Electromagnetic splittings of Hadrons, and calculations towards $g_{\mu} - 2$ light-by-light contribution.

Taku Izubuchi

Kanazawa University

based on a collaborations with [RBC, RBC-UKQCD collaboration]

T. Blum, T. Doi, M. Hayakawa, N. Yamada Koichi Hashimoto

Lattice QCD

• Quantum Chromo Dynamics : strong coupling, needs non-perturbative calculation.

 $\Psi(x), A_{\mu}(x), x \in \mathbb{R}^4$: continuous infinity quantum divergences: needs regularization and renormalization

- Discretize Euclidean space-time
- lattice spacing $a\sim 0.1$ fm (UV cut-off $|p|\leq \pi/a$)
- $\psi(n)$: Quark field (Grassmann number)
- $U_{\mu}(n)$: Gluon field
- Accumulate samples of QCD vacuum, typically $\mathcal{O}(100) \sim \mathcal{O}(1,000)$ files of gluon configuration $U_{\mu}(n)$ on disk.
- Then measure physical observables on the vacuum ensemble.

$$\langle \mathcal{O}
angle = \int \mathcal{D} U_{\mu} \; \mathsf{Prob}[U_{\mu}] imes \mathcal{O}[U_{\mu}]$$

• A part of shorter fluctuation is taken care either perturbatively or by techniques called non-perturbative renormalization.

Taking Limits

- repeat the procedure for the three parameters,
 - V : space-time Volume m_f : mass of quarks β : coupling among quarks and gluons

A. Thermodynamic limit $V \to \infty$

 $\langle O \rangle |_V \sim const.$ $(V \gg V_c(m_f) \sim 1/m_{ps}^4)$, m_{ps} is the lightest hadron(pion) mass.

B. Quark mass, $m_f \rightarrow m_q(phys) \sim 10$ MeV

needs to extrapolate from $m_f > m_q(phys)$ because smaller m_f needs larger V and more computational power to solve the Dirac equation. chiral perturbation theory (ChPT) helps.

C. Continuum limit, $a \rightarrow 0$ to eliminate discretization errors

 $\beta = 6/g^2 \to \infty$ à la asymptotic freedom $a\Lambda_L = \exp(-\frac{1}{2b_0g^2}) \cdots$. $\langle O \rangle = O_{cont} + c_n a^n + \cdots$.

For DWF n = 2 not 1. (chiral symmetry).

Each lattice action has different discretization error, useful for estimation of the discretization error by comparing among various lattice fermion/gauge actions.

to get the final answer.

Use of chiral symmetry on lattice

- Spontaneous breaking of chiral symmetry, $\langle \bar{q}q \rangle = \langle \bar{q}_L q_R + \bar{q}_R q_L \rangle \neq 0$. NG boson, $M_{\pi}^2 \propto m_q$. 99% origin of mass of constituent quark or proton.
- massless quark q(x)

 $S_f = \bar{q} \not\!\!D q = \bar{q}_L \not\!\!D q_L + \bar{q}_R \not\!\!D q_R$ symmetry: $q_L \to e^{i\theta_L} q_L, q_R \to e^{i\theta_R} q_R$

Left and Right handed fermions are independently moving.

- Old lattice fermions (e.g. Wilson fermion, staggered fermion) break chiral and flavor symmetries: Domain Wall Fermions (DWF) has exact flavor symmetry and a good chiral symmetry (Kaplan, Furman & Shamir, Blum & Soni)
- discretization error should be small.(lattice spacing, a > 0) No local operator with dimension five preserving chiral symmetry. $\mathcal{O}_5 = F_{\mu\nu} \bar{q} \sigma_{\mu\nu} q, \bar{q} D^2 q$ $\mathcal{L}_{lat} = Z \mathcal{L}_{cont.} + a^2 O_6 + \cdots$

O(a) error is suppressed. Results on relatively coarse lattice (large a ,smaller computational cost) is much closer to the continuum limit: $a\Lambda_{QCD} \sim 0.1$

• unphysical operator mixing is prohibited by χ -sym.

Full QCD (including dynamical quarks)

• Entering Era of unquenched simulations ([Shinya's talk])

 $\operatorname{Prob}[U_{\mu}] \propto \det \mathcal{D} e^{-Sg},$

quench: det $\not\!\!\!D \to 1$ (or sometimes det $\not\!\!\!D' \neq \det \not\!\!\!D$)

Ignoring quark loops (sea quark loop) in QCD vacuum, and only using the external quarks (valence quarks) representing hadrons.

• This approximation causes the quenched pathologies.

