Cold Season Heavy Precipitation across WFO Wakefield's County Warning Area

> Winter Weather Workshop December 5 2007

Wayne Albright Senior Meteorologist/Winter Weather Focal Point

Methodology

1. Study incorporates daily heavy precipitation events of 2" or more at RIC and/or ORF/SBY/FVX/ECG during the months from November through March (POR 1948-2006) 2. Precipitation events broken into two types: a. Surface Cold Front (10 events) b. Surface Low Pressure (10 events) 3. Plots 6 hour mean composite anomalies (as standard deviations from normal - stdv) for atmospheric variables (height, surface pressure, temperature, u/v wind component precipitable water) using the NCEP/NCAR Reanalysis; based on 1970-2000

Heavy Precipitation Pattern -Surface Cold Front

Date	RIC	ORF	SBY	FVX	ECG
Jan 28 1952	2.07"	0.82"	1.47"	1.42"	0.47"
(total)	2.51″	0.82"	1.90"	2.35"	0.47"
Dec 20 1957	2.10"	0.12"	0.52"	0.53"	0.79"
(total)	2.10"	<i>0.12"</i>	<i>0.53"</i>	<i>0.94"</i>	<i>0.81"</i>
Nov 6 1959	2.71"	0.92"	0.57"	0.69"	0.61"
(total)	4.05"	<i>0.92"</i>	<i>0.70"</i>	<i>0.70"</i>	<i>0.64"</i>
Nov 24 1959	3.00"	0.21"	2.06"	1.76"	0.48"
(total)	3.02"	0.22"	2.42"	1.84"	<i>0.52"</i>
Jan 6 1962	3.31"	1.24"	3.09"	1.50"	1.35"
(total)	3.31"	1.24"	<i>3.15</i> "	1.70"	<i>1.38"</i>
Feb 24 1979	2.64"	1.71"	1.80"	2.50"	1.75"
(total)	4.48"	2.94"	<i>4.14"</i>	<i>4.0</i> 6"	2.41"
Mar 21 1983	2.40"	0.89"	0.72"	0.49"	1.16"
(total)	2.40"	<i>0.89"</i>	0.72"	<i>0.49</i> "	<i>1.18"</i>
Mar 25 1984	2.20"	0.38"	2.52"	1.84"	0.25"
(total)	2.60"	0.39"	2.91"	2.36"	0.25"
Nov 21 1994	2.31"	1.37"	1.31"	2.15"	0.02"
(total)	2.31"	1.37"	1.31"	2.15"	0.04"
Nov 12 2006	2.18"	2.75"	2.77"	0.87"	1.33"
(total)	2. <i>18</i> "	2.75″	2.86"	1.45"	2.12"

Heavy Precipitation Pattern -Surface Low Pressure

ORF ECG RIC SBY FVX Date Nov 21 1952 2.54" 2.62" 3.31" 2.16" 3.28" (total) 0.07" 1.02" 0.72" 0.17" Nov 1 1956 2.44" 0.08" 1.18" 0.78" 0.17" (total) Dec 29 1958 2.46" 0.69" 2.54" 3.41" 1.69" 1.84" 1.55" (total) Nov 9 1962 2.22" 1.09" 0.77" 1.55" 1.07" 1.09" 1.29" 2.43" 1.07" (total) Nov 6 1963 2.53" 1.48" 2.15" 2.51" 1.22" 1.60" (total) 2.29" Nov 29 1963 2.07" 2.00" 1.69" 1.17" 2.92" 1.79" 1.77" (total) Dec 24 1986 1.57" 2.35" 3.21" 1.31" **1.50**" 1.96" 1.63" (total) Mar 29 1991 1.93" 1.83" 0.15" 2.82" 2.02" 2.01" 1.96" 1.60 (total) Mar 2 1994 2.42" 3.78" 2.53" 2.07" 3.70" (total) Feb 4 1998 2.26" **4.75**" 2.23" 1.23" 2.26" (total) 2.74"

Heavy Precipitation Pattern -Surface Cold Front

Heavy Precipitation Pattern -Surface Low Pressure

Surface Precipitation F 11/20/52 10/31/56 12/28/58 11/8/62 11 NCEP/

Sfc Low t-24

area of slightly positive stdv of 850
hPa temperature and 700 hPa
height near New England.

