc cpu_list Option 146

Using the aprun -cc keyword Options 147

Running Compute Node Commands under CNL 147

Using the High-level PAPI Interface under CNL 148

Using the Low-level PAPI Interface under CNL 149

Using CrayPat under CNL . 150

Using Cray Apprentice2 under CNL 156

Example Catamount Applications [15] 157

Running a Basic Application under Catamount 157

Running an MPI Application under Catamount 158

viii S–2396–21

Contents

Page

Using the Cray shmem_put Function under Catamount 160

Using the Cray shmem_get Function under Catamount 162

Running a UPC Application under Catamount 164

Using dclock() to Calculate Elapsed Time under Catamount 165

Specifying a Buffer for I/O under Catamount 166

Changing the Default Buffer Size for I/O-to-file Streams under Catamount 167

Improving the Performance of stdout under Catamount 169

Running a PBS Professional Job Script under Catamount 171

Running Multiple Sequential Applications under Catamount 172

Running Multiple Parallel Applications under Catamount 174

Using xtgdb under Catamount . 175

Using the High-level PAPI Interface under Catamount 176

Using the Low-level PAPI Interface under Catamount 178

Using CrayPat under Catamount . 179

Appendix A glibc Functions Supported in CNL 187

Appendix B glibc Functions Supported in Catamount 193

Appendix C PAPI Hardware Counter Presets 199

Appendix D MPI Error Messages 207

Appendix E ALPS Error Messages 209

Appendix F yod Error Messages 211

Appendix G PETSc Makefiles 215

Glossary 217

Index 221

Figures
Figure 1. Cray XT5 Compute Node 34

S–2396–21 ix

Cray XT™ Programming Environment User’s Guide

Page

Figure 2. TotalView Root Window 94

Figure 3. TotalView Process Window 95

Figure 4. Debugging a Core File 96

Figure 5. Attaching to a Running Process 97

Figure 6. Altering Standard I/O 98

Figure 7. Cray Apprentice2 Display 156

Tables
Table 1. Manuals and Man Pages Included with This Release 4

Table 2. PGI Compiler Commands 51

Table 3. GNU Compiler Commands 53

Table 4. PathScale Compiler Commands 54

Table 5. aprun versus qsub Options 88

Table 6. yod versus qsub Options 89

Table 7. RPCs to yod . 101

Table 8. Supported glibc Functions for CNL 187

Table 9. Supported glibc Functions for Catamount 193

Table 10. PAPI Presets . 199

Table 11. MPI Error Messages . 207

Table 12. ALPS Error Messages . 209

Table 13. yod Error Messages . 211

x S–2396–21

Preface

The information in this preface is common to Cray documentation provided with
this software release.

Accessing Product Documentation

With each software release, Cray provides books and man pages, and in
some cases, third-party documentation. These documents are provided in the
following ways:

CrayPort CrayPort is the external Cray website for registered users
that offers documentation for each product. CrayPort has
portal pages for each product that contains links to all of the
documentation that is associated to that particular product.
CrayPort allows you to quickly access and search Cray books,
man pages, and in some cases, third-party documentation. You
access CrayPort using the following URL:

crayport.cray.com

CrayDoc CrayDoc is the Cray documentation delivery system. CrayDoc
allows you to quickly access and search Cray books, man pages,
and in some cases, third-party documentation. Access the HTML
and PDF documentation via CrayDoc at the following locations.

• The local network location defined by your system
administrator

• The CrayDoc public website: docs.cray.com

Man pages Man pages are textual help files available from the command line
on Cray machines. To access man pages, enter the man command
followed by the name of the man page. For more information
about man pages, see the man(1) man page by entering:

% man man

Third-party documentation

Third-party documentation that is not provided through
CrayPort or CrayDoc is included as part of the third-party
product.

S–2396–21 xi

http://crayport.cray.com
http://docs.cray.com

Cray XT™ Programming Environment User’s Guide

Conventions

These conventions are used throughout Cray documentation:

Convention Meaning

command This fixed-space font denotes literal items, such as file
names, pathnames, man page names, command names, and
programming language elements.

variable Italic typeface indicates an element that you will replace with a
specific value. For instance, you may replace filename with the
name datafile in your program. It also denotes a word or
concept being defined.

user input This bold, fixed-space font denotes literal items that the user
enters in interactive sessions. Output is shown in nonbold,
fixed-space font.

[] Brackets enclose optional portions of a syntax representation for
a command, library routine, system call, and so on.

... Ellipses indicate that a preceding element can be repeated.

name(N) Denotes man pages that provide system and programming
reference information. Each man page is referred to by its name
followed by a section number in parentheses.

Section numbers are used to group man pages into categories,
as defined by the usage of the commands in that section. For
example, section 1 man pages are typically user commands
and section 8 man pages are typically system administrator
commands.

To find the meaning of each section number for your particular
system, enter the following command:

% man man

xii S–2396–21

Preface

Reader Comments

Contact us with any comments that will help us to improve the accuracy and
usability of this document. Be sure to include the title and number of the
document with your comments. We value your comments and will respond to
them promptly. Contact us in any of the following ways:

E-mail:
docs@cray.com

Telephone (inside U.S., Canada):
1–800–950–2729 (Cray Customer Support Center)

Telephone (outside U.S., Canada):
+1–715–726–4993 (Cray Customer Support Center)

Mail:
Customer Documentation
Cray Inc.
1340 Mendota Heights Road
Mendota Heights, MN 55120–1128
USA

Cray User Group

The Cray User Group (CUG) is an independent, volunteer-organized
international corporation of member organizations that own or use Cray Inc.
computer systems. CUG facilitates information exchange among users of Cray
systems through technical papers, platform-specific e-mail lists, workshops, and
conferences. CUG memberships are by site and include a significant percentage
of Cray computer installations worldwide. For more information, contact your
Cray site analyst or visit the CUG website at www.cug.org.

S–2396–21 xiii

file:///tmp/mytmp.4088/mailto:docs%40cray.com
http://www.cug.org

About the Cray XT Development
Environment [1]

This guide describes the Cray XT Programming Environment products and
related application development tools. In addition, it includes procedures and
examples that show you how to set up your user environment and build and
run optimized applications. The intended audience is application programmers
and users of Cray XT systems. Prerequisite knowledge is a familiarity with the
topics in the Cray XT System Overview. For information about managing system
resources, system administrators can use the Cray XT System Management manual.

The UNICOS/lc operating system was renamed Cray Linux Environment (CLE).
Documentation associated with this release may use the terms UNICOS/lc and
CLE interchangeably. The transition to the CLE name will be complete in the
next release.

Note: Functionality marked as deferred in this documentation is planned to be
implemented in a later release.

1.1 About the Cray XT System Environment

The system on which you run your Cray XT applications is an integrated set of
Cray XT compute node and service node components. You log in to a Cray XT
login node and use the Cray XT Programming Environment and related products
to create your executables. You run your executables on Cray XT compute nodes.

The operating system is Cray Linux Environment (CLE); it has compute node
and service node components. Compute nodes run either the CNL or the
Catamount operating system. Service nodes run SUSE LINUX. For details about
the differences between CNL and Catamount, see Section 4.2, page 30.

S–2396–21 1

Cray XT™ Programming Environment User’s Guide

1.2 About the Cray XT Programming Environment

The Cray XT Programming Environment includes these products and services:

• PGI compilers for C, C++, and Fortran (see Section 5.2.1, page 50).

• GNU compilers for C, C++, and Fortran (see Section 5.2.2, page 52).

• PathScale compilers for C, C++, and Fortran (see Section 5.2.3, page 53).

• Parallel programming models:

– Cray Message Passing Toolkit (MPT). MPT consists of the MPI and
SHMEM libraries (see Section 3.7, page 21).

– OpenMP shared memory model routines, Fortran directives, and C and
C++ pragmas (see Section 3.8, page 24). OpenMP is not supported for
applications running under Catamount.

– Unified Parallel C (UPC) (see Section 3.9, page 25).

• Cray XT-LibSci scientific library, which includes:

– Basic Linear Algebra Subprograms (BLAS)

– Linear Algebra (LAPACK) routines

– ScaLAPACK routines

– Basic Linear Algebra Communication Subprograms (BLACS)

– Iterative Refinement Toolkit (IRT) routines

– SuperLU routines

– CRay Adaptive Fast Fourier Transform (CRAFFT) routines

For further information about Cray XT-LibSci, see Section 3.2, page 13.

• PETSc (Portable, Extensible Toolkit for Scientific Computation). For further
information, see Section 3.3, page 17.

• AMD Core Math Library (ACML), which includes:

– Fast Fourier Transform (FFT) routines

– Math transcendental library routines

– Random number generators

– GNU Fortran libraries

2 S–2396–21

About the Cray XT Development Environment [1]

For further information about ACML, see Section 3.4, page 19.

• FFTW (Fastest Fourier Transform in the West) routines (see Section 3.5,
page 19)

• Fast_mv library of high-performance math intrinsic functions (see Section
3.6, page 20).

• A subset of the glibc GNU C Library routines for compute node applications
(see Section 3.1, page 13).

• The Performance API (PAPI) (see Section 12.1, page 103).

In addition to Programming Environment products, the Cray XT system provides
these application development products and functions:

• The Application Level Placement Scheduler (ALPS) utility for launching
applications on CNL compute nodes (aprun command), getting status about
applications and cores (apstat command), and killing processes (apkill
command). See Section 7.1, page 61 for a description of aprun, Section
7.2, page 69 for a description of apstat, and Appendix E, page 209 for a
description of common ALPS error messages.

• The yod command for launching applications on Catamount compute nodes
(see Section 4.2, page 30).

• The cnselect command for generating a candidate list of compute nodes
based on user-specified selection criteria. For CNL applications, you can
use this list on the aprun -L node_list option or the qsub -lmppnodes
option. For Catamount applications, you can use this list on the yod -list
processor-list option. See Section 7.3, page 71.

• Lustre parallel file system (see Section 2.4, page 11).

• The xtprocadmin -A command for generating a report showing the
attributes of the compute nodes (see Chapter 6, page 57).

• The xtnodestat command for generating reports showing the status of jobs
and nodes (see Chapter 6, page 57).

S–2396–21 3

Cray XT™ Programming Environment User’s Guide

These optional products are available for Cray XT systems:

• PBS Professional batch processing system (see Chapter 10, page 87).

Note: If your site has installed another batch system, please contact the
appropriate vendor for the necessary installation, configuration, and
administration information. For example, contact Cluster Resources, Inc.
(http://www.clusterresources.com/) for documentation specific to Moab
products.

• TotalView debugger (see Section 11.1, page 93). TotalView debugger
documentation is available from TotalView Technologies, LLC
(http://www.totalviewtech.com/Documentation/).

• GNU debuggers: lgdb for CNL applications (Deferred implementation) and
xtgdb for Catamount applications (see Section 11.2, page 99).

• CrayPat performance analysis tools (see Section 12.2, page 104).

• Cray Apprentice2 performance visualization tool (see Section 12.3, page 108).

1.3 About Cray XT Documentation

Table 1 lists the manuals and man pages that are provided with this release. All
manuals are provided as PDF files, and some are also available as HTML files.
You can view the manuals and man pages through the CrayDoc interface or
move the files to another location, such as your desktop.

Note: You can use the Cray XT System Documentation Site Map on CrayDoc
to link to all Cray manuals and man pages included with this release.

Table 1. Manuals and Man Pages Included with This Release

Cray XT Programming Environment User's Guide (this manual)

Cray XT Programming Environment man pages (cc(1), CC(1), ftn(1), aprun(1),
yod(1))

Executable and Linking Format elf(5) man page

Cray XT System Software Release Overview

Cray XT System Overview

PGI User's Guide

PGI Fortran Reference

4 S–2396–21

http://www.clusterresources.com/
http://www.totalviewtech.com/Documentation/

About the Cray XT Development Environment [1]

PGI Tools Guide

Cray Programming Environments Installation Guide

Modules software package man pages

Cray MPICH2 man pages (read intro_mpi(3) first)

Cray SHMEM man pages (read intro_shmem(3) first)

Cray XT-LibSci man pages (read intro_libsci(3s) first)

SuperLU Users' Guide

Iterative Refinement Toolkit man pages (read intro_irt(3) first)

CRay Adaptive Fast Fourier Transform (CRAFFT) man pages (read
intro_crafft(3s) first)

AMD Core Math Library (ACML) manual

PETSc man pages (see
http://www-unix.mcs.anl.gov/petsc/petsc-as/documentation/index.html)

FFT man pages (intro_fft(3), intro_fftw2(3), intro_fftw3(3))

Fast_mv library (read intro_fast_mv(3) first)

PBS Professional 9.0 Quick Start Guide

PBS Professional 9.0 User's Guide

TotalView man page (totalview(1))

Performance API (PAPI) man pages

Using Cray Performance Analysis Tools guide

CrayPat and Cray Apprentice2 man pages (read intro_craypat(1) and app2(1)
first)

Additional sources of information:

• PGI manuals at http://www.pgroup.com and the pgcc(1), pgCC(1), and
pgf95(1) man pages available through the man command.

• Using the GNU Compiler Collection (GCC) manual at http://gcc.gnu.org/ and
the gcc(1), g++(1), and gfortran(1) man pages available through the man
command.

• PathScale Compiler Suite User's Guide at http://www.pathscale.com/ and the
pathcc(1), pathCC(1), pathf95(1), and eko(7) man pages available through
the man command.

S–2396–21 5

http://www-unix.mcs.anl.gov/petsc/petsc-as/documentation/index.html
http://www.pgroup.com
http://gcc.gnu.org
http://www.pathscale.com/

Cray XT™ Programming Environment User’s Guide

• MPICH2 documents at http://www-unix.mcs.anl.gov/mpi/mpich2/ and
http://www.mpi-forum.org.

• OpenMP documents at http://www.openmp.org.

• Unified Parallel C (UPC) documents: Berkeley UPC website
(http://upc.lbl.gov/docs/) and Intrepid UPC website
(http://www.intrepid.com/upc/cray_xt3_upc.html.

• The ScaLAPACK Users' Guide at http://www.netlib.org/scalapack/slug/.

• SuperLU documents at http://crd.lbl.gov/~xiaoye/SuperLU/.

• PETSc documents at
http://www-unix.mcs.anl.gov/petsc/petsc-as/documentation/index.html

• FFTW documents at http://www.fftw.org/.

• PAPI documents at http://icl.cs.utk.edu/papi/.

• Lustre documentation at http://manual.lustre.org/.

• SUSE LINUX man pages available through the man command.

6 S–2396–21

http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.mpi-forum.org/docs/docs.html
http://www.openmp.org
http://upc.lbl.gov/docs/
http://www.intrepid.com/upc/cray_xt3_upc.html
http://www.netlib.org/scalapack/slug/
http://crd.lbl.gov/%7Exiaoye/SuperLU/
http://www-unix.mcs.anl.gov/petsc/petsc-as/documentation/index.html
http://www.fftw.org/
http://icl.cs.utk.edu/papi/
http://manual.lustre.org/

Setting Up Your Environment [2]

Configuring your user environment on a Cray XT system is similar to configuring
a typical Linux workstation. However, there are steps specific to Cray XT systems
that you must take before you begin developing applications.

2.1 Setting Up a Secure Shell

Cray XT systems use ssh and ssh-enabled applications such as scp for secure,
password-free remote access to the login nodes.

Before you can use the ssh commands, you must generate an RSA authentication
key. The process for generating the key depends on the authentication method
you use. There are two methods of passwordless authentication: with or without
a passphrase. Although both methods are described here, you must use the latter
method to access the compute nodes through a script or when using a system
monitor command such as xtps.

For more information about setting up and using a secure shell, see the ssh(1),
ssh-keygen(1), ssh-agent(1), ssh-add(1), and scp(1) man pages. For
further information about system monitor commands, see the Cray XT System
Management manual.

2.1.1 Setting up RSA Authentication with a Passphrase

To enable ssh with a passphrase, complete these steps.

1. Create a $HOME/.ssh directory and set permissions so that only the file's
owner can access them.

% mkdir $HOME/.ssh

% chmod 700 $HOME/.ssh

2. Generate the RSA keys.

% ssh-keygen -t rsa

and following the prompts. You will be asked to supply a passphrase.

S–2396–21 7

Cray XT™ Programming Environment User’s Guide

3. The public key is stored in your $HOME/.ssh directory. Copy the key to
your home directory on the remote host(s).

% scp $HOME/.ssh/key_filename.pub \

username@system_name:.ssh/authorized_keys

4. Connect to the remote host.

If you are using a C shell, use:

% eval s` sh-agent

%

`

ssh-add

If you are using a Bourne shell, use:

$ eval s` sh-agent -s

$

`

ssh-add

5. Type your passphrase when prompted.

6. Connect to the remote host.

% ssh remote_host_name

2.1.2 Setting up RSA Authentication without a Passphrase

To enable ssh without a passphrase, complete these steps.

1. Create a $HOME/.ssh directory and set permissions so that only the owner
of the file can access them.

% mkdir $HOME/.ssh

% chmod 700 $HOME/.ssh

2. Generate the RSA keys.

% ssh-keygen -t rsa -N ""

Following the prompts.

8 S–2396–21

Setting Up Your Environment [2]

3. Copy the public key to your home directory on the remote host(s).

Note: This step is not required if your home directory is shared.

% scp $HOME/.ssh/key_filename.pub \

username@system_name:.ssh/authorized_keys

4. Connect to the remote host.

% ssh remote_host_name

2.2 Using Modules

The Cray XT system uses modules in the user environment to support multiple
versions of software, such as compilers, and to create integrated software
packages. As new versions of the supported software and associated man
pages become available, they are added automatically to the Programming
Environment, while earlier versions are retained to support legacy applications.
You can use the default version of an application, or you can choose another
version by using Modules system commands.

At login, the PrgEnv-pgi and Base-opts modules are loaded into your user
environment. You should never unload the Base-opts module because it
contains the setup for CLE.

To change compiler environments, swap out the PrgEnv-pgi module, leaving
the Base-opts module in place. For example:

% module swap PrgEnv-pgi PrgEnv-gnu

or

% module swap PrgEnv-pgi PrgEnv-pathscale

The target environment module is automatically loaded at log in. If the compute
nodes are running CNL, the xtpe-target-cnl module is automatically loaded.
If the compute nodes are running Catamount, the xtpe-target-catamount
module is automatically loaded.

For some products, additional modules may have to be loaded. The chapters
addressing those products and the related example programs specify the module
names and the conditions under which they must be loaded.

S–2396–21 9

Cray XT™ Programming Environment User’s Guide

Modules also provide a simple mechanism for updating certain environment
variables, such as PATH, MANPATH, and LD_LIBRARY_PATH. In general, you
should make use of the modules system rather than embedding specific directory
paths into your startup files, makefiles, and scripts.

To find out what modules have been loaded, use:

% module list

To get a list of all available modules, use:

% module avail

Note: Executing module avail produces an alphabetical list of every
modulefile in your module use path. It has no option for "grepping." If you
are on a large system, executing module avail with no argument may
produce several screens of module list items because module avail lists
every version of every modulefile alphabetically. In such cases, it is better to
use an argument, such as module avail xt; doing this allows you to get a
list of modules in a class within a product name. For example:

% module avail xt

displays all the modulefiles named xt*.

% module avail xt-pe

displays just the xt-pe modulefiles.

% module avail a

lists all modulefiles that start with an a.

For further information about the Module utility, see the module(1) and
modulefile(4) man pages.

2.3 Modifying the PATH Variable

You may need to modify the PATH variable for your environment. Do not
reinitialize the system-defined PATH. The following example shows how to
modify it for a specific purpose (in this case to add $HOME/bin to the path).

If you are using csh, use:

% set path = ($path $HOME/bin)

10 S–2396–21

Setting Up Your Environment [2]

If you are using bash, use:

$ export $PATH=$PATH:$HOME/bin

2.4 Using the Lustre File System

Lustre is the Cray XT parallel file system. To use Lustre, you must direct file
operations to paths within a Lustre mount point. You can use the df -t
lustre or lfs df command to locate Lustre mount points:

% lfs df

UUID 1K-blocks Used Available Use% Mounted on

nid00008_mds_UUID 179181084 11508832 167672252 6% /lus/nid00008[MDT:0]

ost1_UUID 1666447096 529153360 1137293736 31% /lus/nid00008[OST:0]

ost2_UUID 1666447096 540479248 1125967848 32% /lus/nid00008[OST:1]

<snip>

filesystem summary: 26663153536 8644943268 18018210268 32% /lus/nid00008

If your environment has not been set up to use Lustre for I/O, see your system
administrator. The Lustre I/O interface is transparent to the application
programmer; I/O functions are handled by the Lustre client running on the
compute nodes.

If you want to create a file with a specific striping pattern, use the Lustre lfs
command. Lustre file systems include Object Storage Servers (OSSs). Each OSS
hosts Object Storage Targets (OSTs), which transfer data objects that can be
striped across Redundant Array of Independent Disks (RAID) storage devices.

You may choose to create a file of multiple stripes if your application requires a
higher transmission rate to a single file than can be provided by a single OSS. You
may also need to stripe a file if a single OST does not have enough free space to
hold the entire file. For example, the command:

% lfs setstripe results2 1048576 1 4

stripes file results2 on four OSTs, (starting with ost1). The stripe size is
1048576 bytes.

For further information, see the lfs(1) man page.

S–2396–21 11

Cray XT™ Programming Environment User’s Guide

12 S–2396–21

About Libraries and Functions [3]

The Cray XT development environment the following libraries and functions.

3.1 About the C Language Run Time Library

The Cray XT supports subsets of the GNU C library, glibc, for CNL and
Catamount applications. For details on glibc for CNL, see Section 4.2.1, page 30
and Appendix A, page 187. For details on the Catamount port of glibc, see
Section 4.3.1, page 40 and Appendix B, page 193.

3.2 About the Cray Scientific Library

The Cray XT scientific library, XT-LibSci, includes:

• Basic Linear Algebra Subroutines (BLAS)

• Linear algebra routines (LAPACK)

• Parallel linear algebra routines (ScaLAPACK)

• Basic Linear Algebra Communication Subprograms (BLACS)

• Iterative Refinement Toolkit (IRT)

• SuperLU sparse solver routines

• CRay Adaptive Fast Fourier Transform (CRAFFT) routines

Note: By default, the xt-libsci module is loaded. Use this module for
XT-LibSci single- and dual-core applications. For XT-LibSci quad-core,
single-thread applications, load the xtpe-quadcore module. For LibSci
quad-core, multi-thread applications, load the xtpe-quadcore module and
include -lsci_mp on the compiler command line.

For additional information about XT-LibSci routines, see the scientific libraries
man pages (read intro_libsci(3s) first).

3.2.1 About the BLAS and LAPACK Libraries

The BLAS and LAPACK libraries include routines from the 64-bit libGoto
library from the University of Texas.

S–2396–21 13

Cray XT™ Programming Environment User’s Guide

If you require a C interface to BLAS and LAPACK but want to use Cray XT-LibSci
BLAS or LAPACK routines, you must use the Fortran interfaces.

You can access the Fortran interfaces from a C program by adding an underscore
to the respective routine names and passing arguments by reference (rather
than by value in the traditional way). For example, you can call the dgetrf()
function as follows:

dgetrf_(&uplo, &m, &n, a, &lda, ipiv, work, &lwork, &info);

Note: C programmers using the Fortran interface must order arrays in the
Fortran column-major manner.

3.2.2 About the ScaLAPACK and BLACS Libraries

ScaLAPACK is a distributed-memory, parallel linear algebra library. The
XT-LibSci version of ScaLAPACK is modified to work more efficiently on
Cray XT compute nodes.

The BLACS library is a set of communication routines used by ScaLAPACK and
the user to set up a problem and handle the communications.

The ScaLAPACK and BLACS libraries can be used in MPI and SHMEM
applications. Cray XT-LibSci under CNL also supports hybrid MPI/ScaLAPACK
applications, which use threaded BLAS on a compute node and MPI between
nodes. To use ScaLAPACK in a hybrid application:

1. Adjust the process grid dimensions in ScaLAPACK to account for the
decrease in BLACS nodes.

2. Ensure that the number of BLACS processes required is equal to the number
of nodes required, not the number of cores.

3. Set the GOTO_NUM_THREADS.

To run a ScaLAPACK application in regular mode (that is, 1 MPI process per
core) with 16 BLACS processes on a 4x4 computational grid, use the #PBS
-lmppwidth option to specify the number of processing elements needed (16)
and the #PBS -lmppnppn option to specify the number of PEs per node (2).

#!/usr/bin/csh

#PBS -lmppwidth=16

#PBS -lmppnppn=2

cd /lus/nid00007/user1

aprun -n 16 -N 2 ./scalapack1

14 S–2396–21

About Libraries and Functions [3]

To run the same job using a hybrid application, first reduce the number of BLACS
processes from 16 to 8 (by specifying either a 2x4 or possibly a 4x2 computational
grid). The additional parallelism within a node is provided through use of the
threaded BLAS.

In the PBS script, only those tasks actually recognized are requested. So set
mppwidth equal to the number of nodes required (8) and mppnppn equal to the
number of PEs per node (1).

#!/usr/bin/csh

#PBS -l mppwidth=8

#PBS -l mppnppn=1

#PBS -l mppdepth=2

cd /lus/nid00007/user1

setenv GOTO_NUM_THREADS 2

aprun -n 8 -N 1 -d 2 ./scalapack1

3.2.3 About the Iterative Refinement Toolkit (IRT)

The Iterative Refinement Toolkit (IRT) is a library of factorization routines,
solvers, and tools that can be used to solve systems of linear equations more
efficiently than the full-precision solvers in Cray XT-LibSci or ACML.

IRT exploits the fact that single-precision solvers can be up to twice as fast as
double-precision solvers. IRT uses an iterative refinement process to obtain
solutions accurate to double precision.

S–2396–21 15

Cray XT™ Programming Environment User’s Guide

IRT provides two interfaces:

• Benchmarking interface. The benchmarking interface routines replace the
high-level drivers of LAPACK and ScaLAPACK. The names of the benchmark
API routines are identical to their LAPACK or ScaLAPACK counterparts or
replace calls to successive factorization and solver routines. This allows you to
use the IRT process without modifying your application.

For example, the IRT dgesv() routine replaces either the LAPACK dgesv()
routine or the LAPACK dgetrf() and dgetrs() routines. To use the
benchmarking interface, set the IRT_USE_SOLVERS environment variable
to 1.

Note: Use this interface with caution; calls to the LAPACK LU, QR or
Cholesky routines are intercepted and the IRT is used instead.

• Expert interface. The expert interface routines give you greater control of the
iterative refinement process and provide details about the success or failure of
the process. The format of advanced API calls is:

call irt_factorization-method_data-type_processing-mode(arguments)

such as: call irt_po_real_parallel(arguments).

For details about IRT, see the intro_irt(3) man page.

3.2.4 About the SuperLU Library

The SuperLU library routines solve large, sparse nonsymmetric systems of linear
equations. Cray XT-LibSci SuperLU provides only the distributed-memory
parallel version of SuperLU. The library is written in C but can be called from
programs written in either C or Fortran.

3.2.5 About the CRay Adaptive Fast Fourier Transform (CRAFFT) Library

CRAFFT is a library of Fortran subroutines that compute the discrete Fourier
transform in one, two, or three dimensions; of arbitrary input size; and of both
real and complex data. CRAFFT provides a simplified interface to FFT and allows
the FFT library itself to choose the fastest FFT kernel.

16 S–2396–21

About Libraries and Functions [3]

To use the CRAFFT library:

• Load the xt-libsci module.

• Add the Fortran use crafft statement to any source file that calls a
CRAFFT routine.

• Call crafft_init() before any other CRAFFT routine. This sets up the
CRAFFT library for run time use.

You have a choice of how much planning of FFT kernels you wish to perform.
You can set the CRAFFT_PLANNER environment variable to 0, 1 or 2 before
execution. Alternately, you can use the crafft_set_planner() and
crafft_get_planner() subroutines to alter and query, respectively, the value
of CRAFFT_PLANNER during program execution.

See the intro_crafft(3s) man page for more information about the CRAFFT
library. See the crafft_set_planner(3s) and crafft_get_planner(3s) man
pages for more information on the planning of FFT kernels.

3.3 About the PETSc Library

The Programming Environment supports the Portable, Extensible Toolkit for
Scientific Computation (PETSc). PETSc is an open source library of routines that
solve partial differential equations. The toolkit includes a comprehensive suite
of sparse iterative solvers and preconditioners. PETSc is available from Argonne
National Lab; Cray's implementation differs from the public version only in
performance.

S–2396–21 17

Cray XT™ Programming Environment User’s Guide

The Cray implementation of PETSc is configured to use these external packages
(automatically linked through the PETSc modules):

MUMPS MUMPS (MUltifrontal Massively Parallel sparse direct Solver)
is a package of parallel, sparse, direct linear-system solvers
based on a multifrontal algorithm. For further information, see
http://graal.ens-lyon.fr/MUMPS/.

SuperLU SuperLU is a sequential version of SuperLU_dist (not
included with petsc-complex). For further information, see
http://crd.lbl.gov/~xiaoye/SuperLU/.

SuperLU_dist

SuperLU_dist is a package of parallel, sparse, direct
linear-system solvers (available in Cray LibSci). For further
information, see http://crd.lbl.gov/~xiaoye/SuperLU/.

ParMETIS ParMETIS (Parallel Graph Partitioning and Fill-reducing
Matrix Ordering) is a library of routines that partition
unstructured graphs and meshes and compute fill-reducing
orderings of sparse matrices. For further information, see
http://glaros.dtc.umn.edu/gkhome/views/metis/.

HYPRE HYPRE is a library of high-performance preconditioners that use
parallel multigrid methods for both structured and unstructured
grid problems (not included with petsc-complex). For further
information, see http://www.llnl.gov/CASC/linear_solvers/.

PETSc uses standard MPI functions for all message-passing communication.

Before compiling programs that use PETSc calls, load the appropriate PETSc
module:

• petsc for real data

• petsc-complex for complex data

By loading the PETSc module, all header and library locations are automatically
set corresponding to your environment. This removes the burden of managing
bmake materials used in conventional PETSc processing.

For a PETSC example, see Section 14.6, page 123. This example uses
makefile.F. The corresponding makefile.c and the makefiles for
conventional PETSc processing (makefile_conventional.c and
makefile_conventional.F) are listed in Appendix G, page 215.

18 S–2396–21

http://graal.ens-lyon.fr/MUMPS/
http://crd.lbl.gov/%7Exiaoye/SuperLU/
http://crd.lbl.gov/%7Exiaoye/SuperLU/
http://glaros.dtc.umn.edu/gkhome/views/metis/
http://www.llnl.gov/CASC/linear_solvers/

About Libraries and Functions [3]

For further information, see
http://www-unix.mcs.anl.gov/petsc/petsc-as/index.html.

3.4 About the AMD Core Math Library (ACML)

The AMD Core Math Library (ACML) module is no longer loaded as part of the
default PrgEnv environment. BLAS and LAPACK functionality is now provided
by Cray XT-LibSci (see Section 3.2.1, page 13). However, if you need ACML for
FFT functions, math functions, or random number generators, you can load the
library using the acml module:

% module load acml

ACML includes:

• A suite of Fast Fourier Transform (FFT) routines for real and complex data

• Fast scalar, vector, and array math transcendental library routines optimized
for high performance

• A comprehensive random number generator suite:

– Base generators plus a user-defined generator

– Distribution generators

– Multiple-stream support

ACML's internal timing facility uses the clock() function. If you run an
application on compute nodes that uses the plan feature of FFTs, underlying
timings will be done using the native version of clock(). On Catamount,
clock() returns elapsed time. On CNL, clock() returns the sum of user and
system CPU times.

3.5 About the FFTW Libraries

The Programming Environment includes versions 3.1.1 and 2.1.5 of the Fastest
Fourier Transform in the West (FFTW) library. FFTW is a C subroutine library
with Fortran interfaces for computing the discrete Fourier transform in one or
more dimensions, of arbitrary input size, and of both real and complex data (as
well as of even/odd data, such as the discrete cosine/sine transforms). The Fast
Fourier Transform algorithm is applied for many problem sizes.

S–2396–21 19

http://www-unix.mcs.anl.gov/petsc/petsc-as/index.html

Cray XT™ Programming Environment User’s Guide

To use the default FFTW library, use:

% module load fftw

To use the FFTW 3.1.1 library, use:

% module load fftw/3.1.1

To use the FFTW 2.1.5.1 library, use:

% module load fftw/2.1.5.1

Distributed-memory parallel FFTs are available only in FFTW 2.1.5.1.

The FFTW 3.1.1 and FFTW 2.1.5.1 modules cannot be loaded at the same time.
You must first unload the other module, if already loaded, before loading the
desired one. For example, if you have loaded the FFTW 3.1.1 library and want to
use FFTW 2.1.5.1 instead, use:

% module swap fftw/3.1.1 fftw/2.1.5.1

3.6 About the Fast_mv Library

Fast_mv is a library of high-performance math intrinsic functions. The functions
can be used in PGI and PathScale applications. You can use these functions
without changing your programs, or you can call them directly.

To use Fast_mv functions, load the libfast module:

% module load libfast

Currently, the library contains:

• exp(), the 64-bit exponential function (the constant e raised to a power)

• expf(), the 32-bit exponential function (the constant e raised to a power)

• frda_exp(), the 64-bit exponential function for all elements in an array

• frsa_expf(), the 32-bit exponential function for all elements in an array

For further information, see the intro_fast_mv(3) man page.

20 S–2396–21

About Libraries and Functions [3]

3.7 About the Cray MPT Library

The Cray MPT (Message Passing Toolkit) library includes MPICH2 and SHMEM
functions.

3.7.1 About the MPICH2 Library

MPICH2 implements the MPI-2 standard, except for support of spawn functions.
It also implements the MPI 1.2 standard, as documented by the MPI Forum in the
spring 1997 release of MPI: A Message Passing Interface Standard.

The Cray MPICH2 message-passing libraries are implemented on top of the
Portals low-level message-passing engine. The Portals interface is transparent to
the application programmer.

All Cray XT compilers support MPICH2 applications. There are two versions
of the MPICH2 library available for users of the PGI or PathScale Fortran
compilers. One version supports applications where the data size for the Fortran
default types integer, real, and logical is 32 bits, and the other version supports
applications where the data size is 64 bits. For further details, see Section 4.1.1.1,
page 27 and Section 4.1.3, page 29.

For examples showing how to compile, link, and run MPI applications, see
Section 14.2, page 116 and Section 15.2, page 158.

Note: Programs that use MPI library routines for parallel control and
communication should call the MPI_Finalize() routine at the conclusion
of the program.

For a list of MPI error messages and suggested workarounds, see Appendix D,
page 207.

For information about MPI environment variables, see the intro_mpi(3) man
page.

There are some limitations to Cray XT MPICH2 you should take into
consideration:

• There is a name conflict between stdio.h and the MPI C++ binding
in relation to the names SEEK_SET, SEEK_CUR, and SEEK_END. If your
application does not reference these names, you can work around this
conflict by using the compiler flag -DMPICH_IGNORE_CXX_SEEK. If your
application does require these names, as defined by MPI, undefine the
names (#undef SEEK_SET, for example) prior to the #include "mpi.h"
statement. Alternatively, if the application requires the stdio.h naming,

S–2396–21 21

Cray XT™ Programming Environment User’s Guide

your application should have the #include "mpi.h" statement before the
#include <stdio.h> or #include <iostream> statement.

