
Definition

The framework is a library that controls the flow of events and data
through well-defined interface points defined by user-written algorithm
components. The user creates algorithm components using framework
tools. These components can be arranged into an execution or data-flow
sequence that is managed by the framework library.

Library Organization

framework.o
iframework.o
cframework.o

RegEMReco.o
RegCPSReco.o
RegCftExamine.o

libframework.a
libio_packages.a

libEMreco.a
libCPSReco.a
libCftExamine.a

<release_dir>/lib/IRIX6_XXX/

Main program
object files. Batch,
interactive versions.

Framework registration
object files. One per
framework package.

Framework
related libraries

Reconstruction/
Analysis package
libraries

Must include one main program object file and a set of Reg
object files when linking your executable. One Reg file must
be linked for each package that you want available in the executable.
The framework RCP controls which user package objects actually
get created at run time.

Class UserPackage : public fwk::Package, fwk::Process, fwk::Tag,
fwk::RunInit

{
public:

UserPackage(Context*);
~UserPackage();

fwk::Result processEvent(edm::Event&);
fwk::Result tagEvent(edm::Event&);
fwk::Result runInit(const RunNumber&);

void reinitialize(edm::RCP);
void statusReport();
void flush();

}

Example User Package Class Definition

Controller:

Generate:generateEvent(WorkQueue&)
Decide: makeDecision(const edm::Event&, WorkQueue&)
Filter: filterEvent(const edm::Event&)
Process: processEvent(edm::Event&)
Analyze: analyzeEvent(const edm::Event&)
Dump: dumpEvent(const edm::Event&)
Tag: tagEvent(const edm::Event&)
Output: outputEvent(const edm::Event&)
JobSummary: jobSummary()
RunInit: runInit(const RunNumber&)
RunEnd: runEnd(const RunNumber&)

Framework provided classes

Interfaces available to user:

Framework provided package available for use in RCP files.

Groups together interfaces by name.
Controls event flow through the interface groups.
Is a package and implements a generic interface.
Can masquerade as any other available interface.
Interface name assigned by used in RCP file.
Can contain Controllers.

Inside the Framework

User package code

Event loop

X: processEvent(),tagEvent()
Y:processEvent(),tagEvent()
Z: processEvent(), runInit()
U: processEvent(), runInit()
V: generateEvent(),makeDecision()

InterfaceNames=“generate decide process tag runInit”
Packages=“v1,x1, x2, y1, z1, u1”
Flow=“generate decide process tag”

generate:

decide:

process:

tag:

runInit:

(v1) V::generateEvent()

(v1) V::makeDecision()

(x1) X::processEvent()
(x2) X::processEvent()
(y1) Y::processEvent()
(z1) Z::processEvent()
(u1) U::processEvent()

(x1) X::tagEvent()
(x2) X::tagEvent()
(y1) Y::tagEvent()

(z1) Z::runInit()
(u1) U::runInit()

Important Abstract Framework Components

Package:

Interface:

Base class for user created, plug-in components.
Reconstruction/Analysis algorithms implemented by derived classes
Instance creation controlled by framework RCP file.
Instances exist for entire run of program
Automatically registers all the interfaces it implements

Base class for framework call-out points.
Instances identified by string name.
Implemented by inheritance (similar to Package)
Specifies when and where data will be passed into a users code.
Basic component that framework uses to pass event into user packages
Event data flows through Interfaces.
A package typically implements several of these interfaces.

string InterfaceName = "process"
string Interfaces = "generator decide filter analyze process dump tag output

jobSummary runEnd runInit"
string Flow = "generator decide filter process analyze dump tag output"

Framework RCP Configuration

Defaults.rcp:

InterfaceName: We are configuring a controller. This is the interface name that
the controller will be assigned. It will appear to the system as an “Process”
interface.

Interfaces: A list of all the interfaces that that will be used in this run. The
interface named are assigned dynamically when the program starts. The user
can add new interface classes and assign them a name without changing the
framework library.