-large area of -1 to -2.5 stdv of SLP near the central Gulf Coast.

- large area near -2 stdv of 700/500 hPa over the western half of the Gulf of Mexico.

Frontal t-24

- large area of +1 to 1.5 stdv of 850 hPa temperature, and 700/500 hPa height over the northeast quarter of the us.

-area of near -1 stdv of SLP just west of the lower Mississippi River Valley.

- small area of slightly negative stdv of 700/500 hPa across the southern Plains.

 $\frac{Mdx}{Min} = \frac{-2.07}{-2.5} = \frac{-2.5}{-2} = 1.5 = 1 = -0.5 = 0.5 = 1 = 1.5 = 2 = 2.5$

Sfc Low t+0

- area of slightly positive stdv of 850 hPa temperature from the mid-Atlantic to New England; as well as slightly positive stdv of 700/500 hPa height near New England.

-large area of -2 to -3 stdv of SLP across the Southeast states.

- large area near -2.5 stdv of 700/500 hPa over the northeast portion of the Gulf of Mexico.

Frontal t+0

- large area of +1.5 to 2 stdv of 850 hPa temperature, and +1 to +2 stdv of 700/500 hPa height over the northeast quarter of the us.

-area of near -1.5 to -2 stdv of SLP over the southern Appalachians.

- very small area of slightly negative stdv of 700/500 hPa across the lower Mississippi River Valley.

2.5 - 2 - 1.5 - 1 - 0.5 0.5

Sfc Low t-24

- area of slightly positive stdv of precipitable water over the Southeast states.

- axis of near +1.5 stdv of 850 hPa v-wind component over Florida.

- Small area of near -2 stdv of 850 hPa u-wind component centered over Arkansas.

Frontal t-24

- large area of +1.5 to 2.5 stdv of precipitable water from the great lakes region to the western Gulf Coast states.

- axis of +1 to 1.5 stdv of 850 hPa v-wind component from the central Gulf Coast states to the eastern Great Lakes states.

- two areas of -1 to -1.5 stdv of 850 hPa u-wind component...off the Southeast coast...and over the Midwest.

SLP: 1000 hPa Wind 1000-500 hPa Thickness; RH (shaded) Sfc Low T-24 850 hPo Hgt, Temperature Wind (U wind stdv shaded)

850 hPa hgt Wind (V wind stdv shaded)

Sfc Low t+0

- area of +1.5 to +2 stdv of precipitable water centered over eastern Virginia and eastern North Carolina.

- axis of near +2.5 stdv of 850 hPa v-wind component just off the Southeast coast.

- large area of -2.5 stdv of 850 hPa u-wind component centered over West Virginia.

Frontal t+0

- large area of +2 to +2.5 stdv of precipitable water from South Carolina to New England...with near +3 stdv over Virginia, Maryland and Pennsylvania.

- axis of +1.5 to +2 stdv of 850 hPa v-wind component from the coastal Carolinas north through the mid-Atlantic states.

- two areas of -1 to -1.5 stdv of 850 hPa u-wind component...off the East Coast...and over the Great Lakes states.

Sfc Low t-24

- area of slightly positive stdv of 300 hPa v-wind component from the Ohio Valley to northwest Florida.

- area of slightly negative stdv of 300 hPa uwind component from the central Plains to the western Great Lakes states.

Frontal t-24

- axis of +1 to +1.5 stdv of 300 hPa v-wind component over the central Mississippi River Valley.
- two areas of -1.5 to -2 stdv of 300 hPa u-wind component...off the East Coast...and centered over Nebraska.