• These process-creation functions are not supported and, if used, generate
aborts at run time:

– MPI_Close_port() and MPI_Open_port()

– MPI_Comm_accept()

– MPI_Comm_connect() and MPI_Comm_disconnect()

– MPI_Comm_spawn() and MPI_Comm_spawn_multiple()

– MPI_Comm_get_attr() with attribute MPI_UNIVERSE_SIZE

– MPI_Comm_get_parent()

– MPI_Lookup_name()

– MPI_Publish_name() and MPI_Unpublish_name()

• The MPI_LONG_DOUBLE data type is not supported.

3.7.2 About the SHMEM Library

The Cray shared memory access (SHMEM) library is a set of logically shared,
distributed memory access routines. Cray SHMEM routines are similar to MPI
routines; they pass data between cooperating parallel processes. The Cray
SHMEM library is implemented on top of the Portals low-level message-passing
engine. The Portals interface is transparent to the application programmer.

All Cray XT compilers support SHMEM applications. There are two versions of
the SHMEM library available for users of the PGI or PathScale Fortran compilers.
One version supports applications where the data size for the Fortran default
types integer, real, and logical is 32 bits; the other version supports applications
where the size is 64 bits. For further details, see Section 4.1.1.1, page 27 and
Section 4.1.3, page 29.

Cray SHMEM routines can be used in programs that perform computations
in separate address spaces and that explicitly pass data by means of put and
get functions to and from different processing elements in the program. Cray
SHMEM routines can be called from Fortran, C, and C++ programs and used
either by themselves or with MPI functions.

22 S–2396–21

About Libraries and Functions [3]

Portals and the Cray SHMEM library support these SHMEM atomic memory
operations:

• atomic swap

• atomic conditional swap

• atomic fetch and increment

• atomic fetch and add

• atomic lock

An operation is defined as atomic if the steps cannot be interrupted and are done
as a unit.

When running on CNL, you can use the environment variable
XT_LINUX_SHMEM_HEAP_SIZE to set the size (in bytes) of the private heap.
To set the stack size, use the XT_LINUX_SHMEM_STACK_SIZE environment
variable. The size of the stack is limited by the value of stacksize, unless
stacksize is set to unlimited, in which case the default size of the stack is 16
MB.

When running on Catamount, you can use the yod command line options
-stack, -heap, and -shmem to set the size (in bytes) of the stack, private heap,
and symmetric heap, respectively. See the yod(1) man page for details. On
Catamount, SHMEM applications can use all available memory per node (total
memory minus memory for the kernel and the process control thread (PCT)).
SHMEM does not impose any restrictions on stack, heap, or symmetric heap
memory regions.

You can use the XT_SYMMETRIC_HEAP_SIZE environment variable on either
Catamount or CNL to control the size of the symmetric heap.

Note: To build, compile, and run Cray SHMEM applications, you need to call
start_pes(int npes) or shmem_init() as the first Cray SHMEM call
and shmem_finalize() as the last Cray SHMEM call.

If you use both MPI and SHMEM functions in an application, the sequence of
required calls is:

MPI_Init

start_pes

...

shmem_finalize

MPI_Finalize

S–2396–21 23

Cray XT™ Programming Environment User’s Guide

For examples showing how to compile, link, and run SHMEM applications on
CNL, see Section 14.3, page 118 and Section 14.4, page 120. For Catamount
examples, see Section 15.3, page 160 and Section 15.4, page 162.

When using SHMEM functions, be aware of these issues:

• The performance of strided operations is poor. The Portals network protocol
stack on Cray XT is optimized for block transfers. It does not support efficient
access of non-contiguous remote memory. Repackaging data into contiguous
blocks in your application and then calling a shmem_put() or shmem_get()
function give better performance than calling strided operations.

• Atomic memory operations are implemented in software and are relatively
slow. You should not use these operations for high fan-in synchronization
because the injection rate is much larger than the processing rate, leading to a
buildup of requests and degraded performance.

• Barrier functions are implemented in software and are relatively slow. Cray
recommends that you minimize the use of barriers.

• Avoid this type of construct:

while (remval != 0) {

shmem_get64(&remval, &rem_flag, 1, pe);

}

It can severely tax the Portals network protocol stack, particularly if many
processes are "spinning" on a variable at a single target process. If possible,
use other synchronization mechanisms that rely on spinning on local memory.

3.8 About the OpenMP Library

The Cray XT system supports version 2.5 of the OpenMP standard. OpenMP is
a shared-memory, parallel programming model that allows you to use threads.
OpenMP provides library routines, Fortran directives, C and C++ pragmas,
and environment variables. The PGI, GCC, and PathScale compilers support
OpenMP.

To use OpenMP, use these compiler command options:

PGI -mp=nonuma

PathScale -mp

GCC -fopenmp

24 S–2396–21

About Libraries and Functions [3]

You also need to set the OMP_NUM_THREADS environment variable to the number
of threads in the team.

The number of CPUs hosting OpenMP threads at any given time is fixed at
program startup and specified by the aprun -d depth option (see Section 7.1,
page 61 for further information).

For an example showing how to compile, link, and run OpenMP applications, see
Section 14.7, page 135.

You can use OpenMP applications in hybrid OpenMP/MPI applications,
but OpenMP applications cannot cross node boundaries. In OpenMP/MPI
applications, MPI calls can be made from master or sequential regions but not
parallel regions. OpenMP is supported on CNL but not Catamount.

For further information about running OpenMP applications, see
the aprun(1) man page. For further information about OpenMP
functions, see the OpenMP website (http://www.openmp.org), the
PGI website (http://www.pgroup.com/), the PathScale website
(http://www.pathscale.com/), or the GNU OpenMP website
(http://gcc.gnu.org/projects/gomp/).

3.9 About the UPC Functions

The Cray XT system supports Unified Parallel C (UPC), a C language extension
for parallel program development. You use UPC language syntax to read and
write memory of other processes with simple assignment statements. Program
synchronization occurs only when explicitly programmed; there is no implied
synchronization.

Cray XT-UPC contains these front ends:

• Berkeley UPC translator, a UPC-to-C translator based on Open64.

• Intrepid GCCUPC, a UPC-to-assembly compiler based on GNU GCC.

Both front ends generate code that is linked with the Berkeley UPC run time
library and communication system. These components comply with the UPC
Language Specification, v1.2.

For examples showing you how to compile and run UPC programs, see Section
14.5, page 122. and Section 15.5, page 164.

S–2396–21 25

http://www.openmp.org
http://www.pgroup.com/
http://www.pathscale.com/
http://gcc.gnu.org/projects/gomp/

Cray XT™ Programming Environment User’s Guide

For more information about UPC, see the upcc(1) and upcrun(1) man pages, the
Berkeley UPC website (http://upc.lbl.gov/docs/), and the Intrepid UPC website
(http://www.intrepid.com/upc/cray_xt3_upc.html).

26 S–2396–21

http://upc.lbl.gov/docs/
http://www.intrepid.com/upc/cray_xt3_upc.html

Cray XT Programming Considerations [4]

The manuals and man pages for third-party and open source Cray XT
Programming Environment products provide platform-independent descriptions
of product features. This chapter provides information specific to Cray XT
systems that you should consider when using those products to develop CNL or
Catamount applications.

4.1 Programming Considerations for all Developers

This section describes programming considerations that apply to CNL and
Catamount applications.

4.1.1 About PGI Compilers

When using the PGI compilers, be aware of the following factors.

4.1.1.1 About Default MPICH2 and SHMEM Libraries

If you use the PGI Fortran compiler, you can promote default integer, real, and
logical operations to 64-bit precision. Include the -default64 option on the ftn
command line; this passes the -i8 and -r8 options to the compiler. The -i8
option directs the compiler to use 64 bits for the data size of default integer and
logical operations. The -r8 option directs the compiler to use 64 bits for the data
size of default real variables.

Use this method to compile all Fortran source files that contain default integer,
logical, real, or complex variables.

The -default64 option directs the linker to use the default64 version of the MPI
or SHMEM library. If you compile using -default64 but omit the -default64
option when linking, the linker attempts to use the default32 libraries; the
executable probably will not run.

Note: The -default64 option does not affect the sizes of data types that use
explicit kind and star values.

S–2396–21 27

Cray XT™ Programming Environment User’s Guide

4.1.1.2 About Unsupported C++ Header Files

PGI does not provide a complete set of the old C++ Standard Library and
STL header files. However, PGI C++ does support some old header files
(iostream.h, exception.h, iomanip.h, ios.h, istream.h, ostream.h,
new.h, streambuf.h, strstream.h, and typeinfo.h), which include their
C++ Standard Library counterpart.

To use an unsupported header file:

• Delete the .h. For example, change <vector.h> to <vector>, or

• Create your own headerfile.h file and use the -I compiler option to direct
the compiler to access the header file in your directory:

#ifndef __VECTOR_H

#define __VECTOR_H

#include <vector>

using std::vector;

#endif

4.1.1.3 About Restrictions on Large Data Objects

PGI compilers support data objects larger than 2 GB. However, the Cray XT
Programming Environment has restrictions because the user-level libraries (MPI,
SHMEM, and LibSci) are compiled in the small memory model.

The only way to build an application with data objects larger than 2 GB is to limit
the static data sections to less than 2 GB by converting static data to dynamically
allocated data.

4.1.1.4 About the FORTRAN STOP Message

The PGI Fortran stop statement writes a FORTRAN STOP message to standard
output. In a parallel application, every process that executes the stop statement
writes this message. This is not scalable and will cause performance and,
potentially, reliability problems in very large applications.

To turn off the STOP message, use the NO_STOP_MESSAGE environment variable.

28 S–2396–21

Cray XT Programming Considerations [4]

4.1.1.5 Suppressing PGI Vectorization

To suppress vectorization in PGI applications, use:

• The -Mnovect compiler option, which suppresses vectorization for the entire
source file.

• The !pgi$r novector directive or #pragma routine novector
statement placed before the start of a routine, which suppresses vectorization
for the entire routine.

• The !pgi$ novector directive or #pragma loop novector statement
placed before a loop, which suppresses vectorization for the loop. In most
cases, use the directive on innermost loops because the directive does not
suppress vectorization for loops nested inside the targeted loop.

For more information, see the PGI User's Guide.

4.1.2 About the PGI Debugger

The PGI debugger, PGDBG, is not supported on Cray XT systems.

4.1.3 About the PathScale Fortran Compiler

If you use PathScale Fortran, you can promote default integer, real, and logical
operations to 64-bit precision. By including the -default64 option on the ftn
command line, you pass the -i8 and -r8 options to the compiler. The -i8
option directs the compiler to use 64 bits for the data size of default integer and
logical operations. The -r8 option directs the compiler to use 64 bits for the data
size of default real variables. Compile all Fortran source files containing default
integer, logical, real, or complex variables this way.

Also, for MPI applications the -default64 option directs the linker to use the
default64 version of the MPI or SHMEM library.

Link in default64 mode. If you compile with the -default64 option but link
without the -default64 option, the compiler tries to link to the default32
libraries; the resulting executable probably will not run.

Note: The sizes of data types that use explicit kind and star values are not
affected by this option.

S–2396–21 29

Cray XT™ Programming Environment User’s Guide

4.1.4 About Little-endian Support

The Cray XT system supports little-endian byte ordering. The least significant
value in a sequence of bytes is stored first in memory.

4.1.5 About the Portals Message Size Limit

A single Portals message cannot be longer than 2 GB.

4.1.6 About Shared Libraries

The Cray XT systems currently do not support dynamic loading of executable
code or shared libraries. Also, the related LD_PRELOAD environment variable
is not supported.

4.2 Programming Considerations for CNL Users

This section describes the factors to consider when developing CNL applications.

4.2.1 About CNL glibc Functions

CNL provides limited support of the glibc process control functions, such as
popen(), fork(), exec(), and system(). The resulting processes execute in
the limited RAM disk environment on each compute node.

30 S–2396–21

Cray XT Programming Considerations [4]

The exec() function can execute the scp and ksh commands and these
BusyBox commands:

ash cat chmod

chown cp cpio

dmesg free grep

gunzip kill killall

ksh ln logger

ls mkdir mktemp

more nice ping

ps renice rm

sleep tail test

vi zcat

For more information, see Section 14.14, page 147 and the busybox(1) man page.

You can access the cpuinfo and meminfo /proc files. These files contain
information about your compute node.

CNL also supports the ttyname() function. See Section 4.2.2, page 31 for
information about how aprun handles stdin, stdout, and stderr.

CNL glibc does not support:

• The getgrgid(), getgrnam(), gethostbyname(), getpwnam(), or
getpwuid() functions.

• Customer-provided functions that require a daemon.

Appendix A, page 187 lists the glibc functions that CNL supports.

4.2.2 About I/O Support Operations under CNL

I/O operations allowed in CNL applications are Fortran, C, and C++ I/O calls;
Cray MPICH2, Cray SHMEM, and OpenMP I/O functions; and the underlying
Linux Lustre client I/O functions.

I/O to Lustre is supported in CNL. Files in other remote file systems cannot be
accessed. One exception is the handling of stdin, stdout, and stderr

S–2396–21 31

Cray XT™ Programming Environment User’s Guide

The aprun utility handles stdin, stdout, and stderr. The aprun file
descriptor 0 forwards stdin data to processing element 0 (PE 0) only; stdin is
closed on all other PEs. The stdout and stderr data from all PEs is sent to
aprun, which forwards the data to file descriptors 1 and 2.

Files local to the compute node, such as ones in /proc or /tmp, can be accessed
by an application. See Section 4.2.1, page 30.

In Catamount, I/O is possible to any file system accessible to yod. Lustre I/O is
handled as a special case.

4.2.3 Connecting to External Services under CNL

Cray XT systems support external connectivity to or from compute nodes
running CNL. You can use IP functions in your programs to access network
services. To determine if your site has configured CNL compute nodes for
network connectivity, see your system administrator.

4.2.4 About Timing Functions under CNL

CNL supports these timing functions:

• CPU timers. The Fortran cpu_time(time) intrinsic subroutine returns the
processor time; time is real4 or real8. The magnitude of the value returned
by cpu_time() is not necessarily meaningful. You call cpu_time() before
and after a section of code; the difference between the two times is the amount
of CPU time (in seconds) used by the program.

• Elapsed time counter. CNL supports the MPI_Wtime() and MPI_Wtick()
functions and the Fortran system_clock() intrinsic subroutine.

The MPI_Wtime() function returns the elapsed time. The MPI_Wtick()
function returns the resolution of MPI_Wtime() in seconds.

CNL does not support the dclock() or etime() functions.

4.2.5 About Signal Support under CNL

The aprun utility catches SIG* signals and forwards them to applications. For
more information, see Section 7.8, page 75.

32 S–2396–21

Cray XT Programming Considerations [4]

4.2.6 Killing Processes under CNL

To kill CNL applications, you can use the apkill command. Also, the Linux
kill command and the kill() system call are supported on CNL compute
nodes. Each process on a node can send signals to itself and other processes on
that node.

Use the xtkill command to kill processes on service nodes.

4.2.7 About Core Files under CNL

When an application fails on CNL, one core file is generated for the first failing
process. An application generates no core file at all if a file named core already
exists in the current directory.

4.2.8 Using Cray XT4 Quad-core Processors

Cray XT systems support single-socket, quad-core compute nodes (Cray XT4).
Cray XT4 compute nodes run CNL.

To run an application exclusively on Cray XT4 compute nodes:

1. Use the cnselect command to get a list of all Cray XT4 compute nodes.

% cnselect coremask.eq.15

70-79

2. Load the xtpe-quadcore module; this module adds the appropriate
quad-core option on the compiler command line:

• PGI: -tp barcelona-64

• GCC: -march=barcelona

• PathScale: -march=barcelona

where barcelona is the code name of the Quad-Core AMD Opteron
processor.

3. For interactive jobs, include all or a subset of the candidate list on the aprun
-L option.

% aprun -n 16 -L 70-75 ./a.out

S–2396–21 33

Cray XT™ Programming Environment User’s Guide

For batch and interactive batch jobs, include all or a subset of the candidate
list on the qsub -lmppnodes option:

% qsub -lmppwidth=16 -lmppnodes=/"70-75/"

4.2.9 Using Cray XT5 Compute Nodes

Cray XT systems support Cray XT5 compute nodes, which run CNL. Each
Cray XT5 compute node consists of two sockets, with each socket housing a
NUMA node. NUMA node 0 has a quad-core processor (logical CPUs 0-3),
memory, and connections to the SeaStar interconnection network. NUMA node 1
has a quad-core processor (logical CPUs 4-7) and memory.

AMD
Opteron

Processor

CPU 0 CPU 1

CPU 2 CPU 3

Memory

NUMA node 0

CPU 4 CPU 5

CPU 6 CPU 7

AMD
Opteron

Processor

Memory

NUMA node 1

SeaStar
Interconnect

Figure 1. Cray XT5 Compute Node

Note: Having a Cray XT5 compute node reserved for your job does not
guarantee that you can use both NUMA nodes. You have to request sufficient
resources through aprun placement options (-n, -N, -d, -m, or default values)
to be able to use both NUMA nodes. If you do not have access to both NUMA
nodes, aprun memory affinity and CPU affinity options that reference the
second NUMA node are either ignored or your job is terminated. For examples
showing how to use memory affinity options, see Section 14.12, page 144.
For examples showing how to use CPU affinity options, see Section 14.13,
page 146.

34 S–2396–21

Cray XT Programming Considerations [4]

To run an application exclusively on Cray XT5 compute nodes:

1. Use the cnselect command to get a candidate list.

% cnselect coremask.eq.255

24-95,128-223,256-351,384-447

2. Load the xtpe-quadcore module; this module adds the appropriate
quad-core option on the compiler command line:

• PGI: -tp barcelona-64

• GCC: -march=barcelona

• PathScale: -march=barcelona

3. For interactive jobs, include all or a subset of the candidate list on the aprun
-L option.

% aprun -n 16 -L 384-447 ./a.out

For batch and interactive batch jobs, include all or a subset of the candidate
list on the qsub -lmppnodes option:

% qsub -lmppwidth=16 -lmppnodes=/"384-447/"

4.2.10 Using Huge Pages and Base Pages under CNL

Cray XT systems support 2 MB huge pages and 4 KB base pages for CNL
applications. Previous versions of CNL supported only base pages. For
applications that use a large amount of virtual memory, 4 KB pages can put
a heavy load on the virtual memory subsystem. Huge pages can provide a
significant performance increase for such applications.

The 4 KB base pages remain the default. To specify huge pages:

1. Load the huge pages library, hugetlbfs.a, during the linking phase. For
example, you could use the following commands:

% cc -c my_hugepages_app.c

% cc -o my_hugepages_app my_hugepages_app.o -lhugetlbfs

Note: The -lhugetlbfs argument, as shown, is required. Do not use the
separated form, -l hugetlbfs.

S–2396–21 35

Cray XT™ Programming Environment User’s Guide

2. Set the huge pages environment variable.

% setenv HUGETLB_MORECORE yes

or

$ export HUGETLB_MORECORE=yes

If you do not set this environment variable or if you set it to no, CNL uses
4 KB pages.

3. Add a huge pages suffix to the aprun -m size option.

-m sizeh Requests size of huge pages to be allocated to each
processing element. All nodes use as much huge page
memory as they are able to allocate and afterward use
4 KB pages.

-m sizehs Requires size of huge pages to be allocated to each
processing element. If the request cannot be satisfied,
an error message is issued and aprun terminates the
request.

This command requests 700 MB of huge pages per processing element (PE),
or 1400 MB per node on dual-core nodes:

% aprun -m700h -n 2 -N 2 ./my_hugepages_app

You can run base-page and huge-page applications on the same machine at the
same time. The applications can run in any order in succession on any groups
of nodes.

For example, you could run a base-page application, a huge-page application,
and then a base-page application:

% aprun -n 64 -N 2 ./my_4kbpage_app

% setenv HUGETLB_MORECORE yes

% aprun -m700h -n 64 -N 2 ./my_hugepages_app

% aprun -n 64 -N 2 ./my_4kbpage_app

Only the heap is placed on huge pages. All other program segments (code,
initialized data, BSS data, and the stack) are on 4 KB pages. The heap is not
placed on huge pages if the application uses an allocation function other than
glibc malloc() or overrides the glibc malloc morecore() function.

36 S–2396–21

Cray XT Programming Considerations [4]

The memory available for huge pages is less than the total memory on the node.
You must leave enough memory for CNL and I/O buffers. Also, because of
memory fragmentation, less memory is available for huge pages after a node
has run other jobs.

There is no guaranteed amount of huge page memory available to an application.
Cray recommends that you not request more than these values for huge pages:

Total Memory on the Node Memory Available for Huge Pages

2 GB 1000 MB per node

4 GB 3000 MB per node

8 GB 6400 MB per node

16 GB 14100 MB per node

32 GB 30000 MB per node

Memory allocated as huge pages is unavailable for I/O, whether the application
uses the memory or not. Less available memory for I/O buffers may result in
performance degradation.

If you do not include the -msizehs option and not enough huge pages are
available, run times may be inconsistent.

Note: The Linux alloc_hugepages() and free_hugepages() system
calls are no longer supported. CNL uses the hugetlbfs file system instead;
hugetlbfs is a pseudo file system used for mapping huge pages into an
application's virtual address space.

4.2.11 Allocating Memory under CNL

CNL provides environment variables to control how the system memory
allocation routine malloc() behaves. The environment variables are:

• MALLOC_MMAP_MAX_

• MALLOC_TRIM_THRESHOLD_

Note the trailing underscores on the environment variable names.

S–2396–21 37

Cray XT™ Programming Environment User’s Guide

MALLOC_MMAP_MAX_

Using memory-mapped (MMAP) regions is very costly
compared to using the heap. MMAP regions exist to allow a
program to return unused memory to the system more easily
so it may be used by other processes on the node. This is most
applicable and helpful on SMP nodes with multiple programs
sharing a node. Because Cray XT systems do not run multiple
applications on the same compute node, using MMAP regions
is generally not helpful.

By default, MALLOC_MMAP_MAX_ is 64, meaning that your
program may have as many as 64 non-heap, memory-mapped
regions. Cray recommends that you set MALLOC_MMAP_MAX_
to 0. This means that your program will not use any MMAP
regions, eliminating mmap() and munmap() system calls.

There may be cases where it is inappropriate to set the variable
to zero. MMAP regions could help if an MPI program has one
process on a node that uses a lot of memory and frees it, and
later another process on the same node uses a lot of memory.
However, memory usage is typically not asymmetric in this way.
Also, an application that does a significant amount of I/O near
the end of its run, after freeing a lot of memory, may also benefit
from using MMAP regions. However, experimental data has
not shown that this potential benefit outweighs the extra cost of
mmap() and munmap() calls during the life of the program.

MALLOC_TRIM_THRESHOLD_

MALLOC_TRIM_THRESHOLD_ is the amount of free space at the
top of the heap that needs to exist before malloc() will return
the memory to CNL. Returning memory to CNL is costly. For
example, the default setting of 128 KB is much too low for a node
with 4 GB of memory and one application running. Cray suggest
setting MALLOC_TRIM_THRESHOLD_ to 536870912 (that is,
0.5 GB). This reduces the number of sbrk() and brk() calls,
improving performance.

If your application uses less than 0.5 GB of memory, set the
variable to the amount your application uses. Also, if your
application needs a lot of memory for I/O buffering and setting
this variable to a smaller value would free some memory, you
may want to set it lower than the recommended 0.5 GB.

38 S–2396–21

Cray XT Programming Considerations [4]

Note: If you use PGI compilers, you have an alternative to using these
environment variables. The PGI -Msmartalloc option is the equivalent of
setting MALLOC_MMAP_MAX_ to 2 and MALLOC_TRIM_THRESHOLD_ to 1 GB.
The trade-offs are that -Msmartalloc cannot be used with GCC or PathScale
compilers, you need to recompile your application, and the -Msmartalloc
settings may not be optimal values.

4.2.12 About Resource Limits under CNL

Memory limits are defined by the node default or the aprun -m option. Time
limits are inherited from the aprun process limits or specified with the aprun
-t option. Other limits are inherited from the limits of aprun. All limits apply
to individual processing elements; there are no aggregate application limits that
can be specified with aprun options.

4.2.13 About the One Application Per Node Limitation under CNL

Cray XT systems currently do not support running more than one CNL
application on a compute node.

4.2.14 About Parallel Programming Models under CNL

The MPI, SHMEM, OpenMP, and UPC parallel programming models are
supported on CNL applications.

4.2.15 About the Modified Copy-on-write Process under CNL

Under Linux, fork() uses a copy-on-write process to conserve time and
memory resources. When a process forks a child process, most of the pages in the
parent process' address space are initially shared with the child process. The
parent and child processes can continue sharing a page until one of the processes
tries to modify the page. At that point, the process modifying the page creates
a new page for its private use, copies the previously-shared page's data into it,
and continues to use this new page instead of the previously-shared page. The
previously-shared page now belongs solely to the other process.

S–2396–21 39

Cray XT™ Programming Environment User’s Guide

The copy-on-write process can adversely affect Cray XT user applications that
use Portals. To correct this problem, Cray modified the Portals kernel to perform
a partial copy when a process forks a child process. For each region of a process'
address space that is registered with Portals for Remote Direct Memory Access
(RDMA), the first and last page of the region are copied to a private page in the
child's address space as the fork occurs. This ensures that Portals can continue to
transfer data using these pages in the parent's address space, and also ensures
that any data residing on these pages that were not intended for Portals transfers
(such as heap variables) can be referenced in the child's address space.

The implications are:

• Pages in the middle of a Portals memory region (likely maps to any large MPI
message buffers) are not accessible in the child process. Copy the necessary
data out of the parent's message buffer before forking.

• More memory is allocated and copied than in a normal fork. This could cause
unexpected memory exhaustion if you have many Portals memory regions.

4.2.16 About Unsupported PGI Compiler Command Options under CNL

These PGI compiler command options are not supported on CNL applications:

• -mprof=mpi

• -Mmpi

• -Mscalapack

Note: Not all PGI options have been tested under CNL.

4.3 Programming Considerations for Catamount Users

This section describes the factors to consider when developing Catamount
applications.

4.3.1 About Catamount glibc Functions

Because Catamount is designed to emphasize critical support to high-speed
computational applications, its functionality is limited in certain areas where the
service nodes are expected to take over. In particular, glibc on Catamount does
not support:

40 S–2396–21

Cray XT Programming Considerations [4]

• Dynamic process control (such as exec(), popen(), fork(), or system
library calls).

• Threading.

• The /proc files such as cpuinfo and meminfo. (These files contain
information about your login node.)

• The ptrace() system call.

• The mmap() function. If mmap() is called, a skeleton function returns -1.
You should use malloc() instead of mmap() if the mmap() call is using
the MAP_ANONYMOUS flag; malloc() is not an appropriate replacement
for mmap() calls that use the MAP_FIXED or MAP_FILE flag. If you do
use malloc(), you may have to resolve data alignment issues. See the
malloc() man page for details.

Note: The Cray XT system provides two implementations of malloc():
Catamount malloc() and GNU malloc(). Catamount provides a
custom implementation of the malloc() function. This implementation
is tuned to Catamount's non-virtual-memory operating system and favors
applications that allocate large, contiguous data arrays. The function uses a
first-fit, last-in-first-out (LIFO) linked list algorithm. For information about
gathering statistics on memory usage, see the heap_info(3) man page. In
some cases, GNU malloc() may improve performance.

• The profil() function.

• Any of the getpwd*(), getgr*(), and getpw*() families of library calls.

• Terminal control.

• Customer-provided functions that require a daemon.

• Any functions that require a database, such as Network Block Device (NDB)
functions. For example, there is no support for the uid and gid family of
queries that are based on the NDB functions.

• There is limited support for signals and ioctl(). See the ioctl(2) man
page for details.

Appendix B, page 193 lists the glibc functions that Catamount supports. The
glibc functions that Catamount does not support are so noted in their man pages.

S–2396–21 41

Cray XT™ Programming Environment User’s Guide

4.3.2 About I/O Support Functions under Catamount

I/O support for Catamount applications is limited. The only operations allowed
are Fortran, C, and C++ I/O calls; Cray MPICH2 and Cray SHMEM I/O
functions; and the underlying Catamount (libsysio) and Lustre (liblustre) I/O
functions.

Keep in mind these behaviors:

• I/O is offloaded to the service I/O nodes. The yod application launcher
handles stdin, stderr, and stdout. For more information, see Section
8.6, page 82.

• Calling an I/O function such as open() with a bad address causes the
application to fail with a page fault. On the service nodes, a bad address
causes the function to set errno = EFAULT and return -1.

• Catamount does not support I/O on named pipes.

The following sections describe techniques you can use to improve I/O
performance.

4.3.2.1 Improving Fortran I/O Performance under Catamount

To increase buffer size in a Fortran program, use the setvbuf3f() function:

integer function setvbuf3f(lu, type, size)

where:

integer lu The logical unit

integer type

• 0 — Full buffering

• 1 — Line buffering

• 2 — No buffering

integer size

The size of the new buffer

The setvbuf3f() function returns 0 on success, nonzero on failure. For more
information, see the setbuf(3) man page.

42 S–2396–21

Cray XT Programming Considerations [4]

4.3.2.2 Improving C++ I/O Performance under Catamount

The standard stream I/O facilities defined in the Standard C++ header file
<iostream> are unbuffered. You can use the routine pubsetbuf() to specify
a buffer for I/O. Section 15.7, page 166 shows how pubsetbuf() can improve
performance.

I/O-to-file streams defined in <fstream> are buffered with a default buffer size
of 4096. You can use pubsetbuf() to specify a buffer of a different size. Specify
the buffer size before the program performs a read or write to the file; otherwise,
the call to pubsetbuf() is ignored and the default buffer is used. Section 15.7,
page 166 shows how to use pubsetbuf() to specify a buffer for <fstream>
file I/O. Avoid calls to member function endl to prevent the buffer from being
flushed.

4.3.2.3 Improving stdio Performance under Catamount

By default, stdin, stdout, and stderr are unbuffered. Under Catamount, this
limits the data transfer rate to approximately 10 bytes per second because read
and write calls are offloaded to yod. To improve performance, call setvbuf() to
buffer stdin input or stdout/stderr output. For an example showing how to
improve stdio performance, see Section 15.9, page 169.

4.3.2.4 Improving the Performance of Large File, Sequential I/O under Catamount

IOBUF is an I/O buffering library that can reduce the I/O wait time for programs
that read or write large files sequentially. IOBUF intercepts standard I/O calls
such as fread() and fopen() and replaces the stdio layer of buffering with
a replacement layer of buffering, thus improving program performance by
enabling asynchronous prefetching and caching of file data. In addition, IOBUF
can gather run time statistics and print a summary report of I/O activity for
each file.

No program source changes are needed to use IOBUF. Instead, relink your
program with the IOBUF library and set one or more environment variables.

To use IOBUF:

1. Load the iobuf module.

% module load iobuf

2. Relink the program.

3. Set the IOBUF_PARAMS environment variable.

S–2396–21 43

Cray XT™ Programming Environment User’s Guide

The IOBUF_PARAMS environment variable specifies patterns for selecting
I/O files and sets parameters for buffering. If you do not set this
environment variable, the default state is no buffering and the I/O call is
passed on to the next layer without intervention.

The general format of the IOBUF_PARAMS environment variable is a
comma-separated list of specifications:

IOBUF_PARAMS 'spec1,spec2,spec3,...'

Each specification begins with a file name pattern. When a file is opened,
the list of specifications is scanned and the first matching file name pattern
is selected. If no pattern matches, the file is not buffered. The file name
pattern follows standard shell pattern matching rules. For example, to buffer
stdout, you would use:

% setenv IOBUF_PARAMS '%stdout'

or:

% export IOBUF_PARAMS='%stdout'

4. Execute the program.

Note: IOBUF works with PGI Fortran programs but does not work with
PathScale Fortran or GNU Fortran programs. Also, IOBUF works with the
PGI, PathScale, and GNU C compilers. IOBUF works with C++ programs that
use stdio but does not work with the C++ standard buffered I/O stream class
<iostream>.

C programs that use POSIX-style I/O calls such as open(), read(), write(),
and close() are not affected by IOBUF. A workaround is to replace POSIX I/O
calls in the C program with their equivalent IOBUF-specific calls. The IOBUF
calls are identical to their POSIX counterparts but are prefixed with iobuf_.

For further information, see the iobuf(3) man page.

4.3.2.5 Using Stride I/O Functions to Improve Performance under Catamount

You can improve file I/O performance of C and C++ programs by using the
readx(), writex(), ireadx(), and iwritex() stride I/O functions. For
further information, see the man pages.

44 S–2396–21

Cray XT Programming Considerations [4]

4.3.2.6 Reducing Memory Fragmentation under Catamount

In past releases, small memory allocations could become interspersed throughout
memory, preventing the allocation of very large arrays (that is, arrays larger
than half of available memory). To solve this problem, small allocations (those
less than or equal to 100 MB, by default) are still allocated into the beginning of
the first available free area of memory, but large allocations are now allocated
into the end of the last available free area. This allows very large arrays to be
allocated/freed in a separate area of memory, making memory fragmentation
less likely.

You can use the CATMALLOC_LARGE_ALLOC_SIZE environment variable to
change the default small versus large delineation line.

4.3.3 About the Limitations of External Connectivity under Catamount

Cray XT does not support external connectivity to or from compute nodes
running Catamount. Pipes, sockets, remote procedure calls, or other types
of TCP/IP communication are not supported. The parallel programming
model functions and the underlying Portals interface are the only supported
communication mechanisms.

4.3.4 About Timing Functions under Catamount

Catamount supports these timing functions:

• Interval timer. Catamount supports the setitimer ITIMER_REAL
function. It does not support the setitimer ITIMER_VIRTUAL or the
setitimer ITIMER_PROF function. Also, Catamount does not support
the getitimer() function.

• CPU timers. Catamount supports the glibc getrusage() and the Fortran
cpu_time() functions. For C and C++ programs, getrusage() returns
the current resource usages of either RUSAGE_SELF or RUSAGE_CHILDREN.
The Fortran cpu_time(time) intrinsic subroutine returns the processor
time, where time has a data type of real4 or real8. The magnitude of
the value returned by cpu_time() is not necessarily meaningful. You call
cpu_time() before and after a section of code; the difference between the
two times is the amount of CPU time (in seconds) used by the program.

• Elapsed time counter. The dclock(), Catamount clock(), and
MPI_Wtime() functions and the system_clock() Fortran intrinsic
subroutine calculate elapsed time. The etime() function is not supported.

S–2396–21 45

Cray XT™ Programming Environment User’s Guide

The dclock() value rolls over approximately every 14 years and has a
nominal resolution 100 nanoseconds on each node.

Note: The dclock() function is based on the configured processor
frequency, which may vary slightly from the actual frequency. The clock
frequency is not calibrated. Furthermore, the difference between configured
and actual frequency may vary slightly from processor to processor.
Because of these two factors, accuracy of the dclock() function may be
off by as much as +/-50 microseconds/second, or 4 seconds/day. For an
example showing how to use dclock() to calculate elapsed time, see
Section 15.6, page 165.

The resolution of the system_clock subroutine depends on the compiler
and kind of argument. The count rate can be obtained by specifying the
count_rate argument to system_clock.

The clock() function is now supported on Catamount; it estimates elapsed
time as defined for the dclock() function. The Catamount clock()
function is not the same as the Linux clock() function. The Linux clock()
function measures processor time used. For Catamount compute node
applications, Cray recommends that you use the dclock() function or an
intrinsic timing routine in Fortran such as cpu_time() instead of clock().
For further information, see the dclock(3) and clock(3) man pages.