- Lack of Unitarity.
- quenched chiral divergences $(\eta' \text{ loops})$:
 - $M_\pi^2 = 2B_0 m_q \left[1 2\delta \ln(m_f)
 ight]$ $\delta \propto m_f$ in Full QCD.
- can't decays. $e.g. \ \rho \rightarrow \pi \pi$:

• quark mass with less than $\sim \Lambda_{QCD}$ should play a significant role : $N_F=2+1.$

Unitarity violation in Non-singlet scalar meson (a_0)

- Point to point propagator of non-singlet scalar meson, $C_{a_0}(t)$, was found to be negative in quenched QCD, which is a clear signal of the unitarity violation in quenched QCD.
- In the language of mesons (ChPT),

 $a_0
ightarrow \eta' + \pi
ightarrow a_0$

 η' has double pole in (partially) quenched QCD.

This contribution was argued to give a negative contribution (also finite size effect), and predicted using Quenched ChPT in finite volume. (Bardeen *et. al*)

(S. Prelovsek, C. Dawson, T.I. K. Orginos, A. Soni (RBC)) • By fixing m_{sea} and changing m_{val} we found

 $C_{a_0}(t) < 0 \qquad (m_v < m_s) \ C_{a_0}(t) > 0 \qquad (m_v \ge m_s)$

 This behaviour could be understood by Partially Quenched ChPT also.

Dynamical quark effects

Quenching error (dynamical quark effect) is not a minor issue.

Other quantities very sensitive to dynamical quarks

- $I = 0 \pi \pi$ scattering length (M. Golterman, T.I, Y. Shamir)
- Nucleon-Nucleon potential
- Static quark potential (K. Hashimoto) In shorter distance, $r\Lambda_{QCD} \ll 1$, coupling is weaker for $N_F = 2$: $\alpha_S(r; N_F = 0) < \alpha_S(r; N_F = 2)$. asymptotic freedom $b_0 = (33 - 2N_F)/2$

Dynamical simulations 2006

Improvements ($\times 6 \sim$) in algorithms. ([Norman's talk])

Entering Era of Dynamical simulations. ([Shinya's talk])

various Lattice quarks

- DWF $N_F = 0$, (~ 2001 QCDSP) $N_F = 2$ (2001 ~ 2005, QCDSP), $N_F = 2 + 1$ (QCDOC 2004~) ((BNL, RBRC) , Tsukuba, J-Lab) $\mathcal{O}(a\Lambda_{QCD})^2 + a\mathcal{O}(am_{res}) \sim \mathcal{O}(1\%), \ m_q/m_s \leq 0.3 \rightarrow 0.2, 0.1.$
- staggered $N_F = 0, 2 + 1$: leading runner, many productions & publications academic question : $\sqrt[4]{\det D}$, universal RGT among non-local theories ? $\mathcal{O}(a\Lambda_{QCD})^2$
- 4D Wilson-types (RG-improved clover, twisted mass Wilson) : SAP ([Tomomi's talk])
- dynamical overlap, chirally improved fermions

Motivations

- The first principle calculations of isospin breaking effects due to electromagnetic (EM) and the up, down quark mass difference are necessary for accurate hadron spectrum, quark mass determination.
- EM splittings are measured very accurately :

 $m_{\pi^{\pm}} - m_{\pi^0} = 4.5936(5)$ MeV, $m_N - m_P = 1.2933317(5)$ MeV

• From
$$\Gamma(\pi^+ \rightarrow \mu^+ \nu_\mu, \mu^+ \nu_\mu \gamma)$$
 + $V_{ud}(\exp)$

 $f_{\pi^+} = 130.7 \pm 0.1 \pm 0.36$ MeV PDG 2004

the last error is due to the uncertainty in the part of $\mathcal{O}(\alpha)$ radiative corrections that depends on the hadronic structure of the π meson.

$$\Gamma(PS^+ \rightarrow \mu^+ \nu_\mu, \mu^+ \nu_\mu \gamma) \propto [1 + C_{\text{PS}} \alpha]$$
had. struc.
 $C_{\pi} \sim 0 \pm 0.24, \quad C_{\pi} - C_K = 3.0 \pm 1.5$

c.f. Marciano 2004 : V_{us} from f_{π}/f_K (MILC) + $\Gamma(\pi_{l2})/\Gamma(K_{l2})$.

Motivations...