Flow: An event will be directed through interfaces in the order specified by
the flow. Any interface not in the flow is considered a free standing interface.
This flow indicates that events will be passed through all the packages that
implement processEvent() before being passed through all the packages that
implement analyzeEvent().

User.rcp:

RCP FrameworkInfo = <defaults.rcp>
string Packages = "generate_events first_processor second_processor”

RCP generate_events = <generate.rcp>
RCP first_processor = <processor1.rcp>
RCP second_processor = <processor2.rcp>

High-level Framework RCP file example

Packages: Specifies the instance names of all the user package instances that
should be created. The order is significant; interfaces will be distributed and
executed in the order they appear in this parameter. The package type or class
name is specified in the packages RCP file.

There must be one RCP line and RCP file present for each of the strings in
the Packages parameter. The FrameworkInfo parameter tells where to get the
framework RCP information from. The information in defaults.rcp can just
be included in this RCP.

Nesting
Controllers can be placed into controllers

string InterfaceName = "process"
string Interfaces = "generator decide process jobSummary runEnd runInit"
string Flow = "generator decide process"
string Packages = "gen group1 group2"
RCP gen = <gen.rcp>
RCP group1 = <group_even.rcp>
RCP group2 = <group_odd.rcp>

User.rcp

string PackageName = "Controller"
string InterfaceName = "process"
string Interfaces = "filter analyze"
string Flow = "filter analyze"
string Packages = "filter"
RCP filter = <filter_even.rcp>

group_even.rcp
string PackageName = "Controller"
string InterfaceName = "process"
string Interfaces = "filter analyze"
string Flow = "filter analyze"
string Packages = "filter"
RCP filter = <filter_odd.rcp>

group_odd.rcp

string PackageName = "Filter"
string type = "even"

filter_even.rcp
string PackageName = "Filter"
string type = ”odd"

filter_odd.rcp

<d02ka> D0reco.x -show
CPSDigiPkg $Name: v00-05-03 $
CPSReco $Name: v00-05-03 $
CalClusterReco $Name: v00-05-03 $
CalWeight $Name: v00-05-03 $
CftClusterPkg $Name: v00-05-03 $
Controller $Name: v00-05-03 $
DropChunks $Name: v00-12-04 $
DumpEvent $Name: v00-12-04 $
EMReco $Name: v00-05-03 $
FPSClusterPackage $Name: v00-05-03 $
FpsDigiPackage $Name: v00-05-03 $
GtrFindPkg $Name: v00-05-03 $
JetReco $Name: v00-05-03 $
MissingETReco $Name: v00-05-03 $
MuoHitReco $Name: v00-05-03 $
MuoSegmentReco $Name: v00-05-03 $
ReadEvent $Name: v00-12-04 $
SMT1DPosPack $Name: v00-05-03 $
SMTClusterPack $Name: v00-05-03 $
SMTInterfacePack $Name: v00-05-03 $
SMTLocaltoGlobalTransPack $Name: v00-05-03 $
SmtClusterPkg $Name: v00-05-03 $
TauReco $Name: v00-05-03 $
VertexReco $Name: v00-05-01 $
VertexSelect $Name: v00-05-01 $
WriteEvent $Name: v00-12-04 $
geometry_management $Name: v00-05-03 $
<d02ka>

Batch Framework

Interactive Framework Features

quit
start
help
pause
resume
step
next
flush
show
config
time
ls
cd
rcp
report (status)
state
where

Commands

One interface at a time
One event at a time

Print all the available packages

Print the package instance within controller

Dump the RCP for a package

Deactivate/Activate a package instance
Print the current package/interface

Wait for user input after current interface completes

Link using iframework.o
Execute with “-i” option
Still quite a primitive terminal interface
Framework internals allow for many different UIs to exist

Future Plans

Framework

Event loop

CommanderMessenger

Controller

ORB

Main Thread

Comm
Thread

Network

Netscape - Java GUI

Pause Resume Stop Start Step Next

Output Window

Error Window

Packages
x
y
z