The MPI_Wtime() function returns the elapsed time. The MPI_Wtick()
function returns the resolution of MPI_Wtime() in seconds.

4.3.5 About Signal Support under Catamount

In previous Cray XT releases, Catamount did not correctly provide extra
arguments to signal handlers when the user requested them through
sigaction(). Signal handlers installed through sigaction() have the
prototype:

void (*handler) (int, siginfo_t *, void *)

which allows a signal handler to optionally request two extra parameters. On
Catamount compute nodes, these extra parameters are provided in a limited
fashion when requested.

The siginfo_t pointer points to a valid structure of the correct size but contains
no data.

46 S–2396–21

Cray XT Programming Considerations [4]

The void * parameter points to a ucontext_t structure. The uc_mcontext
field within that structure is a platform-specific data structure that, on compute
nodes, is defined as a sigcontext_t structure. Within that structure, the
general purpose and floating-point registers are provided to the user. You should
rely on no other data.

For a description of how yod propagates signals to running applications, see
Section 8.7, page 82.

4.3.6 Killing Processes under Catamount

The kill() system call is supported on Catamount compute nodes. A process
can use it to send signals only to itself. If a process sends a signal to another
process, -1 is returned and errno is set to ESRCH (meaning the pid or process
group does not exist). The Linux kill command is not supported on Catamount
compute nodes.

Use the xtkill command to kill processes on service nodes.

4.3.7 About Core Files under Catamount

By default, when an application fails on Catamount, only one core file is
generated: that of the first failing process. For information about overriding the
defaults, see the core(5) man page. Use caution with the overrides because
dumping core files from all processes is not scalable.

Under certain conditions, the core file may be truncated without notifying you.
These conditions are:

• The disk is full, or

• The core file exceeds the user limit. The user limit is set through the limit
coredumpsize size command for csh and the ulimit -c size
command for bash.

4.3.8 Changing Page Size under Catamount

The yod -small_pages option allows you to specify 4 KB pages instead of the
default 2 MB pages. Locality of memory references affects the optimum choice
between the default 2 MB pages and the 4 KB pages. Because it is often difficult
to determine how the compiler is allocating your data, the best approach is to
try both the default and the -small_pages option and compare performance
numbers.

S–2396–21 47

Cray XT™ Programming Environment User’s Guide

Note: For each 1 GB of memory, 2 MB of page table space are required.

The Catamount getpagesize() function returns 4 KB.

4.3.9 About Resource Limits under Catamount

Because a Catamount application has dedicated use of the processor and physical
memory on a compute node, many resource limits return RLIM_INFINITY. Keep
in mind that while Catamount itself has no limitation on file size or the number
of open files, the specific file systems on the Linux service partition may have
limits that are unknown to Catamount.

On Catamount, the setrlimit() function always returns success when given
a valid resource name and a non-NULL pointer to an rlimit structure. The
rlimit value is never used because Catamount gives the application dedicated
use of the processor and physical memory.

4.3.10 About the Limitations on Parallel Programming Models under Catamount

The MPI, SHMEM, and UPC parallel programming models are supported on
Catamount applications. OpenMP is not supported on Catamount.

4.3.11 About Unsupported PGI Compiler Command Options under Catamount

These PGI compiler command options are not supported on Catamount
applications:

• -mprof=mpi

• -Mmpi

• -Mscalapack

• -Mpfi

• -Mpfo

• -Mconcur

Note: Not all PGI options have been tested under Catamount.

48 S–2396–21

Using Compilers [5]

The Programming Environment includes Fortran, C, and C++ compilers from
PGI, GNU, and PathScale. You access the compilers through Cray XT compiler
drivers, which perform the necessary initializations and load operations, such as
linking in the header files and system libraries (libc.a and libmpich.a, for
example) before invoking the compilers.

5.1 Setting Your Target Architecture

Before you begin to compile programs, you must verify that the target
architecture is set correctly. The target architecture is used by the compilers
and linker in creating executables to run on either CNL or Catamount
compute nodes; it is set automatically when you log in. If the compute
nodes are running CNL, the xtpe-target-cnl module is loaded and the
XTPE_COMPILE_TARGET environment variable is set to linux. If the compute
nodes are running Catamount, the xtpe-target-catamount module is loaded
and XTPE_COMPILE_TARGET is set to catamount.

To determine the current target architecture, use the module list command.
Either xtpe-target-cnl or xtpe-target-catamount will be loaded.

You cannot run a CNL application on compute nodes running Catamount
nor a Catamount application on compute nodes running CNL. However, you
can create CNL or Catamount executables at any time by configuring your
environment properly.

For example, if the target architecture were catamount and you wanted to create
an executable that would run later under CNL, you would swap xtpe-target
modules:

% module swap xtpe-target-catamount xtpe-target-cnl

5.2 Using the Compiler Driver Commands

The syntax for the compiler driver commands is:

% [cc | CC | ftn] [PGI_options|GCC_options|PathScale_options]

files [-lhugetlbfs]

S–2396–21 49

Cray XT™ Programming Environment User’s Guide

For example, to use the PGI Fortran compiler to compile prog1_cnl.f90 and
create default executable a.out to be run on CNL compute nodes, first use the
module list command to verify that these modules have been loaded:

PrgEnv-pgi

xtpe-target-cnl

Then use this command:

% ftn prog1_cnl.f90

If you next want to use the PathScale C compiler to compile prog2_qk.c and
create default executable a.out to be run on Catamount compute nodes, use
these commands:

% module swap PrgEnv-pgi PrgEnv-pathscale

% module swap xtpe-target-cnl xtpe-target-catamount

% cc prog2_qk.c

Note: Store your CNL and Catamount executables in separate directories or
differentiate them by file name. If you try to run a CNL application when
Catamount is running or a Catamount application when CNL is running, your
application will abort.

If you want to suppress the output of the target architecture INFO message, use
this environment variable:

XTPE_INFO_MESSAGE_OFF

The following example shows the effect of setting the
XTPE_INFO_MESSAGE_OFF environment variable:

% ftn prog1.f90

ftn prog1.f90/opt/xt-asyncpe/1.0.0/bin/ftn: INFO: linux target is being used

% setenv XTPE_INFO_MESSAGE_OFF 1

% ftn prog1.f90

%

By default, the INFO message is displayed.

5.2.1 Using PGI Compilers

To use the PGI compilers, run the module list command to verify that the
PrgEnv-pgi module is loaded. If it is not, use a module swap command,
such as:

% module swap PrgEnv-gnu PrgEnv-pgi

50 S–2396–21

Using Compilers [5]

PrgEnv-pgi loads the product modules that define the system paths and
environment variables needed to use the PGI compilers.

For a description of new and modified PGI compiler features, see the PGI Server
7.1 and Workstation 7.1 Installation Guide.

Note: When linking in ACML routines, you must compile and link all program
units with -Mcache_align or an aggregate option such as fastsse, which
incorporates -Mcache_align.

Table 2 lists the commands for invoking the PGI compilers and the source file
extensions.

Table 2. PGI Compiler Commands

Compiler Command Source File

C compiler cc filename.c

C++ compiler CC filename.CC

filename.cc

filename.cpp

filename.cxx

Fortran 90/95 compiler ftn filename.f (fixed source, no
preprocessing)

filename.f90 (free source,
no preprocessing)

filename.f95 (free source,
no preprocessing)

filename.F (fixed source,
preprocessing)

filename.F90 (free source,
preprocessing)

filename.F95 (free source,
preprocessing)

S–2396–21 51

Cray XT™ Programming Environment User’s Guide

!
Caution: To invoke a PGI compiler, use the cc, the CC, or the ftn command. If
you invoke a compiler directly using a pgcc, pgCC, or pgf95 command, the
resulting executable will not run on Cray XT compute nodes.

The cc(1), CC(1), and ftn(1) man pages contain information about the
compiler driver commands, whereas the pgcc(1), pgCC(1), and pgf95(1) man
pages contain descriptions of the PGI compiler command options.

The PGI User's Guide and the PGI Fortran Reference manual
include information about compiler features unique to Cray (see
http://www.pgroup.com/resources/docs.htm).

To verify that you are using the correct version of a compiler, use the -V option
on a cc, CC, or ftn command.

Note: The -Mconcur (auto-concurrentization of loops) option documented in
the PGI manuals is not supported on Cray XT systems.

5.2.2 Using GNU Compilers

To use the GNU compilers, run the module list command to verify that the
PrgEnv-gnu module is loaded. If it is not, use a module swap command,
such as:

% module swap PrgEnv-pgi PrgEnv-gnu

PrgEnv-gnu loads the product modules that define the system paths and
environment variables needed to use the GNU compilers. GCC includes the
Fortran 95, C, and C++ compilers.

To compile an application that will run on quad-core compute nodes, load these
modules:

% module load gcc/4.2.0.quadcore

% module load xtpe-quadcore

52 S–2396–21

http://www.pgroup.com/resources/docs.htm

Using Compilers [5]

Table 3 lists the commands for invoking the GNU compilers and the source file
extensions.

Table 3. GNU Compiler Commands

Compiler Command Source File

C compiler cc filename.c

C++ compiler CC filename.cc,
filename.c++,
filename.C

Fortran 95 compiler ftn filename.f,
filename.f90,
filename.f95

The Using the GNU Compiler Collection (GCC) manual provides general
information about the GNU compilers. The Using GNU Fortran
includes information about compiler features unique to Cray (see
http://gcc.gnu.org/onlinedocs/).

!
Caution: To invoke a GNU compiler, use the cc, the CC, or the ftn command.
If you invoke a compiler directly using a gcc, g++, or gfortran command,
the resulting executable will not run on Cray XT compute nodes.

The cc(1), CC(1), and ftn(1) man pages contain information about the
compiler driver commands, whereas the gcc(1), g++(1), and gfortran(1)
man pages contain descriptions of the GNU C compiler command options.

To verify that you are using the correct version of a GNU compiler, use the
--version option on a cc, CC, or ftn command.

Note: To use CrayPat with a GNU program to trace functions, use the
-finstrument-functions option instead of -Mprof=func when
compiling your program.

5.2.3 Using PathScale Compilers

To use the PathScale compilers, run the module list command to verify that
the PrgEnv-pathscale module is loaded. If it is not, use a module swap
command, such as:

% module swap PrgEnv-pgi PrgEnv-pathscale

S–2396–21 53

http://gcc.gnu.org/onlinedocs/

Cray XT™ Programming Environment User’s Guide

PrgEnv-pathscale loads the product modules that define the system paths
and environment variables needed to use the PathScale compilers.

Table 4 lists the commands for invoking the PathScale compilers and the source
file extensions:

Table 4. PathScale Compiler Commands

Compiler Command Source File

C compiler cc filename.c

C++ compiler CC filename.CC

filename.cc

filename.cpp

filename.cxx

Fortran 90/95 compiler ftn filename.f (fixed source, no
preprocessing)

filename.f90 (free source,
no preprocessing)

filename.f95 (free source,
no preprocessing)

filename.F (fixed source,
preprocessing)

filename.F90 (free source,
preprocessing)

filename.F95 (free source,
preprocessing)

To verify that you are using the correct version of a PathScale compiler, use the
-version option on a cc, CC, or ftn command.

54 S–2396–21

Using Compilers [5]

!
Caution: To invoke a PathScale compiler, use either the cc, CC, or ftn
command. If you invoke a compiler directly using a pathcc, pathCC, or
path95 command, the resulting executable will not run on Cray XT compute
nodes.

The cc(1), CC(1), and ftn(1) man pages contain information about the
compiler driver commands, whereas the pathcc(1), pathCC(1), and
path95(1) man pages contain descriptions of the PathScale compiler
command options.

The eko(7) man page gives the complete list of options and flags for the
PathScale compiler suite.

For more information about using the compiler commands, see the PathScale
manuals (http://www.pathscale.com/docs/html) and the following man pages:

• Introduction to PathScale compilers: pathscale-intro(1) man page

• C compiler: Cray cc(1) man page and PathScale pathcc(1) and eko(7) man
pages

• C++ compiler: Cray CC(1) man page and PathScale pathCC(1) and eko(7)
man pages

• Fortran compiler: Cray ftn(1) man page and PathScale path95(1) and
eko(7) man pages

S–2396–21 55

http://www.pathscale.com/docs/html

Cray XT™ Programming Environment User’s Guide

56 S–2396–21

Getting Compute Node Status [6]

Before running applications, you should check the status of the compute
nodes. First, use either the xtprocadmin -a or the cnselect -L osclass
command to find out whether CNL or Catamount is running on the compute
nodes.

For the xtprocadmin -a report, the OS field value is either CNL or Catamount
for all compute nodes, and (service) for all service nodes. For the cnselect
-L osclass report, osclass is 1 for Catamount and 2 for CNL.

% xtprocadmin -a os

NID (HEX) NODENAME TYPE OS

0 0x0 c0-0c0s0n0 service (service)

3 0x3 c0-0c0s0n3 service (service)

4 0x4 c0-0c0s1n0 service (service)

7 0x7 c0-0c0s1n3 service (service)

8 0x8 c0-0c0s2n0 service (service)

11 0xb c0-0c0s2n3 service (service)

12 0xc c0-0c0s3n0 compute CNL

13 0xd c0-0c0s3n1 compute CNL

14 0xe c0-0c0s3n2 compute CNL

15 0xf c0-0c0s3n3 compute CNL

16 0x10 c0-0c0s4n0 compute CNL

17 0x11 c0-0c0s4n1 compute CNL

<snip>

94 0x5e c0-0c2s7n2 compute CNL

95 0x5f c0-0c2s7n3 compute CNL

% cnselect -L osclass

2

S–2396–21 57

Cray XT™ Programming Environment User’s Guide

Then use the xtnodestat command to display current job and node status. This
command combines replaces the xtshowmesh and xtshowcabs commands.
Each character in the display represents a single node. For systems running a
large number of jobs, more than one character may be used to designate a job.

% xtnodestat

Current Allocation Status at Thu Apr 24 09:10:44 2008

C0-0 C1-0 C2-0 C3-0

n3 -------- -------- ---bbcbd ------kA

n2 -------- -------- ---abbcd ------kk

n1 -------- -------- ----bbcd ------kA

c2n0 -------- -------- ----bbcb ------kA

n3 Y------- -------- -------- iih---j-

n2 ------- -------- -------- iihf--jj

n1 ------- -------- -------- iiAf--jj

c1n0 Y------- -------- -------- iAif----

n3 SSSSSSSS -------- -------- eeAggfhi

n2 -------- -------- eeAgggfh

n1 -------- -------- eeAfAgfh

c0n0 SSSSSSSS -------- -------- eeeAAgfh

s01234567 01234567 01234567 01234567

Legend:

nonexistent node S service node

; free interactive compute CNL - free batch compute node CNL

A allocated, but idle compute node ? suspect compute node

X down compute node Y down or admindown service node

Z admindown compute node R node is routing

Available compute nodes: 0 interactive, 270 batch

Job ID User Size Age command line

--- ------ -------- ----- --------------- ----------------------------------

a 340549 user1 1 0h00m multi_stress

b 340548 user2 10 0h00m sc

c 340512 user3 4 0h00m openfile

d 340439 user4 3 0h01m joto

e 340437 user5 9 0h01m ftest03

f 340569 user6 8 0h00m dup2_06

g 340531 user7 7 0h00m ptl_flood

h 340461 user8 6 0h01m env

58 S–2396–21

Getting Compute Node Status [6]

i 340428 user9 9 0h01m growfiles

j 340564 user10 5 0h00m lmdd

k 340559 user11 5 0h00m growfiles

Note: If xtnodestat indicates that no compute nodes have been allocated for
interactive processing, you can still run your job interactively by using the
qsub -I command and then, when your job has been queued, using either
the aprun or the yod application launch command.

For more information, see the xtprocadmin(1) and xtnodestat(1) man pages.

S–2396–21 59

Cray XT™ Programming Environment User’s Guide

60 S–2396–21

Running CNL Applications [7]

The aprun utility launches applications on CNL compute nodes. The utility
submits applications to the Application Level Placement Scheduler (ALPS) for
placement and execution, forwards your login node environment to the assigned
compute nodes, forwards signals, and manages the stdin, stdout, and stderr
streams.

This chapter describes how to run applications interactively on CNL compute
nodes and get application status reports. For a description of batch job
processing, see Chapter 10, page 87.

7.1 Using the aprun Command

Use the aprun command to specify the resources your application requires,
request application placement, and initiate application launch.

Note: Verify that you are in a Lustre-mounted directory before using the
aprun command (see Section 2.4, page 11).

The format of the aprun command is:

aprun [-a arch] [-b] [-cc cpu_list | keyword]

[-cp cpu_placement_file_name] [-d depth] [-D value]

[-L node_list] [-m size[h|hs]] [-n pes]

[-N pes_per_node] [-q] [-S pes_per_numa_node]

[-sl list_of_numa_nodes] [-sn numa_nodes_per_node]

[-ss] [-t sec] executable [arguments_for_executable]

where:

-a arch Specifies the architecture type of the compute node on which the
application will run; arch is xt. If you are using aprun to launch
a compiled and linked executable, you need not include the -a
option; ALPS can determine the compute node architecture type
from the ELF header (see the elf(5) man page). However, if you
are using aprun to run a shell script, you need to include the
-a option.

S–2396–21 61

Cray XT™ Programming Environment User’s Guide

-b Bypasses the transfer of the executable to compute nodes. By
default, the executable is transferred to the compute nodes as
part of the aprun process of launching an application. You
would likely use the -b option only if the executable to be
launched was part of the compute node's boot image file system.
For an example, see Section 14.14, page 147.

-cc cpu_list | keyword

Binds processing elements (PEs) to CPUs. This option applies
to all multicore compute nodes. For further information about
binding (CPU affinity), see Section 13.3, page 111.

The cpu_list is a comma-separated or hyphen-separated list of
logical CPU numbers and/or CPU ranges. As PEs are created,
they are bound to the CPU in cpu_list corresponding to the
number of PEs that have been created at that point. For example,
the first PE created is bound to the first CPU in cpu_list, the
second PE created is bound to the second CPU in cpu_list, and so
on. If more PEs are created than given in cpu_list, binding starts
over at the beginning of cpu_list and resumes with the first CPU
in cpu_list. The cpu_list can also contain an x, which indicates
that the application-created process at that location in the fork
sequence should not be bound to a CPU.

Out-of-range cpu_list values are ignored unless all CPU values
are out of range. For example, if you want to bind PEs starting
with the highest CPU on a compute node and work down from
there, you might use this -cc option:

% aprun -n 8 -cc 7-0 ./a.out

If the PEs were placed on a Cray XT5 compute node, the
specified -cc range would be valid. However, if the PEs were
placed on Cray XT4 compute nodes, CPUs 7-4 would be out of
range and therefore not used. For more information about CPU
affinity, see Section 14.13, page 146.

The following keyword values are supported:

• The cpu keyword (the default) binds each PE to a CPU
within the assigned NUMA node. You do not have to indicate
a specific CPU. The -cc cpu option is the typical use case
for an MPI application.

62 S–2396–21

Running CNL Applications [7]

A PE's threads or child processes can be constrained to the
CPUs closest to the PE's CPU. If an application creates more
threads or child processes than CPUs allocated for the PE
depth, the thread or child process wraps to the PE's CPU, and
process placement continues within the range specified by
depth. For example, this command makes room for a PE to
create three threads or child processes:

% aprun -n 8 -N 2 -d 4 -cc cpu a.out

The processes would be placed like this:

cpu 0: child0_of_PE0

cpu 1: child1_of_PE0

cpu 2: child2_of_PE0

cpu 3: child3_of_PE0

cpu 4: child0_of_PE1

cpu 5: child1_of_PE1

cpu 6: child2_of_PE1

cpu 7: child3_of_PE1

If the application created one additional thread or child
process per PE, it would look like this:

cpu 0: child0_of_PE0 + child4_of_PE0

cpu 1: child1_of_PE0

cpu 2: child2_of_PE0

cpu 3: child3_of_PE0

cpu 4: child0_of_PE1 + child4_of_PE1

cpu 5: child1_of_PE1

cpu 6: child2_of_PE1

cpu 7: child3_of_PE1

• The numa_node keyword causes a PE to be constrained to
the CPUs within the assigned NUMA node. CNL can migrate
a PE among the CPUs in the assigned NUMA node but not
off the assigned NUMA node. For example, if PE2 is assigned
to NUMA node 0, CNL can migrate PE2 among CPUs 0-3 but
not among CPUs 4-7.

S–2396–21 63

Cray XT™ Programming Environment User’s Guide

If PEs create threads, the threads are constrained to the same
NUMA-node CPUs as the PEs. There is one exception. If
depth is greater than the number of CPUs per NUMA node,
once the number of threads created by the PE has exceeded
the number of CPUs per NUMA node, the remaining threads
are constrained to CPUs within the next NUMA node on the
compute node. For example, if depth is 5, threads 0-3 are
constrained to CPUs 0-3 and thread 4 is constrained to CPUs
4-7.

• The none keyword allows PE migration within the assigned
cpuset. A cpuset is a process container that controls memory
and CPU usage.

-cp cpu_placement_file_name

(Deferred implementation) Provides the name of a CPU binding
placement file. This option applies to all multicore compute
nodes. This file must be located on a file system accessible from
the compute nodes. The CPU placement file provides more
extensive CPU binding instructions than the -cc options.

-D value Directs aprun to write debug messages to stdout, where value
is a positive integer. Increasing value increases the verbosity of
the debug messages. Do not specify the -D option with the -q
(quiet) option; aprun terminates the application if both options
are specified. Debugging is disabled by default.

-d depth Specifies the number of CPUs to host OpenMP threads. ALPS
allocates the number of CPUs equal to depth times pes. The
default depth is 1.

For OpenMP applications, use the -d option with the
OMP_NUM_THREADS environment variable to specify the number
of threads and the number of CPUs hosting the threads. ALPS
creates -n pes instances of the executable, and the executable
spawns OMP_NUM_THREADS-1 additional threads per PE. For an
example, see Section 14.7, page 135

64 S–2396–21

Running CNL Applications [7]

-L node_list

Specifies the candidate nodes to constrain application placement.
The syntax allows a comma-separated list of nodes (such as
-L 32,33,40), a range of nodes (such as -L 41-87), or a
combination of both formats. Node values can be expressed in
decimal, octal (preceded by 0), or hexadecimal (preceded by 0x).
The first number in a range must be less than the second number
(8-6, for example, is invalid), but the nodes in a list can be in
any order. This option is used for interactive jobs; use the qsub
-lmppnodes option for batch and interactive batch jobs.

If the placement node list contains fewer nodes than the number
required, a fatal error is produced. If resources are not currently
available, aprun continues to retry.

A common source of node lists is the cnselect command. See
the cnselect(1) man page for details.

-m size[h|hs]

Specifies the per-PE required Resident Set Size (RSS) memory
size in megabytes. K, M, and G suffixes (case insensitive) are
supported (16M = 16m = 16 megabytes, for example). If you
do not include the -m option, the default amount of memory
available to each PE equals the minimum compute node memory
size divided by the maximum number of CPUs on any compute
node. For example, given Cray XT5 compute nodes with 32 GB
of memory, the default per-PE memory size is 32 GB / 8 CPUs =
4 GB. For an example, see Section 7.4, page 72.

S–2396–21 65

Cray XT™ Programming Environment User’s Guide

If you want huge pages (2 MB) allocated to your application, use
the h or hs suffix, as shown in the following table. The default is
base page size is 4 KB.

-m sizeh Requests size MB of huge pages to be allocated to each
PE. All nodes use as much huge page memory as they
are able to allocate and 4 KB pages thereafter. This
command requests 4000 MB of huge pages per PE:

% aprun -n 8 -m4000mh -q ./hugepgs

-m sizehs Requires size of huge pages to be allocated to each PE.
If the request cannot be satisfied, an error message
is issued and aprun terminates the request. This
example terminates because the required 4000 MB of
huge pages per PE are not available:

% aprun -n 8 -m4000mhs -q ./huhepgs

[NID 00045] Apid 651277: unable to

acquire enough huge memory: desired

16000M, actual 12396M

Note: To use huge pages, you must first load the huge pages
library during the linking phase, such as:

% cc -c my_hugepages_app.c

% cc -o my_hugepages_app my_hugepages_app.o

-lhugetlbfs

Then set the huge pages environment variable:

% setenv HUGETLB_MORECORE yes

or

% export HUGETLB_MORECORE=yes

66 S–2396–21

Running CNL Applications [7]

-n pes Specifies the number of processing elements (PEs) needed for
your application. A PE is an instance of an ALPS-launched
executable. The number of PEs can be expressed in decimal,
octal, or hexadecimal form. If pes has a leading 0, it is interpreted
as octal (-n 16 specifies 16 PEs, but -n 016 is interpreted as
14 PEs). If pes has a leading 0x, it is interpreted as hexadecimal
(-n 16 specifies 16 PEs, but -n 0x16 is interpreted as 22 PEs).
Default is 1.

-N pes_per_node

Specifies the number of PEs to place per node. You can use this
option to reduce the number of PEs per node, thereby making
more resources available for each PE. Compute nodes must have
at least pes_per_node CPUs. The default is the number of CPUs
on a node.

-q Specifies quiet mode and suppresses all aprun-generated
non-fatal messages. Do not use this option with the -D (debug)
option; aprun terminates the application if both options are
specified. Even with the -q option, aprun writes its help
message and any fatal messages when exiting.

-S pes_per_numa_node

Specifies the number of PEs to allocate per NUMA node. This
option applies to Cray XT5 compute nodes.

The pes_per_numa_node value can be 1, 2, 3, or 4. The default is
4. A zero value is not allowed and is a fatal error. For further
information, see Section 13.2, page 110.

-sl list_of_numa_nodes

Specifies the NUMA node or nodes (comma separated or hyphen
separated) to use for application placement. This option applies
to Cray XT5 compute nodes.

The list_of_numa_nodes value can be -sl 0, -sl 1, -sl 0,1 (or
its equivalent, -sl 0-1). The default is -sl 0,1.

List NUMA nodes in ascending order; -sl 1-0 and -sl 1,0
are invalid. For more information, see Section 13.2, page 110.

S–2396–21 67

Cray XT™ Programming Environment User’s Guide

-sn numa_nodes_per_node

Specifies the number of NUMA nodes per node to be
allocated. This option applies to Cray XT5 compute nodes. The
numa_nodes_per_node value can be 1 or 2. The default is 2. You
can use this option to find out if restricting your PEs to one
NUMA node per node affects performance.

A zero value is not allowed and is a fatal error. For more
information, see Section 13.2, page 110.

-ss Specifies strict memory containment per NUMA node. This
option applies to Cray XT5 compute nodes. When you
use the -ss option, a PE can allocate only the memory
local to its assigned NUMA node. The default is to allow
remote-NUMA-node memory allocation.

By default, any PE running on NUMA node 0 can access
NUMA node 1 memory and vice versa. You can use the -ss
option to find out if restricting each PE's memory access to
local-NUMA-node memory affects performance. For more
information, see Section 13.2, page 110.

-t sec Specifies the per-PE CPU time limit in seconds. The sec time limit
is constrained by your CPU time limit on the login node. For
example, if your time limit on the login node is 3600 seconds but
you specify a -t value of 5000, your application is constrained
to 3600 seconds per PE. If your time limit on the login node is
unlimited, the sec value is used (or, if not specified, the time
per-PE is unlimited).

: Separates the names of executables and their associated options
for Multiple Program, Multiple Data (MPMD) mode.

For single-core nodes, ALPS creates -n PEs and launches them on pes nodes.
For example, the command:

% aprun -n 64 ./prog1

creates 64 instances of prog1 and launches them on 64 nodes.

68 S–2396–21

Running CNL Applications [7]

For multicore nodes, ALPS creates -n PEs and uses the -N pes_per_node
value to determine where to place them. Whenever possible, ALPS packs the PEs,
using the smallest number of nodes to fulfill the -n requirements. If you specify
-N 1, ALPS assigns one PE per node. For example, the command:

% aprun -n 32 ./prog1

creates 32 instances of prog1 and launches them on 16 dual-core nodes, 8
quad-core nodes, or 4 dual-socket quad-core nodes. In contrast, the command:

% aprun -n 32 -N 1 ./prog1

creates 32 instances of prog1 and launches them on one core per node of 32
nodes. The other cores on those nodes are unused.

7.2 Using the apstat Command

The apstat command provides status information about reservations, compute
resources, pending and placed applications, and cores. The format of the apstat
command is:

apstat [-a] [-A apid ... | -R resid ...][-n] [-p]
[-r] [other arguments]

You can use apstat to display the following types of status information:

• all applications

• placed applications

• applications by application IDs (APIDs)

• applications by reservation IDs (ResIDs)

• nodes and cores

• pending applications

• confirmed and claimed reservations

S–2396–21 69

Cray XT™ Programming Environment User’s Guide

For example:

% apstat -a

Total placed applications: 3

Placed Apid ResID User PEs Nodes Age State Command

48062 39 bill 2 1 2h39m run MPI_Issend_perf

48108 1588 jim 4 1 0h15m run gtp

48109 1589 sue 4 1 0h07m run bench6

An Apid in the apstat display is also displayed after aprun execution results.
For example:

% aprun -n 2 -d 2 ./omp1

Hello from rank 0 (thread 0) on nid00540

Hello from rank 1 (thread 0) on nid00541

Hello from rank 0 (thread 1) on nid00540

Hello from rank 1 (thread 1) on nid00541

Application 48109 resources: utime 0, stime 0%

You can use the -n option to display core status. For example:

% apstat -nv

NID Arch State HW Rv Pl PgSz Avl Conf Placed PEs Apids

24 XT UP B 8 8 - 4K 4096000 2048000 0 0

25 XT UP B 8 8 8 4K 4096000 2048000 2048000 8 832494

26 XT UP B 8 8 8 4K 4096000 2048000 2048000 8 832494

27 XT UP B 8 8 8 4K 4096000 2048000 2048000 8 832494

28 XT UP B 8 8 8 4K 4096000 2048000 2048000 8 832494

29 XT UP B 8 8 8 4K 4096000 2048000 2048000 8 832494

30 XT UP B 8 8 8 4K 4096000 2048000 2048000 8 832494

<snip>

88 XT UP B 8 8 8 4K 4096000 2048000 2048000 8 832494

89 XT UP B 8 8 - 4K 4096000 2048000 0 0

90 XT UP B 8 - - 4K 4096000 0 0 0

91 XT UP B 8 - - 4K 4096000 0 0 0

92 XT UP B 8 - - 4K 4096000 0 0 0

93 XT UP B 8 - - 4K 4096000 0 0 0

94 XT UP B 8 - - 4K 4096000 0 0 0

95 XT UP B 8 - - 4K 4096000 0 0 0

128 XT UP B 8 8 8 4K 8192000 2048000 2048000 8 832489

<snip>

Compute node summary

arch config up use held avail down

XT 356 356 152 2 202 0

70 S–2396–21

Running CNL Applications [7]

where HW is the number of cores in the node, Rv is the number of cores held in a
reservation, and Pl is the number of cores being used by an application. If you
want to display a 0 instead of a - in the Rv and Pl fields, add the -z option to
the apstat command.

For further information, see the apstat(1) man page.

7.3 Using the cnselect Command

The aprun utility supports manual and automatic node selection. For manual
node selection, first use the cnselect command to get a candidate list of
compute nodes that meet the criteria you specify. Then for interactive jobs use
the aprun -L node_list option. For batch and interactive batch jobs, add
-lmppnodes=\"node_list\" to the job script or the qsub command line.

The format of the cnselect command is:

cnselect -l |-L fieldname | -V |[-c] [-e]expression

where:

• -l lists names of fields in the compute nodes attributes database.

• -L fieldname lists the current possible values for a given field.

• -V prints the version number and exits.

• -c gives a count of the number of nodes rather than a list of the nodes
themselves.

• [-e] expression queries the compute node attributes database.

You can use cnselect to get a list of nodes selected by such characteristics
as number of cores per node (coremask), amount of memory on the node
(in megabytes), and processor speed (in megahertz). For example, to run an
application on Cray XT5 nodes with 16 GB of memory or more, use:

% cnselect availmem.gt.16000 .and. coremask.eq.255

128-223,256-351,384-447

% aprun -n 16 -L 128-223 ./app1

S–2396–21 71

Cray XT™ Programming Environment User’s Guide

You can also use cnselect to get a list of nodes if there is a site-defined label.
For example, to run an application on quad-core nodes, you might use:

% cnselect -L label1

SINGLE-CORE

DUAL-CORE

QUAD-CORE

8-CORE

% cnselect -e label1.eq.'QUAD-CORE'

60-63,76,82

% aprun -n 6 -L 60-63,76,82 ./app1

You could accomplish the same by using:

% cnselect coremask.eq.15

60-63,76,82

If you do not include the -L option on the aprun command or the -lmppnodes
option on the qsub command, ALPS automatically places the application using
available resources.

7.4 Understanding How Much Memory is Available to CNL Applications

When running large applications, it is important to understand how much
memory will be available per node. CNL uses memory on each node for CNL
and for other functions such as I/O buffering. The remaining memory is
available for user executables; user data arrays; stacks, libraries and buffers; and
SHMEM symmetric stack heap.

The amount of memory CNL uses depends on the number of cores, memory
size, and whether or not optional software has been configured on the compute
nodes. For a quad-core node with 8 GB of memory, 7.2 to 7.5 GB of memory is
available for applications.

The default stack size is 16 MB. You can determine the maximum stack size
by using the limit command (csh) or the ulimit -a command (bash). The
memory used for the MPI libraries is approximately 72 MB per node.

Note: The actual amount of memory CNL uses varies depending on the total
amount of memory on the node and the OS services configured for the node.

72 S–2396–21

Running CNL Applications [7]

You can use the aprun -m size option to specify the per-PE memory limit. For
example, this command launches xthi on cores 0 and 1 of compute nodes 472
and 473. Each node has 8 GB of available memory.

% aprun -n 4 -N 2 -m4000 -q ./xthi | sort

PE 0 nid00472 Core affinity = 0,1

PE 1 nid00472 Core affinity = 0,1

PE 2 nid00473 Core affinity = 0,1

PE 3 nid00473 Core affinity = 0,1

% aprun -n 4 -N 2 -m4001 -q ./xthi | sort

Claim exceeds reservation's memory

You can change MPI buffer sizes and stack space from the defaults by setting
certain environment variables. For more details, see the intro_mpi(3) man
page.

7.5 Launching an MPMD Application

The aprun utility supports multiple-program, multiple-data (MPMD)
mode. To run an application in MPMD mode under aprun, use the -n pes
executable1 : -n pes executable2 : ... format. All of the executables
share the same MPI_COMM_WORLD process communicator.

For example, this command launches 128 instances of program1 and 256
instances of program2:

aprun -n 128 ./program1: -n 256 ./program2

S–2396–21 73

Cray XT™ Programming Environment User’s Guide

7.6 Managing Compute Node Processors from an MPI Program

MPI programs should call the MPI_Finalize() routine at the conclusion of the
program. This call waits for all processing elements to complete before exiting. If
one of the programs fails to call MPI_Finalize(), the program never completes
and aprun stops responding. There are two ways to prevent this behavior:

• Use the PBS Professional elapsed (wall clock) time limit to terminate the job
after a specified time limit (such as -l walltime=2:00:00).

• Use the aprun -t sec option to terminate the offending program. This
option specifies the per-PE CPU time limit in seconds. A process will
terminate only if it reaches the specified amount of CPU time (not wallclock
time).

For example, if you use:

% aprun -n 8 -t 120 ./myprog1

and a PE uses more than two minutes of CPU time, aprun terminates the
application.