SLP: 1000 hPa Wind 1000-500 hPa Thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa Thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa Thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa Thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa Thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa Thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa Thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa Thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa Thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa thickness: RH (shaded) Sfc LOW T-24 wind (U wind std shaded) 1000-500 hPa thickness: RH (shaded) Sfc LOW T-24 wind (Sfc LOW T-24 wind thP

Key Ingredients

Surface Low

- LARGE NEGATIVE anomalies of SLP; and 700/500 hPa heights in the vicinity of the Southeast states and the northeast Gulf of Mexico

- LARGE NEGATIVE anomalies of 850 hPa uwind component centered over West Virginia (indicative of stronger than normal low level east winds)

- LARGE POSITIVE anomalies of 850 hPa vwind component Just off the Southeast coast (indicative of stronger than normal southeast winds)

- POS. anomalies of precipitable water over eastern Virginia and eastern North Carolina

- NEG. anomalies 300 hPa u-wind component from eastern Tennessee to the eastern Great Lakes states (indicative of a "slowing down" or intensifying upper level system)

Surface Front

- POSITIVE anomalies of 850 hPa temperatures; and 700/500 hPa heights near New England

- POSITIVE anomalies of 850 hPa v-wind component from the coastal Carolinas north through the mid-Atlantic states (stronger than normal low level south winds)

- LARGE POSITIVE anomalies of precipitable water centered over Virginia, Maryland and Pennsylvania

November 26 2007

00Z Nov 26 2007 IR imagery

24 hr total precipitation 12z 11/25-12z 11/26

Cold Season Heavy Precipitation Event Surface Cold Front

a. nam INIT:00Z27N0V2007 prmsimsi 1000 00Z27N0V2007

-2 -3

-2 -3

- 4

-5

00z 11/27 Initial

00z 11/26 24 hr fcst (valid for 00z 11/27)

Cold Season Heavy Precipitation Event Surface Cold Front

Cold Season Heavy Precipitation Event Surface Cold Front

Cold Season Heavy Precipitation Event Simulated WRF Radar

00z 11/25 – 12z 11/26

(issued 2149z 11/25)

Split in highest QPF

Cold Season Heavy Precipitation Event Simulated WRF Radar

00z 11/26 – 12z 11/27

Cold Season Heavy Precipitation Event Simulated QPF forecasts WRF vs NAM

** note that both the WRF and NAM decrease convection near the eastern Gulf States, followed by a period of increasing QPF moving across VA and NC

Cold Season Heavy Precipitation Event IR Satellite

16Z Nov 26 2007 IR imagery

** note shortwave "lifting" ______ northeast into central Appalachians

22Z Nov 26 2007 IR imagery Mon-22:002 26-Nov-0

Cold Season Heavy Precipitation Event What Happened...

Continental United States 1-Day Observed Precipitation - Valid 11/27/2007 1200 UTC

000

:

:ID

RIC

LYH

DCA

IAD

PHF

ORF

WAL

AKQ .END

RTPAKQ

Click on the image to zoom ir. Click on "States" to zoom out

to our precipitation????

Upstream Convection Scenarios

Scenario 1 (S1)

UC oriented parallel to flow. Propagates quickly relative to main synoptic system, perpendicular to flow.

QPF bias:

S1: Decreased downstream precipitation

Scenario 2 (S2)

UC oriented parallel to flow. Propagating slowly, or not at all, relative to main synoptic system

QPF bias:

S2: Increased downstream precipitation

Web Sites

- WRF simulated radar <u>http://www.emc.ncep.noaa.gov/mmb/mmbpll/cent4km/v2/menu.html</u>
- PSU Collaborative Research and Weather Data ensembles <u>http://nws.met.psu.edu/models/index.htm</u>
- Historical daily weather maps <u>http://docs.lib.noaa.gov/rescue/dwm/data_rescue_daily_weather_m</u> <u>aps.html</u>
- GrADS (Grid Analysis and Display System) http://grads.iges.org/grads/
- NOAA Earth System Research Laboratory Climate Analysis Branch

http://www.cdc.noaa.gov/

Acknowledgements

- Rich Grumm SOO NWS State College PA (papers - "Patterns of Heavy Rainfall in the Mid-Atlantic Region"; Anticipating Heavy Rainfall: Forecast Aspects")
- Kelly M. Mahoney and Gary M. Lackmann (presentation - "The Effects of Organized Upstream Convection on Downstream Precipitation")
- Larry Brown Senior Meteorologist; Bill Sammler - WCM NWS Wakefield VA

Are There Any Additional Questions?

Wayne.Albright@noaa.gov