7.7 About aprun Input and Output Modes

The aprun utility handles standard input (stdin) on behalf of the user and
handles standard output (stdout) and standard error messages (stderr) for
user applications.

For other I/O considerations, see Section 4.2.2, page 31.

74 S–2396–21

Running CNL Applications [7]

7.8 About aprun Resource Limits

The aprun command currently forwards its user resource limits, both soft and
hard (see the getrlimit(P) man page) to each compute node, where those limits
are set for the application. The limits that are currently forwarded are:

• RLIMIT_CPU

• RLIMIT_FSIZE

• RLIMIT_DATA

• RLIMIT_STACK

• RLIMIT_CORE

• RLIMIT_RSS

• RLIMIT_NPROC

• RLIMIT_NOFILE

• RLIMIT_MEMLOCK

• RLIMIT_AS

• RLIMIT_LOCKS

• RLIMIT_SIGPENDING

• RLIMIT_MSGQUEUE

• RLIMIT_NICE

• RLIMIT_RTPRIO

This forwarding of user resource limits can cause problems on systems where
the login node's limits are more restrictive than the default compute node
limits. Setting the APRUN_XFER_LIMITS environment variable to 0 (export
APRUN_XFER_LIMITS=0) will disable the forwarding of user resource limits
(except for RLIMIT_CORE).

Note: The default forwarding of user resource limits will be eliminated in a
future release of ALPS.

S–2396–21 75

Cray XT™ Programming Environment User’s Guide

7.9 About aprun Signal Processing

The aprun utility forwards the following signals to an application:

• SIGHUP

• SIGINT

• SIGQUIT

• SIGTERM

• SIGABRT

• SIGUSR1

• SIGUSR2

• SIGURG

• SIGWINCH

The aprun utility ignores SIGPIPE and SIGTTIN signals. All other signals
remain at their default behavior and are not forwarded to an application. The
default behaviors that terminate aprun also cause ALPS to terminate the
application with a SIGKILL signal.

76 S–2396–21

Running Catamount Applications [8]

The yod utility launches applications on Catamount compute nodes. When you
start a yod process, the application launcher coordinates with the Compute
Processor Allocator (CPA) to allocate nodes for the application and then uses
Process Control Threads (PCTs) to transfer the executable to the compute nodes.
While the application is running, yod provides I/O services for the application,
propagates signals, and participates in cleanup when the application terminates.

This chapter describes how to run applications interactively on Catamount
compute nodes. For a description of batch job processing, see Chapter 10,
page 87.

8.1 Using the yod Command

When launching an application with the yod command, you can specify the
number of processors to allocate to the application.

The format of the yod command is:

% yod -sz n [other arguments] executable

where n is the number of processors on which the application will run.

The yod -sz, -size, and -np options are synonymous.

The following paragraphs describe the differences in the way processors are
allocated on single-core and dual-core processor systems.

• Running applications on single-core processor systems

On single-core processor systems, each compute node has one single-core
AMD Opteron processor. Applications are allocated -sz nodes.

For example, the command:

% yod -sz 6 prog1

launches prog1 on six nodes.

Single-core processing is the default. However, sites can change the default to
dual-core processor mode. Use -SN if the default is dual-core processor mode
and you want to run applications in single-core processor mode.

S–2396–21 77

Cray XT™ Programming Environment User’s Guide

Note: The yod -VN option turns on virtual node processing mode. The yod
utility runs the program on both cores of a dual-core processor. If you use
the -VN option on a single-core system, the application load will fail.

• Running applications on dual-core processor systems

On dual-core processor systems, each compute node has one dual-core AMD
Opteron processor. The processors are managed by the Catamount Virtual
Node (CVN) kernel. To launch an application, you must include the -VN
option on the yod command unless your site has changed the default.

On a dual-core system, if you do not include the -VN option, your program
will run on one core per node, with the other core idle. You may do this if
you must use all the memory on a node for each processing element or if you
want the fastest possible run time and do not mind letting the second core
on each node sit idle.

8.2 Using the cnselect Command

The yod utility supports automatic and manual node selection. To use manual
node selection, first use the cnselect command to get a list of compute nodes
that meet the criteria you specify. Then use the yod -list processor-list
option to launch the application. If the number of nodes in the list is greater than
the -sz n value, yod selects n of the processor-list nodes on which to launch the
application.

The format of the cnselect command is:

cnselect -l |-L fieldname | -V |[-c] [-y] [-e]expression

where:

• -l lists names of fields in the compute nodes attributes database.

• -L fieldname lists the current possible values for a given field.

• -V prints the version number and exits.

• -c gives a count of the number of nodes rather than a list of the nodes
themselves.

• -y puts the yod range separator (..) in output ranges in place of the default
hyphen (-).

• [-e] expression queries the compute node attributes database.

78 S–2396–21

Running Catamount Applications [8]

You can use cnselect to get a list of nodes selected by such characteristics as
number of cores per node (coremask), available memory (in megabytes), and
processor speed (in megahertz). For example, to run an application on dual-core
nodes with 2 GB of memory or more, use:

% cnselect -y availmem .ge. 2000 .and. coremask .gt. 1

44..63,76,82

% yod -VN -sz 16 -list 44..59 ./app1

If you do not include the -list option or the -lmppnodes option on the qsub
command, yod automatically places the application per available resources.

8.3 Understanding How Much Memory is Available to Catamount Applications

When running large applications on a dual-core processor system, it is important
to understand how much memory will be available per node for your job.

If you are running in single-core mode on a dual-core system, Catamount (the
kernel plus the process control thread (PCT)) uses approximately 120 MB of
memory. The remaining memory is available for the user program executable,
user data arrays, the stack, libraries and buffers, and SHMEM symmetric stack
heap.

For example, on a node with 2.147 GB of memory, memory is allocated as
follows:

Catamount 120 MB (approximate)

Executable, data arrays, stack, libraries and
buffers, SHMEM symmetric stack heap

2027 MB (approximate)

If you are running in dual-core mode, Catamount uses approximately 120 MB
of memory (the same as for single-core mode). The PCT divides the remaining
memory, allocating half to each core. The memory allocated to each core is
available for the user executable, user data arrays, stack, libraries and buffers,
and SHMEM symmetric stack heap.

S–2396–21 79

Cray XT™ Programming Environment User’s Guide

For example, on a node with 2.147 GB of memory, memory is allocated as
follows:

Catamount 120 MB (approximate)

Executable, data arrays, stack, libraries and
buffers, SHMEM symmetric stack heap for core 0

1013 MB (approximate)

Executable, data arrays, stack, libraries and
buffers, SHMEM symmetric stack heap for core 1

1013 MB (approximate)

The default stack size is 16 MB. (You can determine the maximum stack size
through the limit command (csh) or the ulimit -a command (bash).)

The memory used for the Lustre and MPI libraries is as follows:

Lustre library 17 MB (approximate)

MPI library and default buffer 72 MB (approximate)

You can change MPI buffer sizes and stack space from the defaults by setting
certain environment variables. For more details, see the intro_mpi(3) man
page.

8.4 Launching an MPMD Application

The yod utility supports multiple-program, multiple-data (MPMD) mode with
up to 32 executables. To run an MPMD application under yod, first create a
loadfile where each line in the file is the yod command for one executable. All of
the executable images launched in a loadfile share the same MPI_COMM_WORLD
process communicator.

80 S–2396–21

Running Catamount Applications [8]

These yod options are valid within a loadfile:

-heap size

Specifies the number of bytes to reserve for the heap. The
minimum value of size is 16 MB. On dual-core systems, each core
is allocated size bytes.

-list processor-list

Lists the candidate compute nodes on which to run the
application, such as: -list 42,58,64..100,150..200. Use
the cnselect command with the -y option to generate the list.
See the cnselect(1) man page for details.

-shmem size

Specifies the number of bytes to reserve for the symmetric heap
for the SHMEM library. The heap size is rounded up in order to
address physical page-boundary issues. The minimum value
of size is 2 MB. On dual-core systems, each core is allocated size
bytes.

-size|-sz|-np n

Specifies the number of processors on which to run the
application. In SN mode, -size n is the number of nodes. In VN
mode, -size n is the number of cores. You can use the -size
option with the -list option to launch an application on a
subset of the -list processor-list nodes.

-stack size

Specifies the number of bytes to reserve for the stack. On
dual-core systems, each core is allocated size bytes.

This loadfile script launches program1 on 128 nodes and program2 on 256
nodes:

#loadfile

yod -sz 128 program1

yod -sz 256 program2

To launch the application, use:

% yod -F loadfile

S–2396–21 81

Cray XT™ Programming Environment User’s Guide

8.5 Managing Compute Node Processors from an MPI Program

MPI programs should call the MPI_Finalize() routine at the conclusion of
the program. This call waits for all PEs to complete before exiting. However,
if one of the processes fails to start or stop for any reason, the program never
completes and yod stops responding. To prevent this behavior, use the yod
-tlimit option to terminate the application after a specified number of seconds.
For example,

% yod -tlimit 30K myprog1

terminates all processes remaining after 30K (30 * 1024) seconds so that
MPI_Finalize() can complete. You can also use the environment variable
YOD_TIME_LIMIT. The time limit specified on the command line overrides the
value specified by the environment variable.

8.6 Using Input and Out Modes under yod

All standard I/O requests are funneled through yod. The yod utility handles
standard input (stdin) on behalf of the user and handles standard output
(stdout) and standard error messages (stdout) for user applications.

For other I/O considerations, see Section 4.3.2, page 42.

8.7 About yod Signal Handling

The yod utility uses two signal handlers, one for the load sequence and one for
application execution. During the load operation, any signal sent to yod during
the load operation terminates the operation. After the load is completed and
all nodes of the application have signed in with yod, the second signal handler
takes over.

During the execution of a program, yod interprets most signals as being intended
for itself rather than the application. The only signals propagated to the
application are SIGUSR1, SIGUSR2, and SIGTERM. All other signals effectively
terminate the running application. The application can ignore the signals that
yod passes along to it; SIGTERM, for example, does not necessarily terminate an
application. However, a SIGINT delivered to yod initiates a forced termination
of the application.

82 S–2396–21

Running Catamount Applications [8]

8.8 Associating a Project or Task with a Job Launch

Use the yod -Account "project task" or -A "project task" option
or the qsub -A "project task" option to associate a job launch with a
particular project and task. Use double quotes around the string that specifies the
project and, optionally, task values. For example:

% yod -Account "grid_test_1234 task1" -sz 16 myapp123

You can also use the environment variable XT_ACCOUNT="project task"
to specify account information. The -Account or -A option overrides the
environment variable.

If yod is invoked from a batch job, the qsub -A account information takes
precedence; yod writes a warning message to stderr in this case.

S–2396–21 83

Cray XT™ Programming Environment User’s Guide

84 S–2396–21

Running User Programs on Service
Nodes [9]

To compile a program that you want to run on a login or other service node, call
the PGI, GCC, or PathScale compiler directly.

• For PGI programs, use the pgcc, pgCC, or pgf95 command.

• For GCC programs, use the gcc, g++, or gfortran command.

• For PathScale programs, use the pathcc, pathCC, or path95 command.

These compilers will find the appropriate header files and libraries in their
normal Linux locations.

For example, to run program my_utility on a service node, first compile the
program:

% module load pgi

% pgCC -o my_utility my_utility.C

Then run my_utility:

% my_utility

In main(0)

In functionx(0)

Back in main()

S–2396–21 85

Cray XT™ Programming Environment User’s Guide

86 S–2396–21

Using PBS Professional [10]

Your Cray XT system may include the optional PBS Professional batch scheduling
software package from Altair Grid Technologies. If so, your system can be
configured with a given number of interactive job processors and a given number
of batch processors. A job that is submitted as a batch process can use only the
processors that have been allocated to the batch subsystem. If a job requires more
processors than have been allocated for batch processing, it remains in the batch
queue but never exits.

Note: At any time, the system administrator can change the designation of any
node from interactive to batch or vice versa. However, this does not affect jobs
already running on those nodes. It applies only to jobs already in the queue
and jobs submitted later.

The basic process for creating and running batch jobs is to create a PBS
Professional job script that includes aprun or yod commands, then use the PBS
Professional qsub command to run the script.

10.1 Creating Job Scripts

A job script may consist of directives, comments, and executable statements:

#PBS -N job_name

#PBS -l resource_type=specification

#

command

command

...

PBS Professional provides a number of resource_type options for specifying,
allocating, and scheduling compute node resources, such as mppwidth (number
of processing elements), mppdepth (number of threads), mppnppn (number of
PEs per node), and mppnodes (manual node placement list). See Table 5, page 88,
Table 6, page 89, and the pbs_resources(7B) man page for details.

S–2396–21 87

Cray XT™ Programming Environment User’s Guide

10.2 Submitting Batch Jobs

To submit a job to the batch scheduler, use these commands:

% module load pbs

% qsub [-l resource_type=specification] jobscript

where jobscript is the name of a job script that includes one or more aprun or
yod commands.

The qsub command scans the lines of the script file for directives. An initial
line in the script that as only the characters #! or the character: is ignored and
scanning starts at the next line. A line with #!/bin/shell invokes the shell
from within the script. Scanning continues until the first executable line. An
executable line is defined as a line that is not blank, not a directive, and does not
start with #). If directives occur on subsequent lines, they are ignored. When
you run the script, qsub displays the Job ID. You can use the qstat command
to check on the status of your job and the qdel command to remove a job from
the queue.

If a qsub option is present in both a directive and on the command line, the
command line takes precedence. If an option is present in a directive and not on
the command line, that option and its argument, if any, are processed as if you
included them on the command line.

10.2.1 Using aprun with qsub

Table 5 lists aprun options and their counterpart qsub -l options:

Table 5. aprun versus qsub Options

aprun option qsub -l option Description

-n 4 -l mppwidth=4 Width (number of PEs)

-d 2 -l mppdepth=2 Depth (number of CPUs hosting
OpenMP threads)

-N 1 -l mppnppn=1 Number of PEs per node

-L 5,6,7 -l mppnodes=\"5,6,7\" Node List

-m 1000m -l mppmem=1000mb Memory per PE

For further information about qsub -l options, see the pbs_resources(7B)
man page.

88 S–2396–21

Using PBS Professional [10]

For examples of batch jobs that use aprun, see Section 14.9, page 139.

10.2.2 Using yod with qsub

On a single-core system, the PBS Professional mppwidth parameter is equivalent
to the yod sz option.

On a dual-core system, the PBS Professional mppwidth parameter is not
equivalent to the yod sz option. The PBS Professional mppwidth parameter refers
to the number of nodes to be allocated for a job. The yod sz option refers to the
number of cores to be allocated for a job (two cores per node).

For example, these commands:

% qsub -I -V -l mppwidth=6

% yod -size 12 -VN prog1

allocate 6 nodes to the job and launch prog1 on both cores of each of the 6 nodes.

Table 6 lists yod options and their counterpart qsub -l options:

Table 6. yod versus qsub Options

yod option qsub -l option Description

-sz 4 -l mppwidth=4 Number of processors (single core)

-VN -sz 8 -l mppwidth=4 Number of processors (dual core)

-list 5,6,7 -l mppnodes=\"5,6,7\" Node List

For examples of batch jobs that use yod, see Chapter 15, page 157.

10.3 Terminating Failing Processes in an MPI Program

Jobs that use MPI library routines for parallel control and communication
should call the MPI_Finalize() routine at the conclusion of the program.
This call waits for all processing elements to complete before exiting. However,
if one of the processes fails to start or stop for any reason, the program never
completes and aprun or yod stops responding. To prevent this behavior,
use the PBS Professional time limit to terminate remaining processes so that
MPI_Finalize() can complete.

S–2396–21 89

Cray XT™ Programming Environment User’s Guide

10.4 Getting Job Status

The qstat command displays the following information about all jobs currently
running under PBS Professional:

• The job identifier (Job id) assigned by PBS Professional

• The job name (Name)

• The job owner (User)

• CPU time used (Time Use)

• The job state S is:

– E (job is exiting)

– H (job is held)

– Q (job is in the queue)

– R (job is running)

– S (job is suspended)

– T (job is being moved to a new location)

– W (job is waiting for its execution time)

• The queue (Queue) in which the job resides

For example:

% qstat

Job id Name User Time Use S Queue

------ ---------------- ---------------- -------- - -----

84.nid00003 test_ost4_7 usera 03:36:23 R workq

33.nid00003 run.pbs userb 00:04:45 R workq

34.nid00003 run.pbs userb 00:04:45 R workq

35.nid00003 STDIN userc 00:03:10 R workq

90 S–2396–21

Using PBS Professional [10]

If the -a option is used, queue information is displayed in an alternative format.

% qstat -a

nid00003:

Time In Req'd Req'd Elap

Job ID Username Queue Jobname SessID Queue Nodes Time S Time

------ -------- -------- ---------- ------ ------- ------ ----- - -----

163484 usera workq test_ost4_ 9143 003:48 64 -- R 03:47

163533 userb workq run.pbs 15040 000:48 64 00:30 R 00:15

163534 userb workq run.pbs 15045 000:48 64 00:30 R 00:15

163536 userc workq STDIN 15198 000:10 5 -- R 00:09

Total generic compute nodes allocated: 197

For details, see the qstat(1B) man page.

10.5 Removing a Job from the Queue

The qdel command removes a PBS Professional batch job from the queue. As
a user, you can remove any batch job for which you are the owner. Jobs are
removed from the queue in the order they are presented to qdel. For more
information, see the qdel(1B) man page and the PBS Professional 9.0 User's Guide.

S–2396–21 91

Cray XT™ Programming Environment User’s Guide

92 S–2396–21

Debugging an Application [11]

This chapter describes the TotalView debugger, the lgdb debugger for CNL
applications, and the xtgdb debugger for Catamount applications. In addition,
this chapter documents the process for analyzing yod diagnostics for RPC calls.

Note: Before launching a debugger, you need to compiler your application
with the -g option.

11.1 Using the TotalView Debugger

Cray XT systems support the TotalView debugger, an optional product
from TotalView Technologies, LLC, that provides source-level debugging of
applications running on multiple compute nodes. TotalView is compatible with
the PGI, GCC, and PathScale compilers.

TotalView:

• Provides both a graphical user interface and a command-line interface (with
command-line help)

• Supports the x86-64 Assembler

• Supports programs written in mixed languages

• Supports debugging of up to 4096 compute node processes

• Supports watchpoints

• Provides a memory debugger

TotalView typically is run interactively. If your site has not designated any
compute nodes for interactive processing, use the qsub -I command.

For more information about the TotalView graphical and command line
interfaces, see the totalview(1) man page. For more information about
TotalView, including details about running on a Cray XT system, see
http://www.totalviewtech.com/Documentation.

S–2396–21 93

http://www.totalviewtech.com/Documentation

Cray XT™ Programming Environment User’s Guide

11.1.1 Using TotalView to Debug an Application

To debug a CNL application, use this command format to launch an instance of
aprun, which in turn launches the executable:

% totalview aprun -a [other_aprun_arguments] ./executable

Note: The -a is a TotalView option indicating that the arguments that follow
apply to aprun. If you want to use the aprun -a arch option, you need
to include a second -a, as in:

% totalview aprun -a -a xt -n 2 ./a.out

For example, to debug application xt1, use:

% totalview aprun -a -n 2 ./xt1

The TotalView Root and Process windows appear.

Figure 2. TotalView Root Window

94 S–2396–21

Debugging an Application [11]

Figure 3. TotalView Process Window

S–2396–21 95

Cray XT™ Programming Environment User’s Guide

To debug a Catamount application, substitute yod for aprun in the totalview
command.

11.1.2 Using TotalView to Debug a Core File

To debug a core file,

1. Select New Program from the Process window File menu. A New Program
window appears.

Figure 4. Debugging a Core File

2. Click the Open a core file icon.

96 S–2396–21

Debugging an Application [11]

3. On the Program tab, specify the application name in the Program: field and
the core file name in the Core file: field.

4. Click OK

11.1.3 Using TotalView to Attach to a Running Process

To attach TotalView to a running process, you must be logged in to the same
login node that you used to launch the process, and you must attach to the
instance of aprun that was used to launch the process, rather than to the process
itself. To do so, follow these steps:

1. Launch TotalView.

% totalview

2. In the New Program window, click the Attach to process icon. The list of
processes currently running displays.

Figure 5. Attaching to a Running Process

S–2396–21 97

Cray XT™ Programming Environment User’s Guide

3. Select the instance of aprun you want, and click OK. TotalView displays a
Process Window showing both aprun and the program threads that were
launched using that instance of aprun.

11.1.4 Using TotalView to Alter Standard I/O

To change the names of the files to which TotalView will write or from which
TotalView will read:

1. Launch the program using the totalview command. Do not specify the
stdin file at this time.

% totalview aprun -a -n pes executable

The TotalView Root and Process windows display.

Figure 6. Altering Standard I/O

98 S–2396–21

Debugging an Application [11]

2. Select Startup Parameters in the Process window under the Process menu.
The New Program window displays.

3. Select the Standard I/O tab. The Standard Input, Standard Output, and
Standard Error fields are displayed.

4. Type the file name for Standard Input, Standard Output, or Standard Error
field.

5. Type the desired file name and click the OK button.

6. On the main TotalView window, click the Go button to begin program
execution.

11.1.5 About the Limitations of TotalView on Cray XT Systems

The TotalView debugging suite for the Cray XT system differs in functionality
from the standard TotalView implementation. TotalView for Cray XT does not
support:

• Debugging multiple threads on compute nodes.

• Debugging MPI_Spawn(), OpenMP, or Cray SHMEM programs.

• Compiled EVAL points and expressions.

• Type transformations for the PGI C++ compiler standard template library
collection classes.

• Exception handling for the PGI C++ compiler run time library.

• Spawning a process onto the compute processors.

• Machine partitioning schemes, gang scheduling, or batch systems.

In some cases, TotalView functionality is limited because CNL or Catamount
does not support a feature in the user program.

11.2 Using the GNU Debugger

Cray XT systems support the GNU debugger, gdb, for debugging compute-node
applications. The GNU debugger for CNL applications is lgdb, and the GNU
debugger for Catamount applications is xtgdb.

S–2396–21 99

Cray XT™ Programming Environment User’s Guide

11.2.1 Using the lgdb Debugger

(Deferred implementation) The lgdb command launches an application and
gdbserver processes on CNL compute nodes for debugging purposes. Also,
you can use lgdb to attach to an already running application by supplying the
process ID (PID) of the totalview process that launched the application. When
running lgdb, you should be in a directory that can be accessed from a remote
node.

To use lgdb:

1. Load the xt-lgdb module.

2. Use the -g option on the cc, CC, or ftn command to generate debugging
information.

3. Use the lgdb command to launch the debugger.

For more information, see the lgdb(1) man page.

11.2.2 Using the xtgdb Debugger

The xtgdb command launches a single-process application on a Catamount
compute node for debugging purposes. Additionally, you can use xtgdb to
attach to an already running application by supplying the process ID and rank
of the application.

To use xtgdb:

1. Load the xtgdb module.

2. Use the -g option on the cc, CC, or ftn command to generate debugging
information.

3. Use the xtgdb command to launch the debugger.

For an example showing how to use xtgdb to set breakpoints in a single-process
job, see Section 15.13, page 175.

For more information, see the xtgdb(1) man page.

100 S–2396–21

Debugging an Application [11]

11.3 Troubleshooting Catamount Application Failures

The yod utility provides rudimentary diagnostics for the subset of Catamount
calls that perform remote procedure calls (RPCs) to yod. Table 7 lists the calls that
perform RPCs to yod.

Table 7. RPCs to yod

chmod fstatfs mkdir rmdir symlink

chown fsync open setegid sync

close ftruncate pread seteuid truncate

exit getdirentries pwrite setgid umask

fchmod link read setuid unlink

fchown lseek readlink stat utimes

fstat lstat rename statfs write

System calls performed solely by Catamount do not show up in the diagnostic
output.

There are two ways to enable this feature:

• Invoke yod with the -strace option, or

• Set YOD_STRACE=1 in your shell environment.

Note: In this context the term strace is a misnomer. The yod utility does
not provide the UNIX-like strace() function. Enabling strace turns on
diagnostic output generated by the RPC library, which yod uses to service
the system calls in Table 7. The I/O-related system calls are for non-parallel
file systems.

The yod command can also provide trace reports about memory allocation and
deallocation. The -tracemalloc option provides rudimentary diagnostics for
malloc() and free() calls. This information can help you pinpoint memory
leaks and determine if using the GNU malloc library would be beneficial. For
more information about the GNU malloc library, see Appendix B, page 193.

S–2396–21 101

Cray XT™ Programming Environment User’s Guide

102 S–2396–21

Analyzing Performance [12]

This chapter describes the Cray XT performance analysis tools.

12.1 Using the Performance API (PAPI)

The Performance API (PAPI) is a standard API for accessing microprocessor
registers that count events or occurrences of specific signals related to the
processor's function. By monitoring these events, you can determine the extent to
which your code efficiently maps to the underlying architecture.

PAPI provides two interfaces to the counter hardware:

• A high-level interface for basic measurements

• A fully programmable, low-level interface for users with more sophisticated
needs

PAPI supports multiplexing under CNL. Although it is also supported under
Catamount, the long time slice (~1 second) for each set of independent counters
makes it impractical to use except for very long running programs.

The pat_build utility does not allow you to instrument a program that is also
using the PAPI interface directly or indirectly (via libhwpc).

To use PAPI, load the PAPI module:

% module load xt-papi

For more information about PAPI, see http://icl.cs.utk.edu/papi/.

12.1.1 Using the High-level PAPI Interface

The high-level interface provides the ability to start, stop, and read specific
events, one at a time. For an example of a CNL application using the PAPI
high-level interface, see Section 14.15, page 148. For an example of a Catamount
application using the PAPI high-level interface, see Section 15.14, page 176.

S–2396–21 103

http://icl.cs.utk.edu/papi/

Cray XT™ Programming Environment User’s Guide

12.1.2 Using the Low-level PAPI Interface

The low-level PAPI interface deals with hardware events in groups called event
sets. An event set maps the hardware counters available on the system to a set
of predefined events, called presets. The event set reflects how the counters are
most frequently used, such as taking simultaneous measurements of different
hardware events and relating them to one another. For example, relating cycles to
memory references or flops to level-1 cache misses can reveal poor locality and
memory management.

Event sets are fully programmable and have features such as guaranteed thread
safety, writing of counter values, multiplexing, and notification on threshold
crossing, as well as processor-specific features. For the list of predefined event
sets, see the hwpc(3) man page.

For an example of a CNL application using the PAPI low-level interface, see
Section 14.16, page 149. For an example of a Catamount application using the
PAPI low-level interface, see Section 15.15, page 178.

For information about constructing an event set, see the PAPI User Guide and the
PAPI Programmer's Reference manual.

For a list of supported hardware counter presets from which to construct an event
set, see Appendix C, page 199.

12.2 Using the Cray Performance Analysis Tool (CrayPat)

The Cray Performance Analysis Tool (CrayPat) helps you analyze the
performance of programs. To use it:

1. Load the xt-craypat module.

% module load xt-craypat

Note: You must load the xt-craypat module before building even the
uninstrumented version of the application.

2. Compile and link your application.

Note: All executable programs created with an older version of the
CrayPat module loaded must be relinked in order to be instrumented with
the latest version of CrayPat. The pat_build utility will not instrument
executable files linked when older versions of the CrayPat module were
loaded.

3. Use the pat_build command to create an instrumented version of the

104 S–2396–21

Analyzing Performance [12]

application, specifying the functions to be traced through options such as
-u and -g mpi.

4. Set any relevant environment variables, such as:

• setenv PAT_RT_HWPC 1 or export PAT_RT_HWPC=1, which specifies
the first of the predefined sets of hardware counter events.

• setenv PAT_RT_SUMMARY 0 or export PAT_RT_SUMMARY=0,
which specifies a full-trace data file rather than a summary. Such a
file can be very large but is needed to view behavior over time with
Cray Apprentice2.

• setenv PAT_RT_EXPFILE_DIR dir or export
PAT_RT_EXPFILE_DIR= dir to specify a directory into which
the experiment data files will be written, instead of the current working
directory.

If a single data file is written, its default root name is the name of the
instrumented program followed by the plus sign (+), the process ID, the
minus sign (-), the physical node the application started executing upon,
and one or more key letters indicating the type of the experiment (such as
program1+pat+3820-671tdt).

If there is a data file from each process, they are written into a
subdirectory with that name. For a large number of processes, it may
be necessary for PAT_RT_EXPFILE_MAX to be set to 0 or the number
of processes and that PAT_RT_EXPFILE_DIR be set to a directory in a
Lustre file system (if the instrumented program is not invoked in such a
directory). The default for a multi-PE program is to write a single data
file.

5. Execute the instrumented program.

6. Use pat_report on the resulting data file to generate a report. The default
report is a sample by function, but alternative views can be specified through
options such as:

• -O calltree

• -O callers

• -O load_balance

The -s pe=... option overrides the way that per-PE data is shown in
default tables and in tables specified using the -O option. For details, see the
pat_report(1) man page.

S–2396–21 105

Cray XT™ Programming Environment User’s Guide

These steps are illustrated in the example CrayPat programs (see Chapter 14,
page 115 and Chapter 15, page 157). For more information, see the man pages
and the interactive pat_help utility.

For more information about using CrayPat, see the Using Cray Performance
Analysis Tools guide and the intro_craypat(1) man page and run
the pat_help utility. For more information about PAPI HWPC, see
Appendix C, page 199, the hwpc(3) man page, and the PAPI website at
http://icl.cs.utk.edu/papi/.

12.2.1 Running Tracing and Sampling Experiments

CrayPat supports two types of experiments: tracing and sampling.

Tracing counts an event, such as the number of times an MPI call is executed.
When tracing experiments are done, selected function entry points are traced
and produce a data record in the run time experiment data file if the function is
executed. Use the -g tracegroup option to instrument your program to trace
all function entry point references belonging to a tracegroup value:

biolibs Cray Bioinformatics library routines

blas Basic Linear Algebra Subprograms

heap Dynamic heap

io Includes stdio and sysio groups

lapack Linear Algebra PACKage

math ANSI math

mpi MPI

omp OpenMP API (not supported on Catamount)

omp-rtl OpenMP run time library (not supported on Catamount)

pthreads POSIX threads (not supported on Catamount)

shmem SHMEM

stdio All library functions that accept or return the FILE* construct

sysio I/O system calls

system System calls

106 S–2396–21

http://icl.cs.utk.edu/papi/

Analyzing Performance [12]

Note: Only function calls at global scope can be traced. Function calls that are
written in assembly language, that are inlined, or that are local to a translation
unit cannot be traced.

Sampling experiments capture values from the call stack or the program
counter at specified intervals or when a specified counter overflows. (Sampling
experiments are also referred to as asynchronous experiments).

Supported sampling functions are:

• samp_pc_time, which samples the program counter at a given time interval.
This returns the total program time and the absolute and relative times each
program counter was recorded.

• samp_pc_ovfl, which samples the program counter at a given overflow
of a hardware performance counter.

• samp_cs_time, which samples the call stack at a given time interval and
returns the total program time and the absolute and relative times each call
stack counter was recorded (otherwise identical to the samp_pc_time
experiment).

• samp_cs_ovfl, which samples the call stack at a given overflow of a
hardware performance counter (otherwise identical to the samp_pc_ovfl
experiment).

• samp_ru_time, which samples system resources at a given time interval
(otherwise identical to the samp_pc_time experiment).

• samp_ru_ovfl, which samples system resources at a given overflow of a
hardware performance counter (otherwise identical to the samp_pc_ovfl
experiment.)

• samp_heap_time, which samples dynamic heap memory management
statistics at a given time interval (otherwise identical to the samp_pc_time
experiment).

• samp_heap_ovfl, which samples dynamic heap memory management
statistics at a given overflow of a hardware performance counter (otherwise
identical to the samp_pc_ovfl experiment).

Note: Hardware counter information should not be collected during sampling
by overflow. Cray recommends that you use sampling to obtain a profile and
then trace the functions of interest to obtain hardware counter information
for them.

S–2396–21 107

Cray XT™ Programming Environment User’s Guide

12.3 Visualizing Performance Data

The Cray XT performance data visualization tool is Cray Apprentice2. You can
run Cray Apprentice2 on a Cray XT system or Cray Apprentice2 Desktop on
a standalone Linux machine. After you have used pat_build to instrument
a program for a performance analysis experiment, executed the instrumented
program, and used pat_report to convert the resulting data file to a
Cray Apprentice2 data format, you can use Cray Apprentice2 to explore the
experiment data file and generate a variety of interactive graphical reports.

To run Cray Apprentice2, load the Cray Apprentice2 module:

% module load apprentice2

Then use the app2 command to launch Cray Apprentice2

% app2 [--limit tag_count | --limit_per_pe tag_count] [data_files]

To create a graphical representation of a CrayPat report, use the pat_report -f
option to generate a report in ap2 format.

For an example showing how to use Cray Apprentice2, see Section 14.18,
page 156.

For more information about using Cray Apprentice2, see the Cray Apprentice2
online help system and the app2(1) and pat_report(1) man pages.

108 S–2396–21

Optimizing Applications [13]

13.1 Using Compiler Optimization Options

After you have compiled and debugged your code and analyzed its performance,
you can use a number of techniques to optimize performance. For details about
compiler optimization and optimization reporting options, see the PGI User's
Guide, the Using the GNU Compiler Collection (GCC) manual, or the PathScale
Compiler Suite User Guide.

Optimization can produce code that is more efficient and runs significantly
faster than code that is not optimized. Optimization can be performed at the
compilation unit level through compiler driver options or to selected portions
of code through the use of directives or pragmas. Optimization may increase
compilation time and may make debugging difficult. It is best to use performance
analysis data to isolate the portions of code where optimization would provide
the greatest benefits.

In the following example, a Fortran matrix multiply subroutine is optimized. The
compiler driver option generates an optimization report.

Source code of matrix_multiply.f90:

subroutine mxm(x,y,z,m,n)

real*8 x(m,n), y(m,n), z(n,n)

do k = 1,n

do j = 1,n

do i = 1,m

x(i,j) = x(i,j) + y(i,k)*z(k,j)

enddo

enddo

enddo

end

PGI Fortran compiler command:

% ftn -c -fast -Minfo matrix_multiply.f90

S–2396–21 109

Cray XT™ Programming Environment User’s Guide

Optimization report:

mxm:

5, Interchange produces reordered loop nest: 7, 5, 9

9, Generated 3 alternate loops for the inner loop

Generated vector sse code for inner loop

Generated 2 prefetch instructions for this loop

Generated vector sse code for inner loop

Generated 2 prefetch instructions for this loop

Generated vector sse code for inner loop

Generated 2 prefetch instructions for this loop

Generated vector sse code for inner loop

Generated 2 prefetch instructions for this loop

13.2 Using aprun Memory Affinity Options

On Cray XT5 systems, each compute node has local-NUMA-node memory
and remote-NUMA-node memory. Remote-NUMA-node memory references,
such as a NUMA node 0 PE accessing NUMA node 1 memory, can adversely
affect performance. To give you run time controls that may optimize memory
references, Cray has added aprun memory affinity options.

Applications can use one or both NUMA nodes of a Cray XT5 compute node.
If an application is placed using one NUMA node, the other NUMA node
is not used. In this case, the application processes are restricted to using
local-NUMA-node memory. This memory usage policy is enforced by running
the application processes within a cpuset. A cpuset is a process container that
controls memory and CPU usage.

When an application is placed using both NUMA nodes, the cpuset includes
all node memory and all CPUs. In this case, the application processes allocate
local-NUMA-node memory first. If insufficient free local-NUMA-node memory
is available, the allocation may be satisfied using remote-NUMA-node memory.
In other words, if there is not enough NUMA node 0 memory, the allocation may
be satisfied using NUMA node 1 memory. The one exception is the -ss (strict
memory containment) option. For this option, memory accesses are restricted
to local-NUMA-node memory even if both NUMA nodes are available to the
application.

110 S–2396–21

Optimizing Applications [13]

The aprun memory affinity options are:

• -S pes_per_numa_node

• -sn numa_nodes_per_node

• -sl list_of_numa_nodes

• -ss

For details, see Section 7.1, page 61.

You can use these aprun options for each element of an MPMD application and
can vary them with each MPMD element.

Only Cray XT5 compute nodes are considered for the application placement if
any of the following are true:

• The -sn value is 2.

• The -sl list has more than one entry.

• The -sl list is NUMA node 1 (Cray XT3 and Cray XT4 systems have
single-NUMA-node compute nodes, defined as NUMA node 0).

• The -S value along with a -N value requires two NUMA nodes (such as -N
4 -S 2).

You can use the cnselect coremask.eq.255 command to get a list of
Cray XT5 compute nodes and the aprun -L or qsub -lmppnodes option
to specify that list or a subset of the list. For additional information, see the
aprun(1), cnselect(1), and qsub(1) man pages.

13.3 Using aprun CPU Affinity Optimizations

CNL can dynamically distribute work by allowing PEs and threads to migrate
from one CPU to another within a node. In some cases, moving processes from
CPU to CPU increases cache misses and translation lookaside buffer (TLB)
misses and therefore reduces performance. Also, there may be cases where an
application runs faster by avoiding or targeting a particular CPU. The aprun
CPU affinity options let you bind a process to a particular CPU or the CPUs on a
NUMA node. These options apply to all Cray XT multicore compute nodes.

S–2396–21 111

Cray XT™ Programming Environment User’s Guide

Applications are assigned to a cpuset and can run only on the CPUs specified by
the cpuset. Also, applications can allocate memory only on memory defined by
the cpuset. A cpuset can be a compute node (default) or, for Cray XT5 systems, a
NUMA node.

The CPU affinity options are:

• -cc cpu-list | keyword

• (Deferred implementation) -cp cpu_placement_file_name

For details, see Section 7.1, page 61.

These aprun options can be used for each element of an MPMD application and
can vary with each MPMD element.

Cray XT3 and Cray XT4 systems have single-NUMA-node compute nodes. Their
default CPU affinity is the same as for Cray XT5 systems — aprun -cc cpu.

13.4 Optimizing Process Placement on Multicore Nodes

Because multicore systems can run more tasks simultaneously, overall system
performance can increase. The trade-offs are that each core has less local memory
(because it is shared by the cores) and less system interconnection bandwidth
(which is also shared).

13.4.1 Optimizing MPI and SHMEM Applications Running under CNL

Processes are placed in packed rank-sequential order, starting with the first node.
So, for a 100-core, 50-node job running on dual-core nodes, the layout of ranks on
cores is:

Node 1 Node 2 Node 3 … Node 50

Core 0 1 0 1 0 1 … 0 1

Rank 0 1 2 3 4 5 … 98 99

Note: You can use the yod placement method (rank-sequential order) in CNL
applications instead by setting MPICH_RANK_REORDER_METHOD to 0.

112 S–2396–21

Optimizing Applications [13]

For CNL applications, MPI supports multiple interconnect device drivers for a
single MPI job. This allows each process (rank) of an MPI job to create the most
optimal messaging path to every other process in the job, based on the topology
of the given ranks.

Two device drivers are supported: the SMP driver and the Portals device
driver. The SMP device driver is based on shared memory and is used for
communication between ranks that share a node. The Portals device driver is
used for communication between ranks that span nodes.

To attain the fastest possible run time, try running your program on only one core
of each node. (In this case, the other cores are allocated to your job but idle.) This
allows each process to have full access to the system interconnection network.

For example, the command:

% aprun -n 64 -N 1 ./prog1

launches prog1 on one core of each of 64 multicore nodes.

13.4.2 Optimizing MPI and SHMEM Applications Running under Catamount

By default, processes are placed in rank-sequential order on dual-core nodes, first
on the master core (core 0) on each node and then on the subordinate core (core 1)
on each node. So, for a 100-core, 50-node job, the layout of ranks on cores is:

Node 1 Node 2 Node 3 … Node 50

Core 0 1 0 1 0 1 … 0 1

Rank 0 50 1 51 2 52 … 49 99

Latency times for data transfers between parallel processes can vary
according to the type of process-to-core placement: master-to-master,
subordinate-to-subordinate, master-to-subordinate on different nodes, and
master-to-subordinate on the same node. Master-to master transfers have the
shortest latency; subordinate-to-subordinate transfers have the longest latency.

For Catamount applications, MPI and SHMEM are not aware of the processor
placement topology. As a result, some applications may experience performance
degradation.

To attain the fastest possible run time, try running your program on the master
core of each allocated node. The subordinate cores are allocated to your job but
idle.

S–2396–21 113

Cray XT™ Programming Environment User’s Guide

For example, the command:

% yod -sz 64 prog1

launches prog1 on the master core of each of 64 nodes.

The MPICH_RANK_REORDER_METHOD environment variable allows you to
override the default rank ordering scheme and use an SMP-style placement, a
folded-rank placement, or a custom rank placement. See the intro_mpi(3) man
page for details.

114 S–2396–21

Example CNL Applications [14]

This chapter gives examples showing how to compile, link, and run CNL
applications.

Verify that your work area is in a Lustre-mounted directory. Then use the
module list command to verify that the correct modules are loaded.
Whenever you compile and link applications to be run under CNL, you need to
have the xtpe-target-cnl module loaded. Each following example lists the
modules that have to be loaded.

14.1 Running a Basic Application under CNL

This example shows how to compile program simple_cnl.c and launch the
executable.

Modules required:

xtpe-target-cnl

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Create a C program, simple_cnl.c:

#include "mpi.h"

int main(int argc, char *argv[])

{

int rank;

int numprocs;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

printf("hello from pe %d of %d\n",rank,numprocs);

MPI_Finalize();

}

S–2396–21 115

Cray XT™ Programming Environment User’s Guide

Compile the program:

% cc -o simple_cnl simple_cnl.c

Run the program:

% aprun -n 6 ./simple_cnl

hello from pe 0 of 6

hello from pe 5 of 6

hello from pe 4 of 6

hello from pe 3 of 6

hello from pe 2 of 6

hello from pe 1 of 6

Application 135891 resources: utime 0, stime 0

14.2 Running an MPI Application under CNL

This example shows how to compile, link, and run an MPI program. The MPI
program distributes the work represented in a reduction loop, prints the subtotal
for each PE, combines the results from the PEs, and prints the total.

Modules required:

xtpe-target-cnl

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

116 S–2396–21

Example CNL Applications [14]

Create a Fortran program, mpi_cnl.f90:

program reduce

include "mpif.h"

integer n, nres, ierr

call MPI_INIT (ierr)

call MPI_COMM_RANK (MPI_COMM_WORLD,mype,ierr)

call MPI_COMM_SIZE (MPI_COMM_WORLD,npes,ierr)

nres = 0

n = 0

do i=mype,100,npes

n = n + i

enddo

print *, 'My PE:', mype, ' My part:',n

call MPI_REDUCE (n,nres,1,MPI_INTEGER,MPI_SUM,0,MPI_COMM_WORLD,ierr)

if (mype == 0) print *,' PE:',mype,'Total is:',nres

call MPI_FINALIZE (ierr)

end

Compile mpi_cnl.f90:

% ftn -o mpi_cnl mpi_cnl.f90

Run program mpi_cnl:

% aprun -n 6 ./mpi_cnl | sort

PE: 0 Total is: 5050

My PE: 0 My part: 816

My PE: 1 My part: 833

My PE: 2 My part: 850

My PE: 3 My part: 867

My PE: 4 My part: 884

My PE: 5 My part: 800

Application 3016865 resources: utime 0, stime 0

S–2396–21 117

Cray XT™ Programming Environment User’s Guide

If desired, you could use this C version of the program:

/* program reduce */

#include <stdio.h>

#include "mpi.h"

int main (int argc, char *argv[])

{

int i, sum, mype, npes, nres, ret;

ret = MPI_Init (&argc, &argv);

ret = MPI_Comm_size (MPI_COMM_WORLD, &npes);

ret = MPI_Comm_rank (MPI_COMM_WORLD, &mype);

nres = 0;

sum = 0;

for (i = mype; i <=100; i += npes) {

sum = sum + i;

}

(void) printf ("My PE:%d My part:%d\n",mype, sum);

ret = MPI_Reduce (&sum,&nres,1,MPI_INTEGER,MPI_SUM,0,MPI_COMM_WORLD);

if (mype == 0)

{

(void) printf ("PE:%d Total is:%d\n",mype, nres);

}

ret = MPI_Finalize ();

}

14.3 Using the Cray shmem_put Function under CNL

This example shows how to use the shmem_put64() function to copy a
contiguous data object from the local PE to a contiguous data object on a different
PE.

Modules required:

xtpe-target-cnl

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

118 S–2396–21

Example CNL Applications [14]

Source code of C program (shmem_put_cnl.c):

/*

* simple put test

*/

#include <stdio.h>

#include <stdlib.h>

#include <mpp/shmem.h>

/* Dimension of source and target of put operations */

#define DIM 1000000

long target[DIM];

long local[DIM];

main(int argc,char **argv)

{

register int i;

int my_partner, my_pe;

/* Prepare resources required for correct functionality

of SHMEM on XT. Alternatively, shmem_init() could

be called. */

start_pes(0);

for (i=0; i<DIM; i++) {

target[i] = 0L;

local[i] = shmem_my_pe() + (i * 10);

}

my_pe = shmem_my_pe();

if(shmem_n_pes()%2) {

if(my_pe == 0) printf("Test needs even number of processes\n");

/* Clean up resources before exit. */

shmem_finalize();

exit(0);

}

shmem_barrier_all();

/* Test has to be run on two procs. */

S–2396–21 119

Cray XT™ Programming Environment User’s Guide

my_partner = my_pe % 2 ? my_pe - 1 : my_pe + 1;

shmem_put64(target,local,DIM,my_partner);

/* Synchronize before verifying results. */

shmem_barrier_all();

/* Check results of put */

for(i=0; i<DIM; i++) {

if(target[i] != (my_partner + (i * 10))) {

fprintf(stderr,"FAIL (1) on PE %d target[%d] = %d (%d)\n",

shmem_my_pe(), i, target[i],my_partner+(i*10));

shmem_finalize();

exit(-1);

}

}

printf(" PE %d: Test passed.\n",my_pe);

/* Clean up resources. */

shmem_finalize();

}

Compile shmem_put_cnl.c and create executable shmem_put_cnl:

% cc -o shmem_put_cnl shmem_put_cnl.c

Run shmem_put_cnl:

% aprun -n 6 ./shmem_put_cnl

PE 0: Test passed.

PE 5: Test passed.

PE 4: Test passed.

PE 3: Test passed.

PE 2: Test passed.

PE 1: Test passed.

Application 137008 exit codes: 128

Application 137008 resources: utime 0, stime 0

14.4 Using the Cray shmem_get Function under CNL

This example shows how to use the shmem_get() function to copy a contiguous
data object from a different PE to a contiguous data object on the local PE.

120 S–2396–21

Example CNL Applications [14]

Modules required:

xtpe-target-cnl

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Note: The Fortran module for Cray SHMEM is not supported. Use the
INCLUDE 'mpp/shmem.fh' statement instead.

Source code of Fortran program (shmem_get_cnl.f90):

program reduction

include 'mpp/shmem.fh'

real values, sum

common /c/ values

real work

call start_pes(0)

values=my_pe()

call shmem_barrier_all! Synchronize all PEs

sum = 0.0

do i = 0,num_pes()-1

call shmem_get(work, values, 1, i) ! Get next value

sum = sum + work ! Sum it

enddo

print*, 'PE',my_pe(),' computedsum=',sum

call shmem_barrier_all

call shmem_finalize

end

Compile shmem_get_cnl.f90 and create executable shmem_get_cnl:

% ftn -o shmem_get_cnl shmem_get_cnl.f90

S–2396–21 121

Cray XT™ Programming Environment User’s Guide

Run shmem2:

% aprun -n 6 ./shmem_get_cnl

PE 0 computedsum= 15.00000

PE 5 computedsum= 15.00000

PE 4 computedsum= 15.00000

PE 3 computedsum= 15.00000

PE 2 computedsum= 15.00000

PE 1 computedsum= 15.00000

Application 137031 resources: utime 0, stime 0

14.5 Running a UPC Application under CNL

This example shows how to compile and run a C program that includes Unified
Parallel C (UPC) functions.

Modules required:

xtpe-target-cnl

xt-upc

and one of the following:

PrgEnv-upc-pgi

PrgEnv-upc-gnu

Note: UPC source files must have the upc extension.

Source code of program upc_cnl.upc:

#include <upc.h>

#include <stdio.h>

int main (int argc, char *argv[])

{

int i;

for (i = 0; i < THREADS; ++i)

{

upc_barrier;

if (i == MYTHREAD)

printf ("Hello world from thread: %d\n", MYTHREAD);

}

return 0;

}

122 S–2396–21

Example CNL Applications [14]

You can use the Berkeley UPC translator or the Intrepid GCCUPC compiler to
compile your program.

Compile upc_cnl.upc using the Berkeley UPC translator:

% upcc -o upc_cnl upc_cnl.upc

Run upc_cnl:

% upcrun -n 2 ./upc_cnl

UPCR: UPC thread 0 of 2 on nid00012 (process 0 of 2, pid=1438)

UPCR: UPC thread 1 of 2 on nid00013 (process 1 of 2, pid=1402)

Hello world from thread: 0

Hello world from thread: 1

Application 170008 resources: utime 0, stime 0

To compile upc_cnl.upc using the Intrepid GCCUPC compiler, load the
PrgEnv-upc-gnu module and include the -gccupc option on the compiler
command line:

% module swap PrgEnv-upc-pgi PrgEnv-upc-gnu

% upcc -o upc_cnl -gccupc upc_cnl.upc

% upcrun -n 2 ./upc_cnl

UPCR: UPC thread 0 of 2 on nid00012 (process 0 of 2, pid=1443)

UPCR: UPC thread 1 of 2 on nid00013 (process 1 of 2, pid=1407)

Hello world from thread: 0

Hello world from thread: 1

Application 170077 resources: utime 0, stime 0

14.6 Running a PETSc Application under CNL

This example (Copyright 1995-2004 University of Chicago) shows how to use
PETSc functions to solve a linear system of partial differential equations.

Note: There are many ways to use the PETSc solvers. This example is intended
to show the basics of compiling and running a PETSc program on a Cray XT
system. It presents one simple approach and may not be the best template to
use in writing user code. For issues that are not specific to Cray XT systems,
you can get technical support through petsc-users@mcs.anl.gov.

The source code for this example includes a comment about the use of the
mpiexec command to launch the executable. Use aprun instead.

S–2396–21 123

Cray XT™ Programming Environment User’s Guide

Modules required:

xtpe-target-cnl

petsc

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Source code of program ex2f.F:

!

! Description: Solves a linear system in parallel with KSP (Fortran code).

! Also shows how to set a user-defined monitoring routine.

!

! Program usage: mpiexec -np ex2f [-help] [all PETSc options]

!

!/*T

! Concepts: KSP^basic parallel example

! Concepts: KSP^setting a user-defined monitoring routine

! Processors: n

!T*/

!

! ---

program main

implicit none

! -

! Include files

! -

!

! This program uses CPP for preprocessing, as indicated by the use of

! PETSc include files in the directory petsc/include/finclude. This

! convention enables use of the CPP preprocessor, which allows the use

! of the #include statements that define PETSc objects and variables.

!

! Use of the conventional Fortran include statements is also supported

! In this case, the PETsc include files are located in the directory

! petsc/include/foldinclude.

!

! Since one must be very careful to include each file no more than once

! in a Fortran routine, application programmers must exlicitly list

! each file needed for the various PETSc components within their

124 S–2396–21

Example CNL Applications [14]

! program (unlike the C/C++ interface).

!

! See the Fortran section of the PETSc users manual for details.

!

! The following include statements are required for KSP Fortran programs:

! petsc.h - base PETSc routines

! petscvec.h - vectors

! petscmat.h - matrices

! petscpc.h - preconditioners

! petscksp.h - Krylov subspace methods

! Include the following to use PETSc random numbers:

! petscsys.h - system routines

! Additional include statements may be needed if using additional

! PETSc routines in a Fortran program, e.g.,

! petscviewer.h - viewers

! petscis.h - index sets

!

#include "include/finclude/petsc.h"

#include "include/finclude/petscvec.h"

#include "include/finclude/petscmat.h"

#include "include/finclude/petscpc.h"

#include "include/finclude/petscksp.h"

#include "include/finclude/petscsys.h"

!

! -

! Variable declarations

! -

!

! Variables:

! ksp - linear solver context

! ksp - Krylov subspace method context

! pc - preconditioner context

! x, b, u - approx solution, right-hand-side, exact solution vectors

! A - matrix that defines linear system

! its - iterations for convergence

! norm - norm of error in solution

! rctx - random number generator context

!

! Note that vectors are declared as PETSc "Vec" objects. These vectors

! are mathematical objects that contain more than just an array of

! double precision numbers. I.e., vectors in PETSc are not just

! double precision x(*).

! However, local vector data can be easily accessed via VecGetArray().

S–2396–21 125

Cray XT™ Programming Environment User’s Guide

! See the Fortran section of the PETSc users manual for details.

!

double precision norm

PetscInt i,j,II,JJ,m,n,its

PetscInt Istart,Iend,ione

PetscErrorCode ierr

PetscMPIInt rank,size

PetscTruth flg

PetscScalar v,one,neg_one

Vec x,b,u

Mat A

KSP ksp

PetscRandom rctx

! These variables are not currently used.

! PC pc

! PCType ptype

! double precision tol

! Note: Any user-defined Fortran routines (such as MyKSPMonitor)

! MUST be declared as external.

external MyKSPMonitor,MyKSPConverged

! -

! Beginning of program

! -

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)

m = 3

n = 3

one = 1.0

neg_one = -1.0

ione = 1

call PetscOptionsGetInt(PETSC_NULL_CHARACTER,'-m',m,flg,ierr)

call PetscOptionsGetInt(PETSC_NULL_CHARACTER,'-n',n,flg,ierr)

call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr)

call MPI_Comm_size(PETSC_COMM_WORLD,size,ierr)

! -

! Compute the matrix and right-hand-side vector that define

! the linear system, Ax = b.

126 S–2396–21

Example CNL Applications [14]

! -

! Create parallel matrix, specifying only its global dimensions.

! When using MatCreate(), the matrix format can be specified at

! runtime. Also, the parallel partitioning of the matrix is

! determined by PETSc at runtime.

call MatCreate(PETSC_COMM_WORLD,A,ierr)

call MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n,ierr)

call MatSetFromOptions(A,ierr)

! Currently, all PETSc parallel matrix formats are partitioned by

! contiguous chunks of rows across the processors. Determine which

! rows of the matrix are locally owned.

call MatGetOwnershipRange(A,Istart,Iend,ierr)

! Set matrix elements for the 2-D, five-point stencil in parallel.

! - Each processor needs to insert only elements that it owns

! locally (but any non-local elements will be sent to the

! appropriate processor during matrix assembly).

! - Always specify global row and columns of matrix entries.

! - Note that MatSetValues() uses 0-based row and column numbers

! in Fortran as well as in C.

! Note: this uses the less common natural ordering that orders first

! all the unknowns for x = h then for x = 2h etc; Hence you see JH = II +- n

! instead of JJ = II +- m as you might expect. The more standard ordering

! would first do all variables for y = h, then y = 2h etc.

do 10, II=Istart,Iend-1

v = -1.0

i = II/n

j = II - i*n

if (i.gt.0) then

JJ = II - n

call MatSetValues(A,ione,II,ione,JJ,v,INSERT_VALUES,ierr)

endif

if (i.lt.m-1) then

JJ = II + n

call MatSetValues(A,ione,II,ione,JJ,v,INSERT_VALUES,ierr)

endif

if (j.gt.0) then

S–2396–21 127

Cray XT™ Programming Environment User’s Guide

JJ = II - 1

call MatSetValues(A,ione,II,ione,JJ,v,INSERT_VALUES,ierr)

endif

if (j.lt.n-1) then

JJ = II + 1

call MatSetValues(A,ione,II,ione,JJ,v,INSERT_VALUES,ierr)

endif

v = 4.0

call MatSetValues(A,ione,II,ione,II,v,INSERT_VALUES,ierr)

10 continue

! Assemble matrix, using the 2-step process:

! MatAssemblyBegin(), MatAssemblyEnd()

! Computations can be done while messages are in transition,

! by placing code between these two statements.

call MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY,ierr)

call MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY,ierr)

! Create parallel vectors.

! - Here, the parallel partitioning of the vector is determined by

! PETSc at runtime. We could also specify the local dimensions

! if desired -- or use the more general routine VecCreate().

! - When solving a linear system, the vectors and matrices MUST

! be partitioned accordingly. PETSc automatically generates

! appropriately partitioned matrices and vectors when MatCreate()

! and VecCreate() are used with the same communicator.

! - Note: We form 1 vector from scratch and then duplicate as needed.

call VecCreateMPI(PETSC_COMM_WORLD,PETSC_DECIDE,m*n,u,ierr)

call VecSetFromOptions(u,ierr)

call VecDuplicate(u,b,ierr)

call VecDuplicate(b,x,ierr)

! Set exact solution; then compute right-hand-side vector.

! By default we use an exact solution of a vector with all

! elements of 1.0; Alternatively, using the runtime option

! -random_sol forms a solution vector with random components.

call PetscOptionsHasName(PETSC_NULL_CHARACTER, &

& "-random_exact_sol",flg,ierr)

if (flg .eq. 1) then

call PetscRandomCreate(PETSC_COMM_WORLD,rctx,ierr)

128 S–2396–21

Example CNL Applications [14]

call PetscRandomSetFromOptions(rctx,ierr)

call VecSetRandom(u,rctx,ierr)

call PetscRandomDestroy(rctx,ierr)

else

call VecSet(u,one,ierr)

endif

call MatMult(A,u,b,ierr)

! View the exact solution vector if desired

call PetscOptionsHasName(PETSC_NULL_CHARACTER, &

& "-view_exact_sol",flg,ierr)

if (flg .eq. 1) then

call VecView(u,PETSC_VIEWER_STDOUT_WORLD,ierr)

endif

! -

! Create the linear solver and set various options

! -

! Create linear solver context

call KSPCreate(PETSC_COMM_WORLD,ksp,ierr)

! Set operators. Here the matrix that defines the linear system

! also serves as the preconditioning matrix.

call KSPSetOperators(ksp,A,A,DIFFERENT_NONZERO_PATTERN,ierr)

! Set linear solver defaults for this problem (optional).

! - By extracting the KSP and PC contexts from the KSP context,

! we can then directly directly call any KSP and PC routines

! to set various options.

! - The following four statements are optional; all of these

! parameters could alternatively be specified at runtime via

! KSPSetFromOptions(). All of these defaults can be

! overridden at runtime, as indicated below.

! We comment out this section of code since the Jacobi

! preconditioner is not a good general default.

! call KSPGetPC(ksp,pc,ierr)

! ptype = PCJACOBI

S–2396–21 129

Cray XT™ Programming Environment User’s Guide

! call PCSetType(pc,ptype,ierr)

! tol = 1.e-7

! call KSPSetTolerances(ksp,tol,PETSC_DEFAULT_DOUBLE_PRECISION,

! & PETSC_DEFAULT_DOUBLE_PRECISION,PETSC_DEFAULT_INTEGER,ierr)

! Set user-defined monitoring routine if desired

call PetscOptionsHasName(PETSC_NULL_CHARACTER,'-my_ksp_monitor', &

& flg,ierr)

if (flg .eq. 1) then

call KSPMonitorSet(ksp,MyKSPMonitor,PETSC_NULL_OBJECT, &

& PETSC_NULL_FUNCTION,ierr)

endif

! Set runtime options, e.g.,

! -ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol

! These options will override those specified above as long as

! KSPSetFromOptions() is called _after_ any other customization

! routines.

call KSPSetFromOptions(ksp,ierr)

! Set convergence test routine if desired

call PetscOptionsHasName(PETSC_NULL_CHARACTER, &

& '-my_ksp_convergence',flg,ierr)

if (flg .eq. 1) then

call KSPSetConvergenceTest(ksp,MyKSPConverged, &

& PETSC_NULL_OBJECT,ierr)

endif

!

! -

! Solve the linear system

! -

call KSPSolve(ksp,b,x,ierr)

! -

! Check solution and clean up

! -

! Check the error

130 S–2396–21

Example CNL Applications [14]

call VecAXPY(x,neg_one,u,ierr)

call VecNorm(x,NORM_2,norm,ierr)

call KSPGetIterationNumber(ksp,its,ierr)

if (rank .eq. 0) then

if (norm .gt. 1.e-12) then

write(6,100) norm,its

else

write(6,110) its

endif

endif

100 format('Norm of error ',e10.4,' iterations ',i5)

110 format('Norm of error < 1.e-12,iterations ',i5)

! Free work space. All PETSc objects should be destroyed when they

! are no longer needed.

call KSPDestroy(ksp,ierr)

call VecDestroy(u,ierr)

call VecDestroy(x,ierr)

call VecDestroy(b,ierr)

call MatDestroy(A,ierr)

! Always call PetscFinalize() before exiting a program. This routine

! - finalizes the PETSc libraries as well as MPI

! - provides summary and diagnostic information if certain runtime

! options are chosen (e.g., -log_summary). See PetscFinalize()

! manpage for more information.

call PetscFinalize(ierr)

end

! --

!

! MyKSPMonitor - This is a user-defined routine for monitoring

! the KSP iterative solvers.

!

! Input Parameters:

! ksp - iterative context

! n - iteration number

! rnorm - 2-norm (preconditioned) residual value (may be estimated)

! dummy - optional user-defined monitor context (unused here)

!

S–2396–21 131

Cray XT™ Programming Environment User’s Guide

subroutine MyKSPMonitor(ksp,n,rnorm,dummy,ierr)

implicit none

#include "include/finclude/petsc.h"

#include "include/finclude/petscvec.h"

#include "include/finclude/petscksp.h"

KSP ksp

Vec x

PetscErrorCode ierr

PetscInt n,dummy

PetscMPIInt rank

double precision rnorm

! Build the solution vector

call KSPBuildSolution(ksp,PETSC_NULL_OBJECT,x,ierr)

! Write the solution vector and residual norm to stdout

! - Note that the parallel viewer PETSC_VIEWER_STDOUT_WORLD

! handles data from multiple processors so that the

! output is not jumbled.

call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr)

if (rank .eq. 0) write(6,100) n

call VecView(x,PETSC_VIEWER_STDOUT_WORLD,ierr)

if (rank .eq. 0) write(6,200) n,rnorm

100 format('iteration ',i5,' solution vector:')

200 format('iteration ',i5,' residual norm ',e10.4)

ierr = 0

end

! --

!

! MyKSPConverged - This is a user-defined routine for testing

! convergence of the KSP iterative solvers.

!

! Input Parameters:

! ksp - iterative context

! n - iteration number

! rnorm - 2-norm (preconditioned) residual value (may be estimated)

132 S–2396–21

Example CNL Applications [14]

! dummy - optional user-defined monitor context (unused here)

!

subroutine MyKSPConverged(ksp,n,rnorm,flag,dummy,ierr)

implicit none

#include "include/finclude/petsc.h"

#include "include/finclude/petscvec.h"

#include "include/finclude/petscksp.h"

KSP ksp

PetscErrorCode ierr

PetscInt n,dummy

KSPConvergedReason flag

double precision rnorm

if (rnorm .le. .05) then

flag = 1

else

flag = 0

endif

ierr = 0

end

S–2396–21 133

Cray XT™ Programming Environment User’s Guide

Use makefile.F:

.SUFFIXES: .mod .o .F

Compilers, linkers and flags.

FC = ftn

LINKER = ftn

FCFLAGS =

LINKLAGS =

Fortran optimization options.

FOPTFLAGS = -O3

.F.o:

$(FC) -c ${FOPTFLAGS} ${FCFLAGS} $*.F

all : ex2f

ex2f : ex2f.o

$(LINKER) -o $@ ex2f.o

134 S–2396–21

Example CNL Applications [14]

Create and run executable ex2f, including the PETSc run time option
-mat_view to display the nonzero values of the 9x9 matrix A:

% make -f makefile.F

% aprun -n 2 ./ex2f -mat_view

row 0: (0, 4) (1, -1) (3, -1)

row 1: (0, -1) (1, 4) (2, -1) (4, -1)

row 2: (1, -1) (2, 4) (5, -1)

row 3: (0, -1) (3, 4) (4, -1) (6, -1)

row 4: (1, -1) (3, -1) (4, 4) (5, -1) (7, -1)

row 5: (2, -1) (4, -1) (5, 4) (8, -1)

row 6: (3, -1) (6, 4) (7, -1)

row 7: (4, -1) (6, -1) (7, 4) (8, -1)

row 8: (5, -1) (7, -1) (8, 4)

row 0: (0, 0.25) (3, -1)

row 1: (1, 0.25) (2, -1)

row 2: (1, -0.25) (2, 0.266667) (3, -1)

row 3: (0, -0.25) (2, -0.266667) (3, 0.287081)

row 0: (0, 0.25) (1, -1) (3, -1)

row 1: (0, -0.25) (1, 0.266667) (2, -1) (4, -1)

row 2: (1, -0.266667) (2, 0.267857)

row 3: (0, -0.25) (3, 0.266667) (4, -1)

row 4: (1, -0.266667) (3, -0.266667) (4, 0.288462)

Norm of error < 1.e-12,iterations 7

Application 155514 resources: utime 0, stime 12

14.7 Running an OpenMP Application under CNL

This example shows how to compile and run an OpenMP/MPI application.

Modules required:

xtpe-target-cnl

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Note: To compile an OpenMP program using a PGI or PathScale compiler,
include -mp on the compiler driver command line. For a GCC compiler,
include -fopenmp.

S–2396–21 135

Cray XT™ Programming Environment User’s Guide

Source code of C program omp_cnl.c:

#define _GNU_SOURCE

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <sched.h>

#include <mpi.h>

#include <omp.h>

/* Borrowed from util-linux-2.13-pre7/schedutils/taskset.c */

static char *cpuset_to_cstr(cpu_set_t *mask, char *str)

{

char *ptr = str;

int i, j, entry_made = 0;

for (i = 0; i < CPU_SETSIZE; i++) {

if (CPU_ISSET(i, mask)) {

int run = 0;

entry_made = 1;

for (j = i + 1; j < CPU_SETSIZE; j++) {

if (CPU_ISSET(j, mask)) run++;

else break;

}

if (!run)

sprintf(ptr, "%d,", i);

else if (run == 1) {

sprintf(ptr, "%d,%d,", i, i + 1);

i++;

} else {

sprintf(ptr, "%d-%d,", i, i + run);

i += run;

}

while (*ptr != 0) ptr++;

}

}

ptr -= entry_made;

*ptr = 0;

return(str);

}

int main(int argc, char *argv[])

{

int rank, thread;

136 S–2396–21

Example CNL Applications [14]

cpu_set_t coremask;

char clbuf[7 * CPU_SETSIZE], hnbuf[64];

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

memset(clbuf, 0, sizeof(clbuf));

memset(hnbuf, 0, sizeof(hnbuf));

(void)gethostname(hnbuf, sizeof(hnbuf));

#pragma omp parallel private(thread, coremask, clbuf)

{

thread = omp_get_thread_num();

(void)sched_getaffinity(0, sizeof(coremask), &coremask);

cpuset_to_cstr(&coremask, clbuf);

#pragma omp barrier

printf("Hello from rank %d, thread %d, on %s. (core affinity = %s)\n",

rank, thread, hnbuf, clbuf);

}

MPI_Finalize();

return(0);

}

Compile and link omp_cnl.c:

% cc -mp -o omp_cnl omp_cnl.c

Set the OpenMP environment variable equal to the number of threads in the
team:

% setenv OMP_NUM_THREADS 2

Run program omp_cnl:

% aprun -n 4 -d 2 -q ./omp_cnl | sort

gar cnl/c> aprun -n 4 -d 2 -q ./xt5hi | sort

Hello from rank 0, thread 0, on nid00317. (core affinity = 0)

Hello from rank 0, thread 1, on nid00317. (core affinity = 1)

Hello from rank 1, thread 0, on nid00317. (core affinity = 2)

Hello from rank 1, thread 1, on nid00317. (core affinity = 3)

Hello from rank 2, thread 0, on nid00317. (core affinity = 4)

Hello from rank 2, thread 1, on nid00317. (core affinity = 5)

Hello from rank 3, thread 0, on nid00317. (core affinity = 6)

Hello from rank 3, thread 1, on nid00317. (core affinity = 7)

The aprun command created four instances of omp_cnl; each instance of
omp_cnl spawned an additional thread. Each thread runs on a separate CPU.

S–2396–21 137

Cray XT™ Programming Environment User’s Guide

If we run the same program but do not include the -d 2 option, each CPU runs a
PE and its thread:

% aprun -n 4 -q ./xt5hi | sort

Hello from rank 0, thread 0, on nid00317. (core affinity = 0)

Hello from rank 0, thread 1, on nid00317. (core affinity = 0)

Hello from rank 1, thread 0, on nid00317. (core affinity = 1)

Hello from rank 1, thread 1, on nid00317. (core affinity = 1)

Hello from rank 2, thread 0, on nid00317. (core affinity = 2)

Hello from rank 2, thread 1, on nid00317. (core affinity = 2)

Hello from rank 3, thread 0, on nid00317. (core affinity = 3)

Hello from rank 3, thread 1, on nid00317. (core affinity = 3)

14.8 Running a PBS Professional Interactive Job under CNL

This example shows how to compile and run an OpenMP/MPI application
(see Section 14.7, page 135) on quad-core processors using a PBS Professional
interactive job.

Modules required:

xtpe-target-cnl

pbs

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Use the cnselect command to get a list of quad-core processors:

% cnselect coremask.eq.15

28-95,128-223,256-351,384-479,512-607,640-715

Initiate a PBS Professional interactive session:

% qsub -I -l mppwidth=4 -l mppdepth=2 -l mppnodes=\"28-30\"

Set the OpenMP environment variable equal to the number of threads in the
team:

% setenv OMP_NUM_THREADS 2

138 S–2396–21

Example CNL Applications [14]

Run omp_cnl:

% aprun -n 4 -d 2 -L28-30 ./omp_cnl

Hello from rank 0 (thread 1) on nid00512

Hello from rank 1 (thread 0) on nid00512

Hello from rank 1 (thread 1) on nid00512

Hello from rank 0 (thread 0) on nid00512

Hello from rank 3 (thread 0) on nid00513

Hello from rank 2 (thread 1) on nid00513

Hello from rank 2 (thread 0) on nid00513

Hello from rank 3 (thread 1) on nid00513

14.9 Running a PBS Professional Job Script under CNL

In this example, a PBS Professional job script requests six PEs to run program
mpi_cnl.

Modules required:

xtpe-target-cnl

pbs

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Note: Do not load the xt-pbs module. Unload it if it has been loaded.

Create pbs_script_cnl:

#!/bin/bash

#

Define the destination of this job

as the queue named "workq":

#PBS -q workq

#PBS -l mppwidth=6

Tell PBS Pro to keep both standard output and

standard error on the execution host:

#PBS -k eo

cd /lus/nid0008/user1

aprun -n 6 ./mpi_cnl

exit 0

S–2396–21 139

Cray XT™ Programming Environment User’s Guide

Set permissions to executable:

% chmod +x pbs_script_cnl

Submit the job:

% qsub pbs_script_cnl

The qsub command produces a batch job log file with output from mpi_cnl (see
Section 14.2, page 116). The job output is in a pbs_script_cnl.onnnnn file.

% cat pbs_script_cnl.o238830 | sort

Application 848571 resources: utime 0, stime 0

My PE: 0 My part: 816

My PE: 1 My part: 833

My PE: 2 My part: 850

My PE: 3 My part: 867

My PE: 4 My part: 884

My PE: 5 My part: 800

PE: 0 Total is: 5050

14.10 Running Multiple Sequential Applications under CNL

To run multiple sequential applications, the number of processors you specify as
an argument to qsub must be equal to or greater than the largest number of
processors required by a single invocation of aprun in your script. For example,
in job script mult_seq_cnl, the -l mppwidth value is 6 because the largest
aprun n value is 6.

Modules required:

xtpe-target-cnl

pbs

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Note: Do not load the xt-pbs module. Unload it if it has been loaded.

Create script mult_seq_cnl:

#!/bin/bash

140 S–2396–21

Example CNL Applications [14]

#

Define the destination of this job

as the queue named "workq":

#PBS -q workq

#PBS -l mppwidth=6

Tell PBS Pro to keep both standard output and

standard error on the execution host:

#PBS -k eo

cd /lus/nid000015/user1

aprun -n 2 -q ./simple_cnl

aprun -n 3 -q ./mpi_cnl

aprun -n 6 -q ./shmem_put_cnl

aprun -n 6 -q ./shmem_get_cnl

exit 0

The script launches applications simple_cnl (see Section 14.1, page 115),
mpi_cnl (see Section 14.2, page 116), shmem_put_cnl (see Section 14.3,
page 118), and shmem_get_cnl (see Section 14.4, page 120).

Set file permission to executable:

% chmod +x mult_seq_cnl

Run the script:

% qsub mult_seq_cnl

List the output:

% cat mult_seq_cnl.o465713

hello from pe 0 of 2

hello from pe 1 of 2

My PE: 0 My part: 1683

My PE: 1 My part: 1717

My PE: 2 My part: 1650

PE: 0 Total is: 5050

PE 0: Test passed.

PE 1: Test passed.

PE 2: Test passed.

PE 3: Test passed.

PE 4: Test passed.

PE 5: Test passed.

PE 0 computedsum= 15.00000

PE 1 computedsum= 15.00000

PE 2 computedsum= 15.00000

S–2396–21 141

Cray XT™ Programming Environment User’s Guide

PE 3 computedsum= 15.00000

PE 4 computedsum= 15.00000

PE 5 computedsum= 15.00000

14.11 Running Multiple Parallel Applications under CNL

If you are running multiple parallel applications, the number of processors must
be equal to or greater than the total number of processors specified by calls to
aprun. For example, in job script mult_par_cnl, the -l mppwidth value is 11
because the total of the aprun n values is 11.

Modules required:

xtpe-target-cnl

pbs

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Note: Do not load the xt-pbs module. Unload it if it has been loaded.

Create mult_par_cnl:

#!/bin/bash

#

Define the destination of this job

as the queue named "workq":

#PBS -q workq

#PBS -l mppwidth=11

Tell PBS Pro to keep both standard output and

standard error on the execution host:

#PBS -k eo

cd /lus/nid00007/user1

aprun -n 2 ./simple_cnl &

aprun -n 3 ./mpi_cnl &

aprun -n 6 ./shmem_put_cnl &

aprun -n 6 ./shmem_get_cnl &

exit 0

142 S–2396–21

Example CNL Applications [14]

The script launches applications simple_cnl (see Section 14.1, page 115),
mpi_cnl (see Section 14.2, page 116), shmem_put_cnl (see Section 14.3,
page 118), and shmem_get_cnl (see Section 14.4, page 120).

Set file permission to executable:

% chmod +x mult_par_cnl

Run the script:

% qsub mult_par_cnl

List the output:

% cat mult_par_cnl.o7231

hello from pe 0 of 2

hello from pe 1 of 2

Application 520255 resources: utime 0, stime 0

My PE: 0 My part: 1683

My PE: 2 My part: 1650

My PE: 1 My part: 1717

PE: 0 Total is: 5050

Application 520256 resources: utime 0, stime 0

PE 0: Test passed.

PE 5: Test passed.

PE 4: Test passed.

PE 3: Test passed.

PE 2: Test passed.

PE 1: Test passed.

Application 520258 exit codes: 64

Application 520258 resources: utime 0, stime 0

PE 0 computedsum= 15.00000

PE 5 computedsum= 15.00000

PE 4 computedsum= 15.00000

PE 3 computedsum= 15.00000

PE 2 computedsum= 15.00000

PE 1 computedsum= 15.00000

Application 520259 resources: utime 0, stime 0

S–2396–21 143

Cray XT™ Programming Environment User’s Guide

14.12 Using aprun Memory Affinity Options

In some cases, remote-NUMA-node memory references can reduce the
performance of Cray XT5 applications. You can use the aprun memory affinity
options to control remote-NUMA-node memory references. For the -S, -sl, and
-sn options, memory allocation is satisfied using local-NUMA-node memory. If
there is not enough NUMA node 0 memory, NUMA node 1 memory may be
used. For the -ss, only local-NUMA-node memory can be allocated.

14.12.1 Using the aprun -S Option

This example runs each PE on a specific NUMA node 0 CPU:

% aprun -n 4 -q ./xthi | sort

PE 0 nid00045 Core affinity = 0

PE 1 nid00045 Core affinity = 1

PE 2 nid00045 Core affinity = 2

PE 3 nid00045 Core affinity = 3

PEs 0-3 cannot access NUMA node 1 memory.

This example runs one PE on each NUMA node of nodes 45 and 70:

% aprun -n 4 -S 1 -q ./xthi | sort

PE 0 nid00045 Core affinity = 0

PE 1 nid00045 Core affinity = 4

PE 2 nid00070 Core affinity = 0

PE 3 nid00070 Core affinity = 4

14.12.2 Using the aprun -sl Option

This example runs all PEs on NUMA node 0:

% aprun -n 4 -sl 0 -q ./xthi | sort

PE 0 nid00045 Core affinity = 0

PE 1 nid00045 Core affinity = 1

PE 2 nid00045 Core affinity = 2

PE 3 nid00045 Core affinity = 3

PEs 0-3 cannot access NUMA node 1 memory.

144 S–2396–21

Example CNL Applications [14]

This example runs all PEs on NUMA node 1:

% aprun -n 4 -sl 1 -q ./xthi | sort

PE 0 nid00045 Core affinity = 4

PE 1 nid00045 Core affinity = 5

PE 2 nid00045 Core affinity = 6

PE 3 nid00045 Core affinity = 7

PEs 4-7 cannot access NUMA node 0 memory.

14.12.3 Using the aprun -sn Option

This example runs four PEs on NUMA node 0 of node 45 and four PEs on
NUMA node 0 of node 70:

% aprun -n 8 -sn 1 -q ./xthi | sort

PE 0 nid00045 Core affinity = 0

PE 1 nid00045 Core affinity = 1

PE 2 nid00045 Core affinity = 2

PE 3 nid00045 Core affinity = 3

PE 4 nid00070 Core affinity = 0

PE 5 nid00070 Core affinity = 1

PE 6 nid00070 Core affinity = 2

PE 7 nid00070 Core affinity = 3

The PEs cannot access NUMA node 1 memory on either node.

14.12.4 Using the aprun -ss Option

When -ss is specified, a PE can allocate only the memory local to its assigned
NUMA node. The default is to allow remote-NUMA-node memory allocation.
For example, by default any PE running on NUMA node 0 can allocate NUMA
node 1 memory (if NUMA node 1 has been reserved for the application).

S–2396–21 145

Cray XT™ Programming Environment User’s Guide

This example runs PEs 0-3 on NUMA node 0 and PEs 4-7 on NUMA node 1. PEs
0-3 cannot allocate NUMA node 1 memory, and PEs 4-7 cannot allocate NUMA
node 0 memory.

% aprun -n 8 -sl 0,1 -ss -q ./xthi | sort

PE 0 nid00056.Core affinity = 0-3

PE 1 nid00056.Core affinity = 0-3

PE 2 nid00056.Core affinity = 0-3

PE 3 nid00056.Core affinity = 0-3

PE 4 nid00056.Core affinity = 4-7

PE 5 nid00056.Core affinity = 4-7

PE 6 nid00056.Core affinity = 4-7

PE 7 nid00056.Core affinity = 4-7

14.13 Using aprun CPU Affinity Options

The following examples show how you can use aprun CPU affinity options to
bind a process to a particular CPU or the CPUs on a NUMA node.

14.13.1 Using the aprun -cc cpu_list Option

This example binds PEs to CPUs 0-4 and 7:

% aprun -n 6 -cc 0-4,7 -q ./xthi | sort

PE 0 nid00045 Core affinity = 0

PE 1 nid00045 Core affinity = 1

PE 2 nid00045 Core affinity = 2

PE 3 nid00045 Core affinity = 3

PE 4 nid00045 Core affinity = 4

PE 5 nid00045 Core affinity = 7

Note: You do not by default have access to both NUMA nodes of Cray XT5
compute nodes. If you requests resources that can be fulfilled by one NUMA
node, your application does not have access to the other NUMA node. For
example, the following command fails because the attempt to bind the PEs
to CPUs 4-7 is illegal.

% aprun -n 4 -cc 4-7 -q ./xthi | sort

[NID 00045] Apid 651253: Affinity failure: all cpu

values out of range

146 S–2396–21

Example CNL Applications [14]

14.13.2 Using the aprun -cc keyword Options

Processes can migrate from one CPU to another on a node. You can use the -cc
option to bind PEs to CPUs. This example uses the -cc cpu (default) option to
bind each PE to a CPU:

% aprun -n 8 -cc cpu -q ./xthi | sort

PE 0 nid00045 Core affinity = 0

PE 1 nid00045 Core affinity = 1

PE 2 nid00045 Core affinity = 2

PE 3 nid00045 Core affinity = 3

PE 4 nid00045 Core affinity = 4

PE 5 nid00045 Core affinity = 5

PE 6 nid00045 Core affinity = 6

PE 7 nid00045 Core affinity = 7

This example uses the -cc numa_node option to bind each PE to the CPUs
within a NUMA node:

% aprun -n 8 -cc numa_node -q ./xthi | sort

PE 0 nid00045 Core affinity = 0-3

PE 1 nid00045 Core affinity = 0-3

PE 2 nid00045 Core affinity = 0-3

PE 3 nid00045 Core affinity = 0-3

PE 4 nid00045 Core affinity = 4-7

PE 5 nid00045 Core affinity = 4-7

PE 6 nid00045 Core affinity = 4-7

PE 7 nid00045 Core affinity = 4-7

14.14 Running Compute Node Commands under CNL

You can use the aprun -b option to run compute node commands.

The following aprun command runs the compute node grep command to find
references to MemTotal in compute node file /proc/meminfo:

% aprun -b grep MemTotal -q /proc/meminfo

MemTotal: 8124872 kB

S–2396–21 147

Cray XT™ Programming Environment User’s Guide

14.15 Using the High-level PAPI Interface under CNL

PAPI provides simple high-level interfaces for instrumenting applications written
in C or Fortran. This example shows the use of the PAPI_start_counters()
and PAPI_stop_counters() functions.

Modules required:

xtpe-target-cnl

xt-papi

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Source of papi_hl_cnl.c:

#include <papi.h>

void main()

{

int retval, Events[2]= {PAPI_TOT_CYC, PAPI_TOT_INS};

long_long values[2];

if (PAPI_start_counters (Events, 2) != PAPI_OK) {

printf("Error starting counters\n");

exit(1);

}

/* Do some computation here... */

if (PAPI_stop_counters (values, 2) != PAPI_OK) {

printf("Error stopping counters\n");

exit(1);

}

printf("PAPI_TOT_CYC = %lld\n", values[0]);

printf("PAPI_TOT_INS = %lld\n", values[1]);

}

Compile papi_hl_cnl.c:

% cc -o papi_hl_cnl papi_hl_cnl.c

148 S–2396–21

Example CNL Applications [14]

Run papi_hl_cnl:

% aprun ./papi_hl_cnl

PAPI_TOT_CYC = 4020

PAPI_TOT_INS = 201

Application 520262 exit codes: 19

Application 520262 resources: utime 0, stime 0

14.16 Using the Low-level PAPI Interface under CNL

PAPI provides an advanced low-level interface for instrumenting applications.
The PAPI library must be initialized before calling any of these functions;
initialization can be done by issuing either a high-level function call or
a call to PAPI_library_init(). This example shows the use of the
PAPI_create_eventset(), PAPI_add_event(), PAPI_start(), and
PAPI_read() functions.

Modules required:

xtpe-target-cnl

xt-papi

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Source of papi_ll_cnl.c:

#include <papi.h>

void main()

{

int EventSet = PAPI_NULL;

long_long values[1];

/* Initialize PAPI library */

if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT) {

printf("Error initializing PAPI library\n");

exit(1);

}

/* Create Event Set */

if (PAPI_create_eventset(&EventSet) != PAPI_OK) {

S–2396–21 149

Cray XT™ Programming Environment User’s Guide

printf("Error creating eventset\n");

exit(1);

}

/* Add Total Instructions Executed to eventset */

if (PAPI_add_event (EventSet, PAPI_TOT_INS) != PAPI_OK) {

printf("Error adding event\n");

exit(1);

}

/* Start counting ... */

if (PAPI_start (EventSet) != PAPI_OK) {

printf("Error starting counts\n");

exit(1);

}

/* Do some computation here...*/

if (PAPI_read (EventSet, values) != PAPI_OK) {

printf("Error stopping counts\n");

exit(1);

}

printf("PAPI_TOT_INS = %lld\n", values[0]);

}

Compile papi_ll_cnl.c:

% cc -o papi_ll_cnl papi_ll_cnl.c

Run papi_ll_cnl:

% aprun ./papi_ll_cnl

PAPI_TOT_INS = 97

Application 520264 exit codes: 18

Application 520264 resources: utime 0, stime 0

14.17 Using CrayPat under CNL

This example shows how to instrument a program, run the instrumented
program, and generate CrayPat reports.

150 S–2396–21

Example CNL Applications [14]

Modules required:

xtpe-target-cnl

xt-craypat

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Source code of pa1_cnl.f90:

program main

include 'mpif.h'

call MPI_Init(ierr) ! Required

call MPI_Comm_rank(MPI_COMM_WORLD,mype,ierr)

call MPI_Comm_size(MPI_COMM_WORLD,npes,ierr)

print *,'hello from pe',mype,' of',npes

do i=1+mype,1000,npes ! Distribute the work

call work(i,mype)

enddo

call MPI_Finalize(ierr) ! Required

end

Source code of pa2_cnl.c:

void work_(int *N, int *MYPE)

{

int n=*N, mype=*MYPE;

if (n == 42) {

printf("PE %d: sizeof(long) = %d\n",mype,sizeof(long));

printf("PE %d: The answer is: %d\n",mype,n);

}

}

Compile pa2_cnl.c and pa1_cnl.f90 and create executable perf_cnl:

% cc -c pa2_cnl.c

% ftn -o perf_cnl pa1_cnl.f90 pa2_cnl.o

S–2396–21 151

Cray XT™ Programming Environment User’s Guide

Run pat_build to generate instrumented program perf_cnl+pat:

% pat_build -u -g mpi perf_cnl perf_cnl+pat

INFO: A trace intercept routine was created for the function 'MAIN_'.

INFO: A trace intercept routine was created for the function 'work_'.

The tracegroup (-g option) is mpi.

Run perf_cnl+pat:

% aprun -n 4 ./perf_cnl+pat | sort

CrayPat/X: Version 4.3.2 Revision 2055 09/08/08 14:21:44

Experiment data directory written:

/lus/nid00011/user1/cnl/fortran/perf_cnl+pat+19779-478tdt

hello from pe 0 of 4

hello from pe 1 of 4

hello from pe 2 of 4

hello from pe 3 of 4

Application 3014795 resources: utime 0, stime 0

PE 1: The answer is: 42

PE 1: sizeof(long) = 8

Note: When executed, the instrumented executable creates directory
progname+pat+PIDkeyletters, where . PID is the process ID that was
assigned to the instrumented program at run time.

Run pat_report to generate reports perf_cnl.rpt1 (using default
pat_report options) and perf_cnl.rpt2 (using the -O calltree option).

% pat_report perf_cnl+pat+19756-478tdt > perf_cnl.rpt1

Data file 4/4: [....................]

% pat_report -O calltree perf_cnl+pat+19756-478tdt > perf_cnl.rpt2

Data file 4/4: [....................]

% pat_report -O calltree -f ap2 perf_cnl+pat+19756-478tdt

Output redirected to: perf_cnl+pat+19756-478tdt.ap2

Note: The -f ap2 option is used to create a *.ap2 file for input to
Cray Apprentice2 (see Section 14.18, page 156).

List perf_cnl.rpt1:

CrayPat/X: Version 4.3.2 Revision 2055 (xf 1985) 09/08/08 14:21:44

Number of PEs (MPI ranks): 4

Number of Threads per PE: 1

152 S–2396–21

Example CNL Applications [14]

Number of Cores per Processor: 2

<snip>

Table 1: Profile by Function Group and Function

Time % | Time |Imb. Time | Imb. | Calls |Experiment=1

| | | Time % | |Group

| | | | | Function

| | | | | PE='HIDE'

100.0% | 0.000494 | -- | -- | 257 |Total

|---

| 99.2% | 0.000490 | -- | -- | 253 |USER

||--

|| 89.8% | 0.000444 | 0.000353 | 59.1% | 1 |MAIN_

|| 7.7% | 0.000038 | 0.000006 | 17.2% | 1 |exit

|===

<snip>

Table 2: Load Balance with MPI Sent Message Stats

Time % | Time | Avg |Experiment=1

| | Sent |Group

| | Msg | PE

| | Size |

100.0% | 0.000582 | -- |Total

|--------------------------------------

| 98.9% | 0.000576 | -- |USER

||-------------------------------------

|| 40.0% | 0.000932 | -- |pe.0

|| 31.8% | 0.000741 | -- |pe.2

|| 14.1% | 0.000328 | -- |pe.1

|| 13.0% | 0.000304 | -- |pe.3

||=====================================

| 1.1% | 0.000006 | -- |MPI

||-------------------------------------

|| 0.3% | 0.000007 | -- |pe.2

|| 0.3% | 0.000007 | -- |pe.0

|| 0.2% | 0.000005 | -- |pe.1

S–2396–21 153

Cray XT™ Programming Environment User’s Guide

|| 0.2% | 0.000005 | -- |pe.3

|======================================

<snip>

Table 5: Program Wall Clock Time, Memory High Water Mark

Process | Process |Experiment=1

Time | HiMem |PE

| (MBytes) |

0.027873 | 82 |Total

|---------------------------------

| 0.028053 | 81.590 |pe.2

| 0.028043 | 81.594 |pe.0

| 0.027961 | 81.574 |pe.3

| 0.027436 | 81.578 |pe.1

|=================================

========= Additional details ============================

Experiment: trace

<snip>

Estimated minimum overhead per call of a traced function,

which was subtracted from the data shown in this report

(for raw data, use the option: -s overhead=include):

Time 0.599 microseconds

Number of traced functions: 98

(To see the list, specify: -s traced_functions=show)

154 S–2396–21

Example CNL Applications [14]

List perf_cnl.rpt2:

CrayPat/X: Version 4.3.2 Revision 2055 (xf 1985) 09/08/08 14:21:44

Number of PEs (MPI ranks): 4

Number of Threads per PE: 1

Number of Cores per Processor: 2

<snip>

Table 1: Function Calltree View

Time % | Time | Calls |Experiment=1

| | |Calltree

| | | PE='HIDE'

100.0% | 0.000536 | 657 |Total

|---------------------------------------

| 91.4% | 0.000490 | 256 |MAIN_

||--------------------------------------

|| 82.7% | 0.000444 | 1 |MAIN_(exclusive)

|| 7.1% | 0.000038 | 1 |exit

|=======================================

========= Additional details ============================

Experiment: trace

<snip>

Estimated minimum overhead per call of a traced function,

which was subtracted from the data shown in this report

(for raw data, use the option: -s overhead=include):

Time 0.599 microseconds

Number of traced functions: 98

(To see the list, specify: -s traced_functions=show)

S–2396–21 155

Cray XT™ Programming Environment User’s Guide

14.18 Using Cray Apprentice2 under CNL

In the CrayPat example (Section 14.17, page 150), we ran the instrumented
program perf_cnl and generated file perf_cnl+pat+19756-478tdt.ap2.

To view this Cray Apprentice2 file, first load the apprentice2 module.

% module load apprentice2

Then launch Cray Apprentice2:

% ap2 perf_cnl+pat+19756-478tdt.ap2

We display the results in call-graph form:

Figure 7. Cray Apprentice2 Display

156 S–2396–21

Example Catamount Applications [15]

This chapter gives examples showing how to compile, link, and run Catamount
applications. Use the module list command to verify that the correct modules
are loaded. If the xtpe-target-cnl module is loaded, use:

% module swap xtpe-target-cnl xtpe-target-catamount

Each following example lists the additional modules that have to be loaded.

15.1 Running a Basic Application under Catamount

This example shows how to use the PGI C compiler to compile an MPI program
and yod to launch the executable.

Modules required:

PrgEnv-pgi

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Create a C program, simple_qk.c:

#include "mpi.h"

int main(int argc, char *argv[])

{

int rank;

int numprocs;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

printf("hello from pe %d of %d\n",rank,numprocs);

MPI_Finalize();

}

Compile the program:

% cc -o simple_qk simple_qk.c

S–2396–21 157

Cray XT™ Programming Environment User’s Guide

Run the program:

% yod -sz 6 simple_qk

hello from pe 0 of 6

hello from pe 3 of 6

hello from pe 5 of 6

hello from pe 4 of 6

hello from pe 2 of 6

hello from pe 1 of 6

15.2 Running an MPI Application under Catamount

This example shows how to compile, link, and run an MPI program. The MPI
program distributes the work represented in a reduction loop, prints the subtotal
for each PE, combines the results from the PEs, and prints the total.

Module required:

xtpe-target-catamount

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

158 S–2396–21

Example Catamount Applications [15]

Create a Fortran program, mpi_qk.f90:

program reduce

include "mpif.h"

integer n, nres, ierr

call MPI_INIT (ierr)

call MPI_COMM_RANK (MPI_COMM_WORLD,mype,ierr)

call MPI_COMM_SIZE (MPI_COMM_WORLD,npes,ierr)

nres = 0

n = 0

do i=mype,100,npes

n = n + i

enddo

print *, 'My PE:', mype, ' My part:',n

call MPI_REDUCE (n,nres,1,MPI_INTEGER,MPI_SUM,0,MPI_COMM_WORLD,ierr)

if (mype == 0) print *,' PE:',mype,'Total is:',nres

call MPI_FINALIZE (ierr)

end

Compile mpi_qk.f90 and create executable mpi_qk:

% ftn -o mpi_qk mpi_qk.f90

Run the program:

% yod -sz 6 mpi_qk

My PE: 0 My part: 816

My PE: 3 My part: 867

My PE: 5 My part: 800

My PE: 4 My part: 884

My PE: 2 My part: 850

My PE: 1 My part: 833

PE: 0 Total is: 5050

S–2396–21 159

Cray XT™ Programming Environment User’s Guide

If desired, you could use this C version of the program:

/* program reduce */

#include <stdio.h>

#include "mpi.h"

int main (int argc, char *argv[])

{

int i, sum, mype, npes, nres, ret;

ret = MPI_Init (&argc, &argv);

ret = MPI_Comm_size (MPI_COMM_WORLD, &npes);

ret = MPI_Comm_rank (MPI_COMM_WORLD, &mype);

nres = 0;

sum = 0;

for (i = mype; i <=100; i += npes) {

sum = sum + i;

}

(void) printf ("My PE:%d My part:%d\n",mype, sum);

ret = MPI_Reduce (&sum,&nres,1,MPI_INTEGER,MPI_SUM,0,MPI_COMM_WORLD);

if (mype == 0)

{

(void) printf ("PE:%d Total is:%d\n",mype, nres);

}

ret = MPI_Finalize ();

}

15.3 Using the Cray shmem_put Function under Catamount

This example shows how to use the shmem_put64() function to copy a
contiguous data object from the local PE to a contiguous data object on a different
PE.

Module required:

xtpe-target-catamount

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

160 S–2396–21

Example Catamount Applications [15]

Source code of C program (shmem_put_qk.c):

/*

* simple put test

*/

#include <stdio.h>

#include <stdlib.h>

#include <mpp/shmem.h>

/* Dimension of source and target of put operations */

#define DIM 1000000

long target[DIM];

long local[DIM];

main(int argc,char **argv)

{

register int i;

int my_partner, my_pe;

/* Prepare resources required for correct functionality

of SHMEM on XT. Alternatively, shmem_init() could

be called. */

start_pes(0);

for (i=0; i<DIM; i++) {

target[i] = 0L;

local[i] = shmem_my_pe() + (i * 10);

}

my_pe = shmem_my_pe();

if(shmem_n_pes()%2) {

if(my_pe == 0) printf("Test needs even number of processes\n");

/* Clean up resources before exit. */

shmem_finalize();

exit(0);

}

shmem_barrier_all();

/* Test has to be run on two procs. */

S–2396–21 161

Cray XT™ Programming Environment User’s Guide

my_partner = my_pe % 2 ? my_pe - 1 : my_pe + 1;

shmem_put64(target,local,DIM,my_partner);

/* Synchronize before verifying results. */

shmem_barrier_all();

/* Check results of put */

for(i=0; i<DIM; i++) {

if(target[i] != (my_partner + (i * 10))) {

fprintf(stderr,"FAIL (1) on PE %d target[%d] = %d (%d)\n",

shmem_my_pe(), i, target[i],my_partner+(i*10));

shmem_finalize();

exit(-1);

}

}

printf(" PE %d: Test passed.\n",my_pe);

/* Clean up resources. */

shmem_finalize();

}

Compile shmem_put_qk.c and create executable shmem_put_qk:

% cc -o shmem_put_qk shmem_put_qk.c

Run shmem_put_qk:

% yod -sz 4 shmem_put_qk

PE 1: Test passed.

PE 0: Test passed.

PE 2: Test passed.

PE 3: Test passed.

15.4 Using the Cray shmem_get Function under Catamount

This example shows how to use the shmem_get function to copy a contiguous
data object from a different PE to a contiguous data object on the local PE.

Note: The Fortran module for Cray SHMEM is not supported. Use the
INCLUDE 'mpp/shmem.fh' statement instead.

162 S–2396–21

Example Catamount Applications [15]

Module required:

xtpe-target-catamount

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Source code of Fortran program (shmem_get_qk.f90):

program reduction

include 'mpp/shmem.fh'

real values, sum

common /c/ values

real work

call start_pes(0)

values=my_pe()

call shmem_barrier_all! Synchronize all PEs

sum = 0.0

do i = 0,num_pes()-1

call shmem_get(work, values, 1, i) ! Get next value

sum = sum + work ! Sum it

enddo

print*, 'PE',my_pe(),' computedsum=',sum

call shmem_barrier_all

call shmem_finalize

end

Compile shmem_get_qk.f90 and create executable shmem2:

% ftn -o shmem_get_qk shmem_get_qk.f90

S–2396–21 163

Cray XT™ Programming Environment User’s Guide

Run shmem_get_qk:

% yod -sz 6 shmem_get_qk

PE 1 computedsum= 15.00000

PE 0 computedsum= 15.00000

PE 2 computedsum= 15.00000

PE 3 computedsum= 15.00000

PE 5 computedsum= 15.00000

PE 4 computedsum= 15.00000

15.5 Running a UPC Application under Catamount

This example shows how to compile and run a C program that includes Unified
Parallel C (UPC) functions.

Modules required:

xtpe-target-catamount

xt-upc

and one of the following:

PrgEnv-upc-pgi

PrgEnv-upc-gnu

Note: UPC source files must have the upc extension.

Source code of program upc_qk.upc:

#include <upc.h>

#include <stdio.h>

int main (int argc, char *argv[])

{

int i;

for (i = 0; i < THREADS; ++i)

{

upc_barrier;

if (i == MYTHREAD)

printf ("Hello world from thread: %d\n", MYTHREAD);

}

return 0;

}

You can use the Berkeley UPC translator or the Intrepid GCCUPC compiler to
compile your program.

164 S–2396–21

Example Catamount Applications [15]

Compile upc_qk.upc using the Berkeley UPC translator:

% upcc -o upc_qk upc_qk.upc

Run upc_qk:

% upcrun -n 2 ./upc_qk

UPCR: UPC thread 0 of 2 on nid00012 (process 0 of 2, pid=1448)

UPCR: UPC thread 1 of 2 on nid00013 (process 1 of 2, pid=1412)

Hello world from thread: 0

Hello world from thread: 1

Application 170078 resources: utime 0, stime 0

To compile upc_cnl.upc using the Intrepid GCCUPC compiler, you need
to have the PrgEnv-upc-gnu module loaded, and you need to include the
-gccupc option on the compiler command line:

% module swap PrgEnv-upc-pgi PrgEnv-upc-gnu

% upcc -o upc_cnl -gccupc upc_cnl.upc

% upcrun -n 2 ./upc_cnl

UPCR: UPC thread 0 of 2 on nid00012 (process 0 of 2, pid=1443)

UPCR: UPC thread 1 of 2 on nid00013 (process 1 of 2, pid=1407)

Hello world from thread: 0

Hello world from thread: 1

Application 170077 resources: utime 0, stime 0

15.6 Using dclock() to Calculate Elapsed Time under Catamount

The following example uses the dclock() function to calculate the elapsed time
of a program segment.

Module required:

xtpe-target-catamount

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

S–2396–21 165

Cray XT™ Programming Environment User’s Guide

Source code of dclock_qk.c:

#include <catamount/dclock.h>

main()

{

double start_time, end_time, elapsed_time;

start_time = dclock();

sleep(5);

end_time = dclock();

elapsed_time = end_time - start_time;

printf("\nElapsed time = %f\n",elapsed_time);

}

Compile dclock_qk.c and create executable dclock:

% cc -o dclock_qk dclock_qk.c

Run dclock_qk:

% yod -sz 1 dclock_qk

Elapsed time = 5.000007

15.7 Specifying a Buffer for I/O under Catamount

An important consideration for C++ I/O in Catamount applications is that the
endl function causes the data in the buffer to be flushed. In most cases, the
endl function is used to output a new line, so an endl function usually can be
replaced in the code by specifying a newline character. In this example, endl is
redefined to be '\n'. If a flush is needed, you can include a call to the flush()
member function.

Module required:

xtpe-target-catamount

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

166 S–2396–21

Example Catamount Applications [15]

Source code of io1_qk.C

#include <iostream>

#include <catamount/dclock.h>

using namespace std;

#define endl '\n'

int main(int argc, char ** argv) {

double start, end;

char *buffer;

buffer = (char *)malloc(sizeof(char)*12000);

cout.rdbuf()->pubsetbuf(buffer,12000);

start = dclock();

for (int i = 0; i < 1000; i++) {

cout << "line: " << i << endl;

}

end = dclock();

cout.flush(); // Force a flush of data (not necessary)

cerr << "Time to write using buffer = " << end - start << endl;

return 0;

}

Compile io1_qk.C:

% CC -o io1_qk io1_qk.C

Run io1_qk, directing output to file tmp:

% yod io1_qk > tmp

% cat tmp

Time to write using buffer = 0.000599465

15.8 Changing the Default Buffer Size for I/O-to-file Streams under Catamount

This example uses a default buffer and a modified buffer to write data and prints
the time-to-write value for each process.

S–2396–21 167

Cray XT™ Programming Environment User’s Guide

Module required:

xtpe-target-catamount

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Source code of io2_qk.C

#include <iostream>

#include <fstream>

#include <catamount/dclock.h>

using namespace std;

#define endl '\n'

char data[] = " 2345678901234567890123456789 \

0123456789012345678901234567890";

int main(int argc, char ** argv) {

double start, end;

char *buffer;

// Use default buffer

ofstream data1("output1");

start = dclock();

for (int i = 0; i < 10000; i++) {

data1 << "line: " << i << data << endl;

}

end = dclock();

data1.flush(); // Force a flush of data (not necessary)

cerr << "Time to write using default buffer = " \

<< end - start << endl ;

// Set up a buffer

ofstream data2("output2");

buffer = (char *)malloc(sizeof(char)*500000);

data2.rdbuf()->pubsetbuf(buffer,500000);

start = dclock();

for (int i = 0; i < 10000; i++) {

data2 << "line: " << i << data << endl;

}

end = dclock();

168 S–2396–21

Example Catamount Applications [15]

data2.flush(); // Force a flush of data (not necessary)

cerr << "Time to write with program buffer = " \

<< end - start << endl ;

return 0;

}

Compile io2_qk.C:

% CC -o io2_qk io2_qk.C

Run io2_qk:

% yod -sz 1 io2_qk

Time to write using default buffer = 0.012211

Time to write with program buffer = 0.0211126

15.9 Improving the Performance of stdout under Catamount

The following program improves the performance of the printf() loop by
using setvbuf() with the mode of _IOFBF (fully buffered) and a buffer size
of 1024:

Module required:

xtpe-target-catamount

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

S–2396–21 169

Cray XT™ Programming Environment User’s Guide

Source code of C program (setvbuf_qk.c):

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

int i,bsize,count;

char *buf;

i=1;

bsize = (i<argc) ? atoi(argv[i++]) : 1024;

count = (i<argc) ? atoi(argv[i++]) : 1024;

if(bsize > 0) {

buf = malloc(bsize);

setvbuf(stdout, buf, _IOFBF, bsize);

}

for(i=0;i<count;i++) {

printf("this is line %5d\n",i);

}

exit(0);

}

Compile setvbuf_qk.c and create executable setvbuf_qk:

% cc -o setvbuf_qk setvbuf_qk.c

Run setvbuf_qk:

% yod -sz 1 setvbuf_qk > tmp

% more tmp

this is line 0

this is line 1

this is line 2

this is line 3

...

this is line 1020

this is line 1021

this is line 1022

this is line 1023

170 S–2396–21

Example Catamount Applications [15]

15.10 Running a PBS Professional Job Script under Catamount

This example of a job script, pbs_script_qk, requests four processors to run
application mpi_qk (see Section 15.2, page 158).

Modules required:

xtpe-target-catamount

pbs

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Do not load the xt-pbs module. Unload it if it has been loaded.

Create pbs_script_qk.

% cat pbs_script_qk

#!/bin/bash

#

Define the destination of this job

as the queue named "workq":

#PBS -q workq

#PBS -l mppwidth=4

Tell PBS Pro to keep both standard output and

standard error on the execution host:

#PBS -k eo

yod -sz 4 mpi_qk

exit 0

Set permissions to executable:

% chmod +x pbs_script_qk

Submit the job:

% qsub pbs_script_qk

S–2396–21 171

Cray XT™ Programming Environment User’s Guide

The qsub command produces a batch job log file with output from program1.
The job log file has the form pbs_script_qk.onnnnnn.

% cat pbs_script_qk.o278419

My PE: 0 My part: 1300

My PE: 2 My part: 1250

My PE: 1 My part: 1225

My PE: 3 My part: 1275

PE: 0 Total is: 5050

15.11 Running Multiple Sequential Applications under Catamount

To run multiple sequential applications, the number of processors you specify as
an argument to qsub must be equal to or greater than the largest number of
processors required by an invocation of yod in your script. For example, in job
script mult_seq_qk, the -l mppwidth is 4 because the largest yod sz value
is 4.

Modules required:

xtpe-target-catamount

pbs

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Note: Do not load the xt-pbs module. Unload it if it has been loaded.

172 S–2396–21

Example Catamount Applications [15]

Create script mult_seq_qk:

#!/bin/bash

#

Define the destination of this job

as the queue named "workq":

#PBS -q workq

#PBS -l mppwidth=4

Tell PBS Pro to keep both standard output and

standard error on the execution host:

#PBS -k eo

yod -sz 2 simple_qk

yod -sz 3 mpi_qk

yod -sz 4 shmem_put_qk

yod -sz 2 shmem_get_qk

exit 0

The script launches applications simple_qk (see Section 15.1, page 157), mpi_qk
(see Section 15.2, page 158), shmem_put_qk (see Section 15.3, page 160), and
shmem_get_qk (see Section 15.4, page 162).

Set file permissions to executable:

% chmod +x mult_seq_qk

Run the script:

% qsub mult_seq_qk

List the output:

% more mult_seq_qk.o278425

hello from pe 1 of 2

hello from pe 0 of 2

My PE: 0 My part: 1683

My PE: 2 My part: 1650

My PE: 1 My part: 1717

PE: 0 Total is: 5050

PE 1: Test passed.

PE 0: Test passed.

PE 2: Test passed.

PE 3: Test passed.

PE 0 computedsum= 1.000000

PE 1 computedsum= 1.000000

S–2396–21 173

Cray XT™ Programming Environment User’s Guide

15.12 Running Multiple Parallel Applications under Catamount

If you are running multiple parallel applications, the number of processors must
be equal to or greater than the total number of processors specified by calls to
yod. For example, in job script mult_par_qk, the -l mppwidth value is 11
because the total of the yod sz values is 11.

Modules required:

xtpe-target-catamount

pbs

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Do not load the xt-pbs module. Unload it if it has been loaded.

The following example shows how to use a job script, the qsub command, and
yod commands to run a job that launches four applications.

Create script mult_par_qk:

#!/bin/bash

#

Define the destination of this job

as the queue named "workq":

#PBS -q workq

#PBS -l mppwidth=11

Tell PBS Pro to keep both standard output and

standard error on the execution host:

#PBS -k eo

yod -sz 2 simple_qk &

yod -sz 3 mpi_qk &

yod -sz 4 shmem_put_qk &

yod -sz 2 shmem_get_qk &

exit 0

The script launches applications simple_qk (see Section 15.1, page 157), mpi_qk
(see Section 15.2, page 158), shmem_put_qk (see Section 15.3, page 160), and
shmem_get_qk (see Section 15.4, page 162).

Set file permissions to executable:

% chmod +x mult_par_qk

174 S–2396–21

Example Catamount Applications [15]

Run the script:

% qsub mult_par_qk

List the output:

% cat mult_par_qk.o13422

hello from pe 0 of 2

hello from pe 1 of 2

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

PE 0 : The answer is: -1184

PE 0: Test passed.

PE 3: Test passed.

PE 2: Test passed.

PE 1: Test passed.

PE 0 computedsum= 1.000000

PE 1 computedsum= 1.000000

15.13 Using xtgdb under Catamount

This example uses the GNU debugger, xtgdb, to debug a program.

Modules required:

xtpe-target-catamount

xtgdb

PrgEnv-gnu

Compile program hi_qk.c:

% cc -g hi_qk.c

Initiate a PBS Professional interactive session:

% qsub -I

S–2396–21 175

Cray XT™ Programming Environment User’s Guide

Run xtgdb:

% xtgdb yod a.out

Debugging a.out

Target port is 33381

Please wait while connecting to catamount...

target remote :33381

Remote debugging using :33381

0x0000000000200001 in _start ()

Set breakpoints, resume execution, and quit the gdb session:

(gdb) b main

Breakpoint 3 at 0x205674: file hi.c, line 3.

(gdb) c

Continuing.

Breakpoint 3, main () at hi.c:3

3 printf("hello.c\n");

(gdb) c

Continuing.

hello.c

Program exited with code 0377.

(gdb) quit

Done

15.14 Using the High-level PAPI Interface under Catamount

PAPI provides simple high-level interfaces for instrumenting applications written
in C or Fortran. This example shows the use of the PAPI_start_counters()
and PAPI_stop_counters() functions.

176 S–2396–21

Example Catamount Applications [15]

Modules required:

xtpe-target-catamount

xt-papi

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Source code of papi_hl_qk.c:

#include <papi.h>

void main()

{

int retval, Events[2]= {PAPI_TOT_CYC, PAPI_TOT_INS};

long_long values[2];

if (PAPI_start_counters (Events, 2) != PAPI_OK) {

printf("Error starting counters\n");

exit(1);

}

/* Do some computation here... */

if (PAPI_stop_counters (values, 2) != PAPI_OK) {

printf("Error stopping counters\n");

exit(1);

}

printf("PAPI_TOT_CYC = %lld\n", values[0]);

printf("PAPI_TOT_INS = %lld\n", values[1]);

}

Compile papi_hl_qk.c:

% cc -o papi_hl_qk papi_hl_qk.c

Run papi_hl_qk:

% yod papi_hl_qk

PAPI_TOT_CYC = 2816

PAPI_TOT_INS = 277

S–2396–21 177

Cray XT™ Programming Environment User’s Guide

15.15 Using the Low-level PAPI Interface under Catamount

PAPI provides an advanced low-level interface for instrumenting applications.
The PAPI library must be initialized before calling any of these functions;
initialization can be done by issuing either a high-level function call or
a call to PAPI_library_init(). This example shows the use of the
PAPI_create_eventset(), PAPI_add_event()), PAPI_start(), and
PAPI_read() functions.

Modules required:

xtpe-target-catamount

xt-papi

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Source code of papi_ll_qk.c:

#include <papi.h>

void main()

{

int EventSet = PAPI_NULL;

long_long values[1];

/* Initialize PAPI library */

if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT) {

printf("Error initializing PAPI library\n");

exit(1);

}

/* Create Event Set */

if (PAPI_create_eventset(&EventSet) != PAPI_OK) {

printf("Error creating eventset\n");

exit(1);

}

/* Add Total Instructions Executed to eventset */

if (PAPI_add_event (EventSet, PAPI_TOT_INS) != PAPI_OK) {

printf("Error adding event\n");

exit(1);

}

178 S–2396–21

Example Catamount Applications [15]

/* Start counting ... */

if (PAPI_start (EventSet) != PAPI_OK) {

printf("Error starting counts\n");

exit(1);

}

/* Do some computation here...*/

if (PAPI_read (EventSet, values) != PAPI_OK) {

printf("Error stopping counts\n");

exit(1);

}

printf("PAPI_TOT_INS = %lld\n", values[0]);

}

Compile papi_ll_qk.c:

% cc -o papi_ll_qk papi_ll_qk.c

Run papi_ll_qk:

% yod papi_ll_qk

PAPI_TOT_INS = 170

15.16 Using CrayPat under Catamount

This example shows how to instrument a program, run the instrumented
program, and generate CrayPat reports.

Modules required:

xtpe-target-catamount

xt-craypat

and one of the following:

PrgEnv-pgi

PrgEnv-gnu

PrgEnv-pathscale

Compile the sample program pa1_qk.f90 and the routine it calls, pa2_qk.c.

Source code of pa1_qk.f90:

program main

S–2396–21 179

Cray XT™ Programming Environment User’s Guide

include 'mpif.h'

call MPI_Init(ierr) ! Required

call MPI_Comm_rank(MPI_COMM_WORLD,mype,ierr)

call MPI_Comm_size(MPI_COMM_WORLD,npes,ierr)

print *,'hello from pe',mype,' of',npes

do i=1+mype,1000,npes ! Distribute the work

call work(i,mype)

enddo

call MPI_Finalize(ierr) ! Required

end

Source code of pa2_qk.c:

void work_(int *N, int *MYPE)

{

int n=*N, mype=*MYPE;

if (n == 42) {

printf("PE %d: sizeof(long) = %d\n",mype,sizeof(long));

printf("PE %d: The answer is: %d\n",mype,n);

}

}

Compile pa1_qk.f90 and pa2_qk.c and create executable pa_qk:

% cc -c pa2_qk.c

% ftn -o pa_qk pa1_qk.f90 pa2_qk.o

Run pat_build to generate instrumented program pa_qk+pat:

% pat_build -u -g mpi pa_qk pa_qk+pat

INFO: A trace intercept routine was created for the function 'MAIN_'.

INFO: A trace intercept routine was created for

the function 'work_'.

The tracegroup (-g option) is mpi.

180 S–2396–21

Example Catamount Applications [15]

Run pa_qk+pat:

% yod -sz 4 pa_qk+pat

CrayPat/X: Version 4.2 Revision 1640 04/22/08 16:22:24

hello from pe 1 of 4

hello from pe 3 of 4

hello from pe 2 of 4

hello from pe 0 of 4

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

Experiment data file written:

/lus/nid00007/user1/catamount/fortran/pa_qk+pat+18-16td.xf

Note: When executed, the instrumented executable creates directory
progname+pat+PIDkeyletters that contains one or more data files with
a .xf suffix. PID is the process ID that was assigned to the instrumented
program at run time.

Run pat_report to generate reports pa_qk.rpt1 (using default pat_report
options) and pa_qk.rpt2 (using the -O calltree option).

% pat_report pa_qk+pat+87td.xf > pa_qk.rpt1

pat_report: Creating file: pa_qk+pat+18-16td.ap2

Data file 1/1: [....................]

% pat_report -O calltree pa_qk+pat+87td.xf > pa_qk.rpt2

pat_report: Using existing file: pa_qk+pat+18-16td.ap2

Data file 1/1: [....................]

List pa_qk.rpt1:

CrayPat/X: Version 4.2 Revision 1640 (xf 1609) 04/22/08 16:22:24

Experiment: trace

Experiment data file:

/lus/nid00007/user1/catamount/fortran/pa_qk+pat+18-16td.xf (RTS)

Current path to data file:

/lus/nid00007/user1/catamount/fortran/pa_qk+pat+18-16td.ap2 (RTS)

Original program: /lus/nid00007/user1/catamount/fortran/pa_qk

Instrumented with: pat_build -u -g mpi pa_qk pa_qk+pat

Instrumented program: /lus/nid00007/user1/catamount/fortran/pa_qk+pat

S–2396–21 181

Cray XT™ Programming Environment User’s Guide

Program invocation: pa_qk+pat

Number of PEs: 4

Number of Threads per PE: 1

Number of Cores per Processor: 1

Exit Status: 0 PEs: 0-3

Runtime environment variables:

MPICHBASEDIR=/opt/xt-mpt/2.1.12/mpich2-64

MPICH_DIR=/opt/xt-mpt/2.1.12/mpich2-64/P2

MPICH_DIR_FTN_DEFAULT64=/opt/xt-mpt/2.1.12/mpich2-64/P2W

Report time environment variables:

CRAYPAT_ROOT=/opt/xt-tools/craypat/4.2/v23/cpatx

<snip>

Estimated minimum overhead per call of a traced function,

which was subtracted from the data shown in this report

(for raw data, use the option: -s overhead=include):

Time 0.710 microseconds

Number of traced functions: 54

(To see the list, specify: -s traced_functions=show)

<snip>

Table 1: Profile by Function Group and Function

Time % | Time |Imb. Time | Imb. | Calls |Group

| | | Time % | | Function

| | | | | PE='HIDE'

100.0% | 0.000417 | -- | -- | 257 |Total

|--

| 99.6% | 0.000415 | -- | -- | 253 |USER

||---

|| 76.0% | 0.000317 | 0.000060 | 21.2% | 1 |MAIN_

|| 18.1% | 0.000076 | 0.000209 | 97.9% | 250 |work_

|| 5.2% | 0.000022 | 0.000000 | 1.8% | 1 |exit

|==

<snip>

Table 2: Heap Usage at Start and End of Main Program

182 S–2396–21

Example Catamount Applications [15]

MB Heap | MB Heap | Heap | Max Free |PE

Used at | Free at | Not |Object at |

Start | Start | Freed | End |

| | MB | |

79.953 | 1854.046 | 12.104 | 1841.940 |Total

|---

| 79.970 | 1854.030 | 12.100 | 1841.928 |pe.0

| 79.948 | 1854.052 | 12.106 | 1841.943 |pe.1

| 79.948 | 1854.052 | 12.104 | 1841.946 |pe.3

| 79.948 | 1854.052 | 12.106 | 1841.943 |pe.2

|===

<snip>

Table 3: Program Wall Clock Time

Process |PE

Time |

0.261440 |Total

|------------

| 0.285436 |pe.1

| 0.269482 |pe.0

| 0.253405 |pe.2

| 0.237437 |pe.3

|============

List pa_qk.rpt2:

CrayPat/X: Version 4.2 Revision 1640 (xf 1609) 04/22/08 16:22:24

Experiment: trace

Experiment data file:

/lus/nid00007/user1/catamount/fortran/pa_qk+pat+18-16td.xf (RTS)

Current path to data file:

/lus/nid00007/user1/catamount/fortran/pa_qk+pat+18-16td.ap2 (RTS)

Original program: /lus/nid00007/user1/catamount/fortran/pa_qk

Instrumented with: pat_build -u -g mpi pa_qk pa_qk+pat

Instrumented program: /lus/nid00007/user1/catamount/fortran/pa_qk+pat

S–2396–21 183

Cray XT™ Programming Environment User’s Guide

Program invocation: pa_qk+pat

Number of PEs: 4

Number of Threads per PE: 1

Number of Cores per Processor: 1

Exit Status: 0 PEs: 0-3

Runtime environment variables:

MPICHBASEDIR=/opt/xt-mpt/2.1.12/mpich2-64

MPICH_DIR=/opt/xt-mpt/2.1.12/mpich2-64/P2

MPICH_DIR_FTN_DEFAULT64=/opt/xt-mpt/2.1.12/mpich2-64/P2W

Report time environment variables:

CRAYPAT_ROOT=/opt/xt-tools/craypat/4.2/v23/cpatx

<snip>

Estimated minimum overhead per call of a traced function,

which was subtracted from the data shown in this report

(for raw data, use the option: -s overhead=include):

Time 0.710 microseconds

Number of traced functions: 54

(To see the list, specify: -s traced_functions=show)

<snip>

Table 1: Function Calltree View

Time % | Time | Calls |Calltree

Percentages at each level are of the Total for the program.

(For percentages relative to next level up, specify:

-s percent=r[elative])

Table 1: Function Calltree View

Time % | Time | Calls |Calltree

| | | PE='HIDE'

100.0% | 0.000437 | 657 |Total

|-------------------------------------

| 95.5% | 0.000417 | 257 |main

184 S–2396–21

Example Catamount Applications [15]

||------------------------------------

|| 90.2% | 0.000394 | 255 |MAIN_

|||-----------------------------------

3|| 72.5% | 0.000317 | 1 |MAIN_(exclusive)

3|| 17.3% | 0.000076 | 250 |work_

|||===================================

|| 5.0% | 0.000022 | 1 |exit

||====================================

| 3.1% | 0.000014 | 200 |__do_global_ctors

| 1.5% | 0.000006 | 200 |exit

|=====================================

S–2396–21 185

Cray XT™ Programming Environment User’s Guide

186 S–2396–21

glibc Functions Supported in CNL [A]

The glibc functions and system calls supported in CNL are listed in Table 8. For
further information, see the man pages.

Note: Some fcntl() commands are not supported for applications that use
Lustre. The supported commands are:

• F_GETFL

• F_SETFL

• F_GETLK

• F_SETLK

• F_SETLKW64

• F_SETLKW

• F_SETLK64

Also, asynchronous I/O (aio) calls are not supported for applications that use
Lustre.

Table 8. Supported glibc Functions for CNL

a64l abort abs access

addmntent alarm alphasort argz_add

argz_add_sep argz_append argz_count argz_create

argz_create_sep argz_delete argz_extract argz_insert

argz_next argz_replace argz_stringify asctime

asctime_r asprintf atexit atof

atoi atol atoll basename

bcmp bcopy bind_textdomain_codeset bindtextdomain

bsearch btowc bzero calloc

catclose catgets catopen cbc_crypt

chdir chmod chown clearenv

clearerr clearerr_unlocked close closedir

S–2396–21 187

Cray XT™ Programming Environment User’s Guide

confstr copysign copysignf copysignl

creat ctime ctime_r daemon

daylight dcgettext dcngettext des_setparity

dgettext difftime dirfd dirname

div dngettext dprintf drand48

dup dup2 dysize ecb_crypt

ecvt ecvt_r endfsent endmntent

endttyent endusershell envz_add envz_entry

envz_get envz_merge envz_remove envz_strip

erand48 err errx exit

fchmod fchown fclose fcloseall

fcntl fcvt fcvt_r fdatasync

fdopen feof feof_unlocked ferror

ferror_unlocked fflush fflush_unlocked ffs

ffsl ffsll fgetc fgetc_unlocked

fgetgrent fgetpos fgetpwent fgets

fgets_unlocked fgetwc fgetwc_unlocked fgetws

fgetws_unlocked fileno fileno_unlocked finite

flock

flockfile fnmatch fopen fprintf

fputc fputc_unlocked fputs fputs_unlocked

fputwc fputwc_unlocked fputws fputws_unlocked

fread fread_unlocked free freopen

frexp fscanf fseek fseeko

fsetpos fstat fsync ftell

ftello ftime ftok ftruncate

ftrylockfile funlockfile fwide fwprintf

fwrite fwrite_unlocked gcvt get_current_dir_name

getc getc_unlocked getchar getchar_unlocked

getcwd getdate getdate_r getdelim

188 S–2396–21

glibc Functions Supported in CNL [A]

getdirentries getdomainname getegid getenv

geteuid getfsent getfsfile getfsspec

getgid gethostname getline getlogin

getlogin_r getmntent getopt getopt_long

getopt_long_only getpagesize getpass getpid

getprotoent getprotobyname getprotobynumber

getrlimit getrusage gettext gettimeofday

getttyent getttynam getuid getusershell

getw getwc getwc_unlocked getwchar

getwchar_unlocked gmtime gmtime_r gsignal

hasmntopt hcreate hcreate_r hdestroy

hsearch iconv iconv_close iconv_open

imaxabs index initstate insque

ioctl isalnum isalpha isascii

isblank iscntrl isdigit isgraph

isinf islower isnan isprint

ispunct isspace isupper iswalnum

iswalpha iswblank iswcntrl iswctype

iswdigit iswgraph iswlower iswprint

iswpunct iswspace iswupper iswxdigit

isxdigit jrand48 kill l64a

labs lcong48 ldexp lfind

link llabs localeconv localtime

localtime_r lockf longjmp lrand48

lsearch lseek lstat malloc

mblen mbrlen mbrtowc mbsinit

mbsnrtowcs mbsrtowcs mbstowcs mbtowc

memccpy memchr memcmp memcpy

memfrob memmem memmove memrchr

memset mkdir mkdtemp mknod

S–2396–21 189

Cray XT™ Programming Environment User’s Guide

mkstemp mktime modf modff

modfl mrand48 nanosleep ngettext

nl_langinfo nrand48 on_exit open

opendir passwd2des pclose perror

pread printf psignal putc

putc_unlocked putchar putchar_unlocked putenv

putpwent puts putw putwc

putwc_unlocked putwchar putwchar_unlocked pwrite

qecvt qecvt_r qfcvt qfcvt_r

qgcvt qsort raise rand

random re_comp re_exec read

readdir readlink readv realloc

realpath regcomp regerror regexec

regfree registerrpc remove remque

rename rewind rewinddir rindex

rmdir scandir scanf seed48

seekdir setbuf setbuffer setegid

setenv seteuid setfsent setgid

setitimer setjmp setlinebuf setlocale

setlogmask setmntent setrlimit setstate

setttyent setuid setusershell setvbuf

sigaction sigaddset sigdelset

sigemptyset sigfillset sigismember siglongjmp

signal sigpending sigprocmask sigsuspend

sleep snprintf sprintf srand

srand48 srandom sscanf ssignal

stat stpcpy stpncpy strcasecmp

strcat strchr strcmp strcoll

strcpy strcspn strdup strerror

strerror_r strfmon strfry strftime

190 S–2396–21

glibc Functions Supported in CNL [A]

strlen strncasecmp strncat strncmp

strncpy strndup strnlen strpbrk

strptime strrchr strsep strsignal

strspn strstr strtod strtof

strtok strtok_r strtol strtold

strtoll strtoq strtoul strtoull

strtouq strverscmp strxfrm svcfd_create

swab swprintf symlink syscall

sysconf tdelete telldir textdomain

tfind time timegm timelocal

timezone tmpfile toascii tolower

toupper towctrans towlower towupper

truncate tsearch ttyslot twalk

tzname tzset umask umount

uname ungetc ungetwc unlink

unsetenv usleep utime vasprintf

vdprintf verr verrx versionsort

vfork vfprintf vfscanf vfwprintf

vprintf vscanf vsnprintf vsprintf

vsscanf vswprintf vwarn vwarnx

vwprintf warn warnx wcpcpy

wcpncpy wcrtomb wcscasecmp wcscat

wcschr wcscmp wcscpy wcscspn

wcsdup wcslen wcsncasecmp wcsncat

wcsncmp wcsncpy wcsnlen wcsnrtombs

wcspbrk wcsrchr wcsrtombs wcsspn

wcsstr wcstok wcstombs wcswidth

wctob wctomb wctrans wctype

wcwidth wmemchr wmemcmp wmemcpy

S–2396–21 191

Cray XT™ Programming Environment User’s Guide

wmemmove wmemset wprintf write

writev xdecrypt xencrypt

192 S–2396–21

glibc Functions Supported in Catamount [B]

The Catamount port of glibc supports the functions listed in Table 9. For further
information, see the man pages.

Note: Some fcntl() commands are not supported for applications that use
Lustre. The supported commands are:

• F_GETFL

• F_SETFL

• F_GETLK

• F_SETLK

• F_SETLKW64

• F_SETLKW

• F_SETLK64

The Cray XT system supports two implementations of malloc() for compute
nodes running Catamount: GNU malloc and Catamount malloc. If your code
makes generous use of malloc(), alloc(), realloc(), or automatic arrays,
you may notice improvements in scaling by loading the GNU malloc module
and relinking.

To use GNU malloc, load the gmalloc module:

% module load gmalloc

Entry points in libgmalloc.a (GNU malloc) are referenced before those in
libc.a (Catamount malloc).

Table 9. Supported glibc Functions for Catamount

a64l abort abs access

addmntent alarm alphasort argz_add

argz_add_sep argz_append argz_count argz_create

argz_create_sep argz_delete argz_extract argz_insert

argz_next argz_replace argz_stringify asctime

S–2396–21 193

Cray XT™ Programming Environment User’s Guide

asctime_r asprintf atexit atof

atoi atol atoll basename

bcmp bcopy bind_textdomain_codeset bindtextdomain

bsearch btowc bzero calloc

catclose catgets catopen cbc_crypt

chdir chmod chown clearenv

clearerr clearerr_unlocked close closedir

confstr copysign copysignf copysignl

creat ctime ctime_r daemon

daylight dcgettext dcngettext des_setparity

dgettext difftime dirfd dirname

div dngettext dprintf drand48

dup dup2 dysize ecb_crypt

ecvt ecvt_r endfsent endmntent

endttyent endusershell envz_add envz_entry

envz_get envz_merge envz_remove envz_strip

erand48 err errx exit

fchmod fchown fclose fcloseall

fcntl fcvt fcvt_r fdatasync

fdopen feof feof_unlocked ferror

ferror_unlocked fflush fflush_unlocked ffs

ffsl ffsll fgetc fgetc_unlocked

fgetgrent fgetpos fgetpwent fgets

fgets_unlocked fgetwc fgetwc_unlocked fgetws

fgetws_unlocked fileno fileno_unlocked finite

flockfile fnmatch fopen fprintf

fputc fputc_unlocked fputs fputs_unlocked

fputwc fputwc_unlocked fputws fputws_unlocked

fread fread_unlocked free freopen

frexp fscanf fseek fseeko

194 S–2396–21

glibc Functions Supported in Catamount [B]

fsetpos fstat fsync ftell

ftello ftime ftok ftruncate

ftrylockfile funlockfile fwide fwprintf

fwrite fwrite_unlocked gcvt get_current_dir_name

getc getc_unlocked getchar getchar_unlocked

getcwd getdate getdate_r getdelim

getdirentries getdomainname getegid getenv

geteuid getfsent getfsfile getfsspec

getgid gethostname getline getlogin

getlogin_r getmntent getopt getopt_long

getopt_long_only getpagesize getpass getpid

getrlimit getrusage gettext gettimeofday

getttyent getttynam getuid getusershell

getw getwc getwc_unlocked getwchar

getwchar_unlocked gmtime gmtime_r gsignal

hasmntopt hcreate hcreate_r hdestroy

hsearch iconv iconv_close iconv_open

imaxabs index initstate insque

ioctl isalnum isalpha isascii

isblank iscntrl isdigit isgraph

isinf islower isnan isprint

ispunct isspace isupper iswalnum

iswalpha iswblank iswcntrl iswctype

iswdigit iswgraph iswlower iswprint

iswpunct iswspace iswupper iswxdigit

isxdigit jrand48 kill l64a

labs lcong48 ldexp lfind

link llabs localeconv localtime

localtime_r lockf longjmp lrand48

lsearch lseek lstat malloc

S–2396–21 195

Cray XT™ Programming Environment User’s Guide

mblen mbrlen mbrtowc mbsinit

mbsnrtowcs mbsrtowcs mbstowcs mbtowc

memccpy memchr memcmp memcpy

memfrob memmem memmove memrchr

memset mkdir mkdtemp mknod

mkstemp mktime modf modff

modfl mrand48 nanosleep ngettext

nl_langinfo nrand48 on_exit open

opendir passwd2des pclose perror

pread printf psignal putc

putc_unlocked putchar putchar_unlocked putenv

putpwent puts putw putwc

putwc_unlocked putwchar putwchar_unlocked pwrite

qecvt qecvt_r qfcvt qfcvt_r

qgcvt qsort raise rand

random re_comp re_exec read

readdir readlink readv realloc

realpath regcomp regerror regexec

regfree registerrpc remove remque

rename rewind rewinddir rindex

rmdir scandir scanf seed48

seekdir setbuf setbuffer setegid

setenv seteuid setfsent setgid

setitimer setjmp setlinebuf setlocale

setlogmask setmntent setrlimit setstate

setttyent setuid setusershell setvbuf

sigaction sigaddset sigdelset

sigemptyset sigfillset sigismember siglongjmp

signal sigpending sigprocmask sigsuspend

sleep snprintf sprintf srand

196 S–2396–21

glibc Functions Supported in Catamount [B]

srand48 srandom sscanf ssignal

stat stpcpy stpncpy strcasecmp

strcat strchr strcmp strcoll

strcpy strcspn strdup strerror

strerror_r strfmon strfry strftime

strlen strncasecmp strncat strncmp

strncpy strndup strnlen strpbrk

strptime strrchr strsep strsignal

strspn strstr strtod strtof

strtok strtok_r strtol strtold

strtoll strtoq strtoul strtoull

strtouq strverscmp strxfrm svcfd_create

swab swprintf symlink syscall

sysconf tdelete telldir textdomain

tfind time timegm timelocal

timezone tmpfile toascii tolower

toupper towctrans towlower towupper

truncate tsearch ttyslot twalk

tzname tzset umask umount

uname ungetc ungetwc unlink

unsetenv usleep utime vasprintf

vdprintf verr verrx versionsort

vfork vfprintf vfscanf vfwprintf

vprintf vscanf vsnprintf vsprintf

vsscanf vswprintf vwarn vwarnx

vwprintf warn warnx wcpcpy

wcpncpy wcrtomb wcscasecmp wcscat

wcschr wcscmp wcscpy wcscspn

wcsdup wcslen wcsncasecmp wcsncat

wcsncmp wcsncpy wcsnlen wcsnrtombs

S–2396–21 197

Cray XT™ Programming Environment User’s Guide

wcspbrk wcsrchr wcsrtombs wcsspn

wcsstr wcstok wcstombs wcswidth

wctob wctomb wctrans wctype

wcwidth wmemchr wmemcmp wmemcpy

wmemmove wmemset wprintf write

writev xdecrypt xencrypt

198 S–2396–21

PAPI Hardware Counter Presets [C]

Table 10 describes the hardware counter presets that are available on the Cray XT
system. Use these presets to construct an event set as described in Section 12.1.2,
page 104.

Table 10. PAPI Presets

Name

Supported
on
Cray XT

Derived
from
multiple
counters? Description

PAPI_L1_DCM Yes No Level 1 data cache misses

PAPI_L1_ICM Yes No Level 1 instruction cache misses

PAPI_L2_DCM Yes No Level 2 data cache misses

PAPI_L2_ICM Yes No Level 2 instruction cache misses

PAPI_L3_DCM No for
single-
and
dual-core;
YES for
quad-core

No Level 3 data cache misses

PAPI_L3_ICM No for
single-
and
dual-core;
YES for
quad-core

No Level 3 instruction cache misses

PAPI_L1_TCM Yes Yes Level 1 cache misses

PAPI_L2_TCM Yes No Level 2 cache misses

PAPI_L3_TCM No for
single-
and
dual-core;
YES for
quad-core

No Level 3 cache misses

S–2396–21 199

Cray XT™ Programming Environment User’s Guide

Name

Supported
on
Cray XT

Derived
from
multiple
counters? Description

PAPI_CA_SNP No No Requests for a snoop

PAPI_CA_SHR No No Requests for exclusive access to
shared cache line

PAPI_CA_CLN No No Requests for exclusive access to
clean cache line

PAPI_CA_INV No No Requests for cache line
invalidation

PAPI_CA_ITV No No Requests for cache line
intervention

PAPI_L3_LDM No for
single-
and
dual-core;
YES for
quad-core

No Level 3 load misses

PAPI_L3_STM No for
single-
and
dual-core;
YES for
quad-core

No Level 3 store misses

PAPI_BRU_IDL No No Cycles branch units are idle

PAPI_FXU_IDL No No Cycles integer units are idle

PAPI_FPU_IDL No No Cycles floating-point units are idle

PAPI_LSU_IDL No No Cycles load/store units are idle

PAPI_TLB_DM Yes No Data translation lookaside buffer
misses

PAPI_TLB_IM Yes No Instruction translation lookaside
buffer misses

PAPI_TLB_TL Yes Yes Total translation lookaside buffer
misses

PAPI_L1_LDM Yes No Level 1 load misses

200 S–2396–21

PAPI Hardware Counter Presets [C]

Name

Supported
on
Cray XT

Derived
from
multiple
counters? Description

PAPI_L1_STM Yes No Level 1 store misses

PAPI_L2_LDM Yes No Level 2 load misses

PAPI_L2_STM Yes No Level 2 store misses

PAPI_BTAC_M No No Branch target address cache
misses

PAPI_PRF_DM No No Data prefetch cache misses

PAPI_L3_DCH No for
single-
and
dual-core;
YES for
quad-core

No Level 3 data cache hits

PAPI_TLB_SD No No Translation lookaside buffer
shootdowns

PAPI_CSR_FAL No No Failed store conditional
instructions

PAPI_CSR_SUC No No Successful store conditional
instructions

PAPI_CSR_TOT No No Total store conditional
instructions

PAPI_MEM_SCY Yes No Cycles Stalled Waiting for
memory accesses

PAPI_MEM_RCY No No Cycles Stalled Waiting for
memory reads

PAPI_MEM_WCY No No Cycles Stalled Waiting for
memory writes

PAPI_STL_ICY Yes No Cycles with no instruction issue

PAPI_FUL_ICY No No Cycles with maximum instruction
issue

PAPI_STL_CCY No No Cycles with no instructions
completed

S–2396–21 201

Cray XT™ Programming Environment User’s Guide

Name

Supported
on
Cray XT

Derived
from
multiple
counters? Description

PAPI_FUL_CCY No No Cycles with maximum
instructions completed

PAPI_HW_INT Yes No Hardware interrupts

PAPI_BR_UCN Yes No Unconditional branch instructions

PAPI_BR_CN Yes No Conditional branch instructions

PAPI_BR_TKN Yes No Conditional branch instructions
taken

PAPI_BR_NTK Yes Yes Conditional branch instructions
not taken

PAPI_BR_MSP Yes No Conditional branch instructions
mis-predicted

PAPI_BR_PRC Yes Yes Conditional branch instructions
correctly predicted

PAPI_FMA_INS No No FMA instructions completed

PAPI_TOT_IIS No No Instructions issued

PAPI_TOT_INS Yes No Instructions completed

PAPI_INT_INS No No Integer instructions

PAPI_FP_INS Yes No Floating-point instructions

PAPI_LD_INS No No Load instructions

PAPI_SR_INS No No Store instructions

PAPI_BR_INS Yes No Branch instructions

PAPI_VEC_INS Yes No Vector/SIMD instructions

PAPI_FLOPS Yes Yes Floating-point instructions per
second

PAPI_RES_STL Yes No Cycles stalled on any resource

PAPI_FP_STAL Yes No Cycles in the floating-point unit(s)
are stalled

PAPI_TOT_CYC Yes No Total cycles

PAPI_IPS Yes Yes Instructions per second

202 S–2396–21

PAPI Hardware Counter Presets [C]

Name

Supported
on
Cray XT

Derived
from
multiple
counters? Description

PAPI_LST_INS No No Load/store instructions
completed

PAPI_SYC_INS No No Synchronization instructions
completed

PAPI_L1_DCH Yes Yes Level 1 data cache hits

PAPI_L2_DCH Yes No Level 2 data cache hits

PAPI_L1_DCA Yes No Level 1 data cache accesses

PAPI_L2_DCA Yes No Level 2 data cache accesses

PAPI_L3_DCA No for
single-
and
dual-core;
YES for
quad-core

No Level 3 data cache accesses

PAPI_L1_DCR No No Level 1 data cache reads

PAPI_L2_DCR Yes No Level 2 data cache reads

PAPI_L3_DCR No for
single-
and
dual-core;
YES for
quad-core

No Level 3 data cache reads

PAPI_L1_DCW No No Level 1 data cache writes

PAPI_L2_DCW Yes No Level 2 data cache writes

PAPI_L3_DCW No for
single-
and
dual-core;
YES for
quad-core

No Level 3 data cache writes

PAPI_L1_ICH No No Level 1 instruction cache hits

PAPI_L2_ICH No No Level 2 instruction cache hits

S–2396–21 203

Cray XT™ Programming Environment User’s Guide

Name

Supported
on
Cray XT

Derived
from
multiple
counters? Description

PAPI_L3_ICH No for
single-
and
dual-core;
YES for
quad-core

No Level 3 instruction cache hits

PAPI_L1_ICA Yes No Level 1 instruction cache accesses

PAPI_L2_ICA Yes No Level 2 instruction cache accesses

PAPI_L3_ICA No for
single-
and
dual-core;
YES for
quad-core

No Level 3 instruction cache accesses

PAPI_L1_ICR Yes No Level 1 instruction cache reads

PAPI_L2_ICR No No Level 2 instruction cache reads

PAPI_L3_ICR No for
single-
and
dual-core;
YES for
quad-core

No Level 3 instruction cache reads

PAPI_L1_ICW No No Level 1 instruction cache writes

PAPI_L2_ICW No No Level 2 instruction cache writes

PAPI_L3_ICW No for
single-
and
dual-core;
YES for
quad-core

No Level 3 instruction cache writes

PAPI_L1_TCH No No Level 1 total cache hits

PAPI_L2_TCH No No Level 2 total cache hits

204 S–2396–21

PAPI Hardware Counter Presets [C]

Name

Supported
on
Cray XT

Derived
from
multiple
counters? Description

PAPI_L3_TCH No for
single-
and
dual-core;
YES for
quad-core

No Level 3 total cache hits

PAPI_L1_TCA Yes Yes Level 1 total cache accesses

PAPI_L2_TCA No No Level 2 total cache accesses

PAPI_L3_TCA No for
single-
and
dual-core;
YES for
quad-core

No Level 3 total cache accesses

PAPI_L1_TCR No No Level 1 total cache reads

PAPI_L2_TCR No No Level 2 total cache reads

PAPI_L3_TCR No for
single-
and
dual-core;
YES for
quad-core

No Level 3 total cache reads

PAPI_L1_TCW No No Level 1 total cache writes

PAPI_L2_TCW No No Level 2 total cache writes

PAPI_L3_TCW No for
single-
and
dual-core;
YES for
quad-core

No Level 3 total cache writes

PAPI_FML_INS Yes No Floating-point multiply
instructions

PAPI_FAD_INS Yes No Floating-point add instructions

S–2396–21 205

Cray XT™ Programming Environment User’s Guide

Name

Supported
on
Cray XT

Derived
from
multiple
counters? Description

PAPI_FDV_INS No No Floating-point divide instructions

PAPI_FSQ_INS No No Floating-point square root
instructions

PAPI_FNV_INS Yes Yes Floating-point inverse
instructions. This event is
available only if you compile with
the -DDEBUG flag.

206 S–2396–21

MPI Error Messages [D]

Table 11 lists the MPI error messages you may encounter and suggested
workarounds.

Table 11. MPI Error Messages

Message Description Workaround

Segmentation fault in
MPID_Init()

The application is using all
the memory on the node and
not leaving enough for MPI's
internal data structures and
buffers.

Reduce the amount of
memory used for MPI
buffering by setting the
environment variable
MPICH_UNEX_BUFFER_SIZE
to something greater than 60
MB. If the application uses
scalable data distribution,
run your application at
higher process counts.

MPIDI_PortalsU_Request_PUPE(323):
exhausted unexpected
receive queue buffering
increase via env. var.
MPICH_UNEX_BUFFER_SIZE

The application is sending
too many short, unexpected
messages to a particular
receiver.

Increase the amount
of memory for MPI
buffering using the
MPICH_UNEX_BUFFER_SIZE
environment variable or
decrease the short message
threshold using the
MPICH_MAX_SHORT_MSG_SIZE
variable (default is 128
KB). The default for
MPICH_UNEX_BUFFER_SIZE
is 60,000,000 bytes. The
MPICH_UNEX_BUFFER_SIZE
environment variable
specifies the entire amount
of buffer space for short
unexpected messages.

S–2396–21 207

Cray XT™ Programming Environment User’s Guide

Message Description Workaround

pe_rank MPIDI_Portals_Progress:
dropped event on
unexpected receive queue,
increase pe_rank queue size by
setting the environment variable
MPICH_PTL_UNEX_EVENTS

You have used up all the
space allocated for event
queue entries associated with
the unexpected messages
queue. The default size is
20,480 bytes.

You can increase the size of
the unexpected messages
event queue by setting
the environment variable
MPICH_PTL_UNEX_EVENTS
to a value higher than 20,480
bytes.

pe_rank MPIDI_Portals_Progress:
dropped event on "other"
queue,increase pe_rank
queue size by setting
the environment variable
MPICH_PTL_OTHER_EVENTS

You have used up all the
space allocated for the event
queue entries associated with
the "other" queue. This can
happen if the application is
posting many non-blocking
sends of large messages, or
many MPI-2 RMA operations
are posted in a single epoch.
The default size is 2048 bytes.

You can increase the size
of the queue by setting
the environment variable
MPICH_PTL_OTHER_EVENTS
to a value higher than
2048 bytes.

208 S–2396–21

ALPS Error Messages [E]

This appendix documents common ALPS error messages. Other messages are
generated only if a system error occurs. For all ALPS messages not described
here, see your system administrator.

These messages are generated by the placement scheduler during application
placement and are forwarded to the user through aprun.

Messages that begin with [NID node_id] come from the application shepherds on
the compute nodes and are prefixed with a node ID to indicate which compute
node sent the message. When general application failures occur, typically only
one message appears from an arbitrary NID assigned to the application. This
is done to prevent flooding the user with potentially thousands of identical
messages if the application fails globally.

Table 12. ALPS Error Messages

Error Description

no XT nodes are configured up A request for the named type of compute node cannot be
satisfied because there are no nodes of that type currently
available.

memory request exceeds 1048575
megabytes

The aprun -m value exceeds the indicated amount. This is
probably a mistake in units by the user because the value far
exceeds any compute node memory size possible to install.

Request exceeds max
[CPUs | memory | nodes]
In user NIDs request exceeds
max [CPUs | memory | nodes]

The allocation request requires more of the named resource
than the configuration can deliver at this time. The second
message will appear instead of the first if the user has
specified the NIDs using the aprun -L option.

At least one command's user NID
list is short

If the aprun -L option is used, the NID list must have at least
as many NID values as the number of nodes the application
requires.

nid node_id appears more than
once in user's nid list

The user has specified an NID list, but the list has at least one
duplicate NID.

[NID node_id] Apid app_id /proc
readdir timeout alarm occurred.
Application aborted.

A problem on the node prevented the shepherd responsible
for the application to read information from /proc as it must.
Report this to the system administrator.

S–2396–21 209

Cray XT™ Programming Environment User’s Guide

Error Description

[NID node_id] Apid app_id:
cannot execute: reason

A large number of reasons can appear, but the most likely
is exec failed, which usually means the a.out file is
corrupted or is the wrong instruction set to run on this
compute node.

[NID node_id] Apid app_id
killed. Received node failed
or unavailable event for nid
node_id

The system monitoring software has detected an
unrecoverable error on the named NID. Notification has been
delivered to this NID for handling. The application must be
killed because one or more of the compute nodes on which it
is running have failed.

aprun: Exiting due to errors.
Launch aborted

Typically, this is the final message from aprun before it
terminates when an error has been detected. More detailed
messages should precede this one.

aprun: Apid app_id close of the
compute node connection [before
| after] app startup barrier

The compute node to which aprun is connected has dropped
its socket connection to aprun without warning. This usually
means the application or a compute node has failed in some
way that prevents normal error messages from being created
or delivered to aprun.

aprun: Application app_id
exit codes: one to four values
aprun: Application app_id exit
signals: one to four values

If an application terminates with nonzero exit codes or has
internally generated a signal (such as a memory address
error), the first four of the values detected are reported with
these messages. Both messages will appear if both nonzero
exit codes and signals have occurred in the application.

aprun: Application app_id
resources: utime uuu, stime sss

When the application terminates the accumulated user time
(utime) and system time (stime) are forwarded to aprun
and reported with this message.

210 S–2396–21

yod Error Messages [F]

Table 13 describes yod error messages.

Table 13. yod Error Messages

Error Number Description

ERR_NO_MEMORY 1 Out of memory in yod.

ERR_USAGE 2 Command-line usage error.

ERR_HOST_INIT 3 Error in host_cmd_init due to out of memory or
portals. yod internal initialization failed.

ERR_MESH_ALLOC 8 Call to mesh_alloc failed. Error during mesh
initialization.

ERR_LOAD 9 Load error. Cannot load program.

ERR_ABORT 10 User aborted yod during load of program.

LD_ERR_SEND 10 Error while sending data to children in fan-out tree.

LD_ERR_NO_HEAP 10 Error allocating heap memory on node.

LD_ERR_TARGET_LENGTH 10 Target supplied location too small for message to
be sent.

ERR_LOAD_FILE 13 Load-file error. Error in use of heterogeneous load
file.

ERR_YOD_USAGE 14 General yod usage error.

ERR_KILL 23 Application was killed. yod got killed after load.

ERR_TARGET 26 Invalid target option; valid targets are linux and
catamount.

ERR_TIME_LIMIT 27 yod time limit expired.

ERR_PREMATURE_EXIT 28 yod received CMD_EXIT too soon. A process exited
prematurely.

ERR_ALARM 29 Load time-out. Alarm signal.

ERR_RCA 30 RCA register failed.

LD_ERR_ABORTED 100 Aborted load.

LD_ERR_START 100 First load error.

S–2396–21 211

Cray XT™ Programming Environment User’s Guide

Error Number Description

LD_ERR_NUMNODES 101 Number of nodes was outside of range allowed.

LD_ERR_INTERNAL 102 Internal error.

PCT LD_ERR_CONTROL_PORTAL 103 Error on control portal.

LD_ERR_TARGET_RANK 105 Rank of requesting node is out of expected range.

LD_ERR_TARGET_PORTAL 106 Target portal number is out of expected range.

LD_ERR_PULL 108 Error while pulling data from parent in fan-out
tree.

LD_ERR_VERSION 110 Version mismatch.

LD_ERR_NODE_TIMEOUT 111 Time-out while communicating with node.

LD_ERR_PORTALS_UID 112 Portals UID mismatch.

LD_ERR_PROTOCOL_ERROR 113 General load-protocol error.

LD_ERR_BAD_PCT_MSG_TYPE 114 Unexpected message type.

LD_ERR_EXEC_LOAD 115 Error loading executable file.

LD_ERR_WRONG_NID 116 Received response from wrong node ID.

LD_ERR_WRONG_RECV_LENGTH 117 Received load with wrong length.

LD_ERR_PCT_EXIT 118 PCT exited during load.

LD_ERR_NIDPID 119 Node ID map was built or distributed incorrectly.

ERROR_PCT_FAULT 120 PCT fault.

ERROR_SET_CACHE 121 PCT failed to initialize processor.

ERROR_INIT_REGION 122 PCT failed to initialize memory region.

ERROR_APP_TIMER 123 Application Timer Error.

ERROR_NO_MEM 124 Out of memory on node.

ERROR_NO_MEM_FOR_BSS 125 Text size is too big.

ERROR_NO_MEM_FOR_HEAP 126 Not enough memory for heap on node.

ERROR_NO_MEM_FOR_PROCESS 127 Not enough memory for process.

ERROR_HEAP_SIZE_TOO_SMALL 128 Heap size is too small on node.

ERROR_NO_SMP 129 Catamount virtual node mode is unavailable.

ERROR_VA_OVERLAP 130 Virtual addresses overlap kernel/PCT addresses.

ERROR_PRIORITY 131 PCT could not set processor priority.

212 S–2396–21

yod Error Messages [F]

Error Number Description

ERROR_PORTALS 132 Portals Error.

ERROR_BAD_ELF_FILE 133 Bad ELF file.

ERROR_ELF_DYNAMIC_LOAD 134 No dynamic load support for ELF files.

ERROR_ELF_GENERIC 135 ELF file error.

ERROR_INVALID_TARGET 136 Invalid target.

ERROR_MSG_RCV_CACHE_OVERFLOW 137 Overflow in message received cache.

ERROR_TOO_MANY_PARAMS 138 Too many parameters passed to application

ERROR_TOO_MANY_PORTALS 139 Too many portals were allocated.

ERROR_TOO_MANY_PROCS 140 Too many processes.

S–2396–21 213

Cray XT™ Programming Environment User’s Guide

214 S–2396–21

PETSc Makefiles [G]

The PETSc example (Section 14.6, page 123) includes makefile.F for
program ex2f.F. This appendix lists the comparable makefile.c and
makefile_conventional.c makefiles for program ex2.c and the
makefile_conventional.F makefile for program ex2f.F.

For the source code of ex2.c, see
http://www-unix.mcs.anl.gov/petsc/petsc-as/.

makefile.c

.SUFFIXES: .c .o

Compilers, linkers and flags.

CC = cc

LINKER = ftn

CCFLAGS =

LINKFLAGS = -Mnomain (only for pgi)

Fortran optimization options.

COPTFLAGS = -O3

.o.c:

$(CC) -c ${COPTFLAGS} ${CCFLAGS} $*.c

all : ex2

ex2 : ex2.o

$(LINKER) $(LINKFLAGS) -o $@ ex2.o

makefile_conventional.c

include ${PETSC_DIR}/bmake/common/base

ex2: ex2.o

-${CLINKER} -o ex2 ex2.o ${PETSC_KSP_LIB}

${RM} ex2.o

S–2396–21 215

http://www-unix.mcs.anl.gov/petsc/petsc-as/

Cray XT™ Programming Environment User’s Guide

makefile_conventional.F

include ${PETSC_DIR}/bmake/common/base

ex2f: ex2f.o

-${FLINKER} -o ex2f ex2f.o ${PETSC_KSP_LIB}

${RM} ex2f.o

216 S–2396–21

Glossary

blade

1) A field-replaceable physical entity. A Cray XT service blade consists of AMD
Opteron sockets, memory, Cray SeaStar chips, PCI-X or PCIe cards, and a
blade control processor. A Cray XT compute blade consists of AMD Opteron
sockets, memory, Cray SeaStar chips, and a blade control processor. A Cray X2
compute blade consists of eight Cray X2 chips (CPU and network access links),
two voltage regulator modules (VRM) per CPU, 32 memory daughter cards, a
blade controller for supervision, and a back panel connector. 2) From a system
management perspective, a logical grouping of nodes and blade control processor
that monitors the nodes on that blade.

Catamount

The operating system kernel developed by Sandia National Laboratories and
implemented to run on Cray XT single-core compute nodes. See also Catamount
Virtual Node (CVN); compute node.

Catamount Virtual Node (CVN)

The Catamount kernel enhanced to run on dual-core Cray XT compute nodes.

class

A group of service nodes of a particular type, such as login or I/O. See also
specialization.

CNL

CNL is a Cray XT and Cray X2 compute node operating system. CNL provides
a set of supported system calls. CNL provides many of the operating system
functions available through the service nodes, although some functionality has
been removed to improve performance and reduce memory usage by the system.

compute node

A node that runs application programs. A compute node performs only
computation; system services cannot run on compute nodes. Compute nodes
run a specified kernel to support either scalar or vector applications. See also
node; service node.

S–2396–21 217

Cray XT™ Programming Environment User’s Guide

compute processor allocator (CPA)

A program that coordinates with yod to allocate processing elements.

Cray Linux Environment (CLE)

The operating system for Cray XT systems.

CrayDoc

Cray's documentation system for accessing and searching Cray books, man
pages, and glossary terms from a web browser.

deferred implementation

The label used to introduce information about a feature that will not be
implemented until a later release.

dual-core processor

A processor that combines two independent execution engines ("cores"), each
with its own cache and cache controller, on a single chip.

GNU Compiler Collection (GCC)

From The Free Software Foundation, a compiler that supports C, C++,
Objective-C, Fortran, and Java code (see http://www.x.org/gcc/).

login node

The service node that provides a user interface and services for compiling and
running applications.

module

See blade.

node

For Cray Linux Environment (CLE) systems, the logical group of processor(s),
memory, and network components acting as a network end point on the system
interconnection network. See also processing element.

218 S–2396–21

http://www.x.org/gcc/

Glossary

node ID

A decimal number used to reference each individual node. The node ID (NID)
can be mapped to a physical location.

NUMA node

A multicore processor and its local memory. Multisocket compute nodes have
two or more NUMA nodes.

processing element

The smallest physical compute group. There are two types of processing
elements: a compute processing element consists of an AMD Opteron processor,
memory, and a link to a Cray SeaStar chip. A service processing element consists
of an AMD Opteron processor, memory, a link to a Cray SeaStar chip, and PCI-X
or PCIe links.

quad-core processor

A processor that combines four independent execution engines ("cores"), each
with its own cache and cache controller, on a single chip.

service node

A node that performs support functions for applications and system services.
Service nodes run SUSE LINUX and perform specialized functions. There are six
types of predefined service nodes: login, IO, network, boot, database, and syslog.

specialization

The process of setting files on the shared-root file system so that unique files can
exist for a node or for a class of nodes.

system interconnection network

The high-speed network that handles all node-to-node data transfers.

TLB

A table (Translation Lookaside Buffer) in the processor that contains
cross-references between the virtual and real addresses of recently referenced
pages of memory.

S–2396–21 219

Cray XT™ Programming Environment User’s Guide

220 S–2396–21

Index

64-bit library
PathScale, 29
PGI, 27

A
Accounts, 83
ACML, 2, 19

required PGI linking option, 51
ALPS, 61
AMD Core Math Library, 19
APIs, 13
apkill command, 33
Application

launching, 61
Applications

launching, 61, 77
running in parallel, 115, 157
running on service nodes, 85

aprun
CPU affinity options, 111
I/O handling, 74
launching applications, 61
memory affinity options, 110

aprun command, 3, 61
Authentication, 7

B
Barcelona, 33
Base pages, 35
Batch job

submitting through PBS Professional, 87
Batch processing, 4
BLACS, 2, 13–14
BLAS, 2, 13, 19
Buffering

Fortran I/O, 42

C
C compiler, 2
C++ compiler, 2
C++ I/O

changing default buffer size, 43
specifying a buffer, 43

Catamount
C run time functions in, 193
C++ I/O, 43
glibc functions supported, 40, 193
I/O, 42
I/O handling, 82
programming considerations, 40
signal handling, 82
stderr, 42
stdin, 42
stdout, 42

Catamount nodes
report showing status, 57

Catamount Virtual Node (CVN), 78
CLE

CNL, 1
CNL, 1, 61

C run time functions in, 187
glibc functions supported, 187
I/O, 31
I/O handling, 74
programming considerations, 27, 30
stderr, 31
stdin, 31
stdout, 31

CNL applications
requesting resources, 61

CNL jobs, 61
CNL nodes

report showing status, 57
cnselect command , 3
Compiler

S–2396–21 221

Cray XT™ Programming Environment User’s Guide

C, 2
C++, 2
Fortran, 2

Complier commands, 49
Compute node kernel

report showing status, 57
Compute node operating system

Catamount, 1
CNL, 1

Compute nodes
managing from an MPI program, 74, 82, 89
selecting, 3

Compute Processor Allocator (CPA), 77
Core file, 47

truncated, 47
CPU affinity, 111
aprun options, 111

CPU binding, 111
cpusets, 110–111
CRAFFT library, 16
CRay Adaptive FFT (CRAFFT) library, 16
Cray Apprentice2, 4, 108
Cray Linux Environment (CLE), 1

Catamount, 1
Cray MPICH2, 2, 21

limitations, 21
Cray SHMEM, 22

atomic memory operations, 22
Cray XT-LibSci, 2, 13
Cray XT5 compute nodes, 34

memory affinity, 110
CrayPat, 4, 104

D
Debugging, 93

GNU debugger, 99
lgdb, 93
using TotalView, 93
xtgdb, 93

Documentation, 4
Dual-core processor, 78
Dynamic linking, 30

E
ELF

See Executable and Linking Format
Endian

See Little endian
Event set

how to create in PAPI, 104
Example

basics (Catamount), 157
basics (CNL), 115
buffer for I/O (Catamount), 166
I/O-to-file streams (Catamount), 167
multiple parallel apps (Catamount), 174
multiple parallel apps (CNL), 142
multiple sequential apps (Catamount), 172
multiple sequential apps (CNL), 140
stdout (Catamount), 169
using Cray Apprentice2 (CNL), 156
using CrayPat (Catamount), 179
using CrayPat (CNL), 150
using dclock() (Catamount), 165
using MPI (Catamount), 158
using MPI (CNL), 116
using OpenMP (CNL), 135
using PAPI high-level interface

(Catamount), 176
using PAPI high-level interface (CNL), 148
using PAPI low-level interface (Catamount), 178
using PAPI low-level interface (CNL), 149
using PBS interactive mode (CNL), 138
using PBS script (Catamount), 171
using PBS script (CNL), 139
using PETSc (CNL), 123
using quad-core processors (CNL), 135
using shmem_get (Catamount), 162
using shmem_get (CNL), 120
using shmem_put (Catamount), 160
using shmem_put (CNL), 118
using UPC (Catamount), 164
using UPC (CNL), 122
using xtgdb (Catamount), 175

Examples

222 S–2396–21

Index

Catamount, 157
CNL, 115
runing on service nodes, 85

Executable
launching, 61

Executable and Linking Format (ELF), 61

F
Fast_mv library, 20
FFT, 2, 19

CRAFFT, 16
FFTW, 3, 19
File system

Lustre, 3, 11
Fortran compiler, 2
Fortran STOP message, 28

G
GCC compilers, 2, 49, 52

running on service nodes, 85
using OpenMP, 24

gdb debugger
See GNU debugger

getpagesize()
Catamount implementation of, 40

glibc, 3, 13
Catamount, 40
run time functions implemented in

Catamount, 193
run time functions implemented in CNL, 187
support in Catamount, 40
support in CNL, 30

GNU C library, 3, 13
GNU compilers, 49, 52

running on service nodes, 85
GNU debugger

Catamount applications, 99
CNL applications, 99

GNU Fortran libraries, 2

H
Hardware counter presets

PAPI, 199
Hardware performance counters, 104
Huge pages, 35

I
I/O

stdio performance, 43
stride functions, 44

I/O buffering
IOBUF library, 43

I/O performance
Fortran buffer size, 42

I/O support in Catamount, 42
I/O support in CNL, 31
Instrumenting a program, 104
IRT

See Iterative Refinement Toolkit
Iterative Refinement Toolkit, 2, 13, 15

J
Job accounting, 83
Job launch

MPMD application, 73
Job scripts, 87
Job status, 90
Jobs

running on Catamount, 77
running on CNL, 61

K
kill command (CNL), 33
kill() system call (Catamount), 47
kill() system call (CNL), 33

L
LAPACK, 2, 13, 19
Launching Catamount applications, 77
Launching CNL applications, 61
Launching jobs

using aprun, 3
using yod, 3

LD_PRELOAD environment variable, 30

S–2396–21 223

Cray XT™ Programming Environment User’s Guide

lgdb debugger
See GNU debugger

Libraries, 13
Library

ACML, 2, 19
BLACS, 2, 13–14
BLAS, 2, 13, 19
CRAFFT, 16
Cray MPICH2, 21
Cray XT-LibSci, 13
Fast_mv, 20
FFT, 2, 19
FFTW, 3
glibc, 13
GNU C, 3
Iterative Refinement Toolkit, 2, 15
LAPACK, 2, 13, 19
LibSci, 2
PETSc, 2, 17
ScaLAPACK, 2, 13–14
SuperLU, 2, 13, 16

LibSci
See Cray XT-LibSci

Little endian, 30
Loadfile

launching MPMD applications with, 80
Lustre, 3

programming considerations, 11
Lustre library, 11

M
malloc(), 41

Catamount implementation of, 40
Man pages, 4
Manuals, 4
Math transcendental library routines, 2, 19
Memory affinity, 110
aprun options, 110

Memory allocation
improving, 37

Message passing, 21
Message Passing Interface, 2

MMAP (memory-mapped regions)
alternatives to, 37

module command, 10
Modules, 9
MPI, 2, 21

64-bit library, 27, 29
managing compute nodes from, 74, 82, 89
running program interactively, 115

MPICH2
limitations, 21

MPMD applications
using aprun, 73
using yod, 80

N
Node

availability, 57
NUMA nodes, 34

O
OpenMP, 2, 24
Optimization, 109

CPU affinity, 111
memory affinity, 110

P
Page size, 35, 47

PAPI, 103
counter presets for constructing an event

set, 199
high-level interface, 103
low-level interface, 104

Parallel programming models
MPI, 39
MPICH2, 2
OpenMP, 2, 39
SHMEM, 39
supported on Catamount, 48
UPC, 25, 39

passwordless logins, 7
passwordless ssh, 7
passwords, 7

224 S–2396–21

Index

PATH variable
how to modify, 10

PathScale compilers, 2, 53
running on service nodes, 85
using OpenMP, 24

PBS Professional, 4, 87
Performance analysis

Cray Apprentice2, 108
CrayPat, 104
PAPI, 103

Performance API (PAPI), 3
PETSc, 2, 17
PETSc makefiles, 215
PGI compilers, 2, 49–50

limitations, 27
running on service nodes, 85
unsupported options, 48
using OpenMP, 24

Portals interface, 21
Process Control Thread (PCT), 77
Process migration, 111
Programming considerations

Catamount, 27
CNL, 27
general, 27

Programming Environment, 2
Project accounting, 83

Q
qdel command, 91
qstat command, 90
qsub command, 88
Quad-core processors, 33

memory affinity, 110
using cnselect, 71

R
Random number generators, 2, 19
RSA authentication, 7

with passphrase, 7
without passphrase, 8

Running applications
using aprun, 3
using yod, 3

Running Catamount applications, 77
Running CNL applications, 61

S
ScaLAPACK, 2, 13–14
Scientific libraries, 13
Scripts

PBS Professional, 87
Secure shell, 7
Service nodes

running user programs, 85
Shared libraries, 30
SHMEM, 2

64-bit library, 27, 29
Signal handling, 46, 82
Single-core processor, 77
Sockets

Cray XT5 compute nodes, 34
ssh, 7
stderr, 31, 42
stdin, 31, 42
stdio

performance, 43
stdout, 31, 42
STOP message, 28
SuperLU, 2, 13, 16

T
Timers

Catamount support for, 40
Timing measurements, 45
TotalView, 93

Cray specific functions, 99

U
Unified Parallel C (UPC), 25
User environment

setting up, 7

S–2396–21 225

Cray XT™ Programming Environment User’s Guide

X
xtgdb debugger

See GNU debugger
xtkill command, 33, 47
xtnodestat command, 3, 57
xtprocadmin command, 57

Y
yod, 77

I/O handling, 82
yod command, 3

226 S–2396–21

	Cray XT™ Programming Environment User's Guide
	New Features
	Preface
	Accessing Product Documentation
	Conventions
	Reader Comments
	Cray User Group

	About the Cray XT Development Environment [1]
	1.1 About the Cray XT System Environment
	1.2 About the Cray XT Programming Environment
	1.3 About Cray XT Documentation

	Setting Up Your Environment [2]
	2.1 Setting Up a Secure Shell
	2.1.1 Setting up RSA Authentication with a Passphrase
	2.1.2 Setting up RSA Authentication without a Passphrase

	2.2 Using Modules
	2.3 Modifying the PATH Variable
	2.4 Using the Lustre File System

	About Libraries and Functions [3]
	3.1 About the C Language Run Time Library
	3.2 About the Cray Scientific Library
	3.2.1 About the BLAS and LAPACK Libraries
	3.2.2 About the ScaLAPACK and BLACS Libraries
	3.2.3 About the Iterative Refinement Toolkit (IRT)
	3.2.4 About the SuperLU Library
	3.2.5 About the CRay Adaptive Fast Fourier Transform (CRAFFT) Li

	3.3 About the PETSc Library
	3.4 About the AMD Core Math Library (ACML)
	3.5 About the FFTW Libraries
	3.6 About the Fast_mv Library
	3.7 About the Cray MPT Library
	3.7.1 About the MPICH2 Library
	3.7.2 About the SHMEM Library

	3.8 About the OpenMP Library
	3.9 About the UPC Functions

	Cray XT Programming Considerations [4]
	4.1 Programming Considerations for all Developers
	4.1.1 About PGI Compilers
	4.1.1.1 About Default MPICH2 and SHMEM Libraries
	4.1.1.2 About Unsupported C++ Header Files
	4.1.1.3 About Restrictions on Large Data Objects
	4.1.1.4 About the FORTRAN STOP Message
	4.1.1.5 Suppressing PGI Vectorization

	4.1.2 About the PGI Debugger
	4.1.3 About the PathScale Fortran Compiler
	4.1.4 About Little-endian Support
	4.1.5 About the Portals Message Size Limit
	4.1.6 About Shared Libraries

	4.2 Programming Considerations for CNL Users
	4.2.1 About CNL glibc Functions
	4.2.2 About I/O Support Operations under CNL
	4.2.3 Connecting to External Services under CNL
	4.2.4 About Timing Functions under CNL
	4.2.5 About Signal Support under CNL
	4.2.6 Killing Processes under CNL
	4.2.7 About Core Files under CNL
	4.2.8 Using Cray XT4 Quad-core Processors
	4.2.9 Using Cray XT5 Compute Nodes
	4.2.10 Using Huge Pages and Base Pages under CNL
	4.2.11 Allocating Memory under CNL
	4.2.12 About Resource Limits under CNL
	4.2.13 About the One Application Per Node Limitation under CNL
	4.2.14 About Parallel Programming Models under CNL
	4.2.15 About the Modified Copy-on-write Process under CNL
	4.2.16 About Unsupported PGI Compiler Command Options under CNL

	4.3 Programming Considerations for Catamount Users
	4.3.1 About Catamount glibc Functions
	4.3.2 About I/O Support Functions under Catamount
	4.3.2.1 Improving Fortran I/O Performance under Catamount
	4.3.2.2 Improving C++ I/O Performance under Catamount
	4.3.2.3 Improving stdio Performance under Catamount
	4.3.2.4 Improving the Performance of Large File, Sequential I/O
	4.3.2.5 Using Stride I/O Functions to Improve Performance under
	4.3.2.6 Reducing Memory Fragmentation under Catamount

	4.3.3 About the Limitations of External Connectivity under Catam
	4.3.4 About Timing Functions under Catamount
	4.3.5 About Signal Support under Catamount
	4.3.6 Killing Processes under Catamount
	4.3.7 About Core Files under Catamount
	4.3.8 Changing Page Size under Catamount
	4.3.9 About Resource Limits under Catamount
	4.3.10 About the Limitations on Parallel Programming Models unde
	4.3.11 About Unsupported PGI Compiler Command Options under Cata

	Using Compilers [5]
	5.1 Setting Your Target Architecture
	5.2 Using the Compiler Driver Commands
	5.2.1 Using PGI Compilers
	5.2.2 Using GNU Compilers
	5.2.3 Using PathScale Compilers

	Getting Compute Node Status [6]
	Running CNL Applications [7]
	7.1 Using the aprun Command
	7.2 Using the apstat Command
	7.3 Using the cnselect Command
	7.4 Understanding How Much Memory is Available to CNL Applicatio
	7.5 Launching an MPMD Application
	7.6 Managing Compute Node Processors from an MPI Program
	7.7 About aprun Input and Output Modes
	7.8 About aprun Resource Limits
	7.9 About aprun Signal Processing

	Running Catamount Applications [8]
	8.1 Using the yod Command
	8.2 Using the cnselect Command
	8.3 Understanding How Much Memory is Available to Catamount Appl
	8.4 Launching an MPMD Application
	8.5 Managing Compute Node Processors from an MPI Program
	8.6 Using Input and Out Modes under yod
	8.7 About yod Signal Handling
	8.8 Associating a Project or Task with a Job Launch

	Running User Programs on Service Nodes [9]
	Using PBS Professional [10]
	10.1 Creating Job Scripts
	10.2 Submitting Batch Jobs
	10.2.1 Using aprun with qsub
	10.2.2 Using yod with qsub

	10.3 Terminating Failing Processes in an MPI Program
	10.4 Getting Job Status
	10.5 Removing a Job from the Queue

	Debugging an Application [11]
	11.1 Using the TotalView Debugger
	11.1.1 Using TotalView to Debug an Application
	11.1.2 Using TotalView to Debug a Core File
	11.1.3 Using TotalView to Attach to a Running Process
	11.1.4 Using TotalView to Alter Standard I/O
	11.1.5 About the Limitations of TotalView on Cray XT Systems

	11.2 Using the GNU Debugger
	11.2.1 Using the lgdb Debugger
	11.2.2 Using the xtgdb Debugger

	11.3 Troubleshooting Catamount Application Failures

	Analyzing Performance [12]
	12.1 Using the Performance API (PAPI)
	12.1.1 Using the High-level PAPI Interface
	12.1.2 Using the Low-level PAPI Interface

	12.2 Using the Cray Performance Analysis Tool (CrayPat)
	12.2.1 Running Tracing and Sampling Experiments

	12.3 Visualizing Performance Data

	Optimizing Applications [13]
	13.1 Using Compiler Optimization Options
	13.2 Using aprun Memory Affinity Options
	13.3 Using aprun CPU Affinity Optimizations
	13.4 Optimizing Process Placement on Multicore Nodes
	13.4.1 Optimizing MPI and SHMEM Applications Running under CNL
	13.4.2 Optimizing MPI and SHMEM Applications Running under Catam

	Example CNL Applications [14]
	14.1 Running a Basic Application under CNL
	14.2 Running an MPI Application under CNL
	14.3 Using the Cray shmem_put Function under CNL
	14.4 Using the Cray shmem_get Function under CNL
	14.5 Running a UPC Application under CNL
	14.6 Running a PETSc Application under CNL
	14.7 Running an OpenMP Application under CNL
	14.8 Running a PBS Professional Interactive Job under CNL
	14.9 Running a PBS Professional Job Script under CNL
	14.10 Running Multiple Sequential Applications under CNL
	14.11 Running Multiple Parallel Applications under CNL
	14.12 Using aprun Memory Affinity Options
	14.12.1 Using the aprun -S Option
	14.12.2 Using the aprun -sl Option
	14.12.3 Using the aprun -sn Option
	14.12.4 Using the aprun -ss Option

	14.13 Using aprun CPU Affinity Options
	14.13.1 Using the aprun -cc cpu_list Option
	14.13.2 Using the aprun -cc keyword Options

	14.14 Running Compute Node Commands under CNL
	14.15 Using the High-level PAPI Interface under CNL
	14.16 Using the Low-level PAPI Interface under CNL
	14.17 Using CrayPat under CNL
	14.18 Using Cray Apprentice2 under CNL

	Example Catamount Applications [15]
	15.1 Running a Basic Application under Catamount
	15.2 Running an MPI Application under Catamount
	15.3 Using the Cray shmem_put Function under Catamount
	15.4 Using the Cray shmem_get Function under Catamount
	15.5 Running a UPC Application under Catamount
	15.6 Using dclock() to Calculate Elapsed Time under Catamount
	15.7 Specifying a Buffer for I/O under Catamount
	15.8 Changing the Default Buffer Size for I/O-to-file Streams un
	15.9 Improving the Performance of stdout under Catamount
	15.10 Running a PBS Professional Job Script under Catamount
	15.11 Running Multiple Sequential Applications under Catamount
	15.12 Running Multiple Parallel Applications under Catamount
	15.13 Using xtgdb under Catamount
	15.14 Using the High-level PAPI Interface under Catamount
	15.15 Using the Low-level PAPI Interface under Catamount
	15.16 Using CrayPat under Catamount

	glibc Functions Supported in CNL [A]
	glibc Functions Supported in Catamount [B]
	PAPI Hardware Counter Presets [C]
	MPI Error Messages [D]
	ALPS Error Messages [E]
	yod Error Messages [F]
	PETSc Makefiles [G]
	Glossary
	Index
	List of Tables
	Table 1. Manuals and Man Pages Included with This Release
	Table 2. PGI Compiler Commands
	Table 3. GNU Compiler Commands
	Table 4. PathScale Compiler Commands
	Table 5. aprun versus qsub Options
	Table 6. yod versus qsub Options
	Table 7. RPCs to yod
	Table 8. Supported glibc Functions for CNL
	Table 9. Supported glibc Functions for Catamount
	Table 10. PAPI Presets
	Table 11. MPI Error Messages
	Table 12. ALPS Error Messages
	Table 13. yod Error Messages