• A practice for $g_{\mu} - 2$ light-by-light calculation.

$$\begin{split} a_{\mu}^{\mathsf{exp}} &= \frac{g_{\mu} - 2}{2} = 116,592,080(60) \times 10^{-11} \\ a_{\mu}^{\mathsf{SM}} &= a_{\mu}^{\mathsf{QED}} + a_{\mu}^{\mathsf{had}} + a_{\mu}^{\mathsf{EW}}, \qquad a_{\mu}^{\mathsf{new}} \sim \mathcal{O}((m_{\mu}/M_{new})^2) \\ a_{\mu}^{\mathsf{had}} &= a_{\mu}^{\mathsf{had},\mathsf{LO}} + a_{\mu}^{\mathsf{had},\mathsf{HO}} + a_{\mu}^{\mathsf{had},\mathsf{LBL}} \end{split}$$

$$a_{\mu}^{\text{exp}} = 116,592, \quad 080(60) \times 10^{-11}$$

$$a_{\mu}^{\text{QED}} = 116,584, \quad 706(3) \times 10^{-11} + \mathcal{O}(\alpha^{4})$$

$$a_{\mu}^{\text{had},\text{LO}} = 6, \quad 963(62)(36) \times 10^{-11}$$

$$a_{\mu}^{\text{had},\text{HO}} = - 100(6) \times 10^{-11}$$

$$a_{\mu}^{\text{had},\text{LBL}} = 134(25) \times 10^{-11} (\text{before : } 86(35) \times 10^{-11})$$

$$a_{\mu}^{\text{EW}} = 154(1)(2) \times 10^{-11}$$

• $a_{\mu}^{\exp} - a_{\mu}^{\th} = (220 \pm 100) \times 10^{-11}$ (e^+e^- , A. Vainshtein *et. al.* 2004)

Taku Izubuchi, RBRC "RHIC Physics in the context of the Standard Model", 23/Jun/2006

(1)

(T. Blum, T. Doi, M. Hayakawa, T.I., N. Yamada)

- In most of lattice QCD simulations, up and down quarks are treated to have equal mass and effects of electromagnetism (EM) is ignored (Isospin symmetry).
- More realistic first principle calculation is desirable for accurate hadron spectrum and quark mass determination.

$$m_{up} \neq m_{down}, \qquad Q_{up} = 2/3e, \ Q_{down} = -1/3e.$$

 Hadron mass differences due to isospin breaking are measured very accurately in experiments:

> $m_{\pi^{\pm}} - m_{\pi^0} = 4.5936(5)$ MeV, $m_N - m_P = 1.2933317(5)$ MeV

QCD + **QED** simulations

• muon anomalous magnetic moment $g_{\mu}-2$ (BNL-E821) . g_{μ} gyromagnetic ratio: muon (spin 1/2)'s coupling to magnetic field

$$\vec{\mu}$$

$$\vec{B}$$

$$a_{\mu}^{\mathsf{exp}} = \frac{g_{\mu}-2}{2} = 116,592,080(60) \times 10^{-11}$$

$$a_{\mu}^{\mathsf{SM}} = a_{\mu}^{\mathsf{QED}} + a_{\mu}^{\mathsf{Had}} + a_{\mu}^{\mathsf{EW}},$$

$$a_{\mu}^{\mathsf{exp}} - a_{\mu}^{\mathsf{th}} = (220 \pm 100) \times 10^{-11}$$

Hadronic contributions dominates theory error.

 \vec{s}

 μ

$$a_{\mu}^{\text{Had}} = a_{\mu}^{\text{Had},\text{LO}} + a_{\mu}^{\text{Had},\text{HO}} + a_{\mu}^{\text{Had},\text{LBL}}$$
$$a_{\mu}^{\text{had},\text{LBL}} = 134(25) \times 10^{-11}$$
$$(\text{before : } 86(35) \times 10^{-11})$$
$$a_{\mu}^{\text{new}} \sim \mathcal{O}((m_{\mu}/M_{new})^2)$$
$$a_{\mu}^{\text{Had},\text{HO}} \text{ was explored by T. Blum in PRL 91, 2003, C. Aubin & T. Blum new analysis using SChPT.}$$

Taku Izubuchi, RBRC "RHIC Physics in the context of the Standard Model", 23/Jun/2006

EM splittings

• Axial WT identity with EM $(N_F = 2, m_u = m_d)$,

$$\mathcal{L}_{EM} = -iA_{\mu}(x)\bar{q}Q\gamma_{\mu}q(x), \ \ Q = rac{e}{3}\left(T^3 + rac{1}{2}
ight),$$

 $\partial_{\mu}\mathcal{A}^a_{\mu}(x) = 2mJ^a_5(x) - ieA_{\mu}(x)f_{3ab}\mathcal{A}^b_{\mu}$

neutral current, $\mathcal{A}^3_\mu(x)$, is conserved: π^0 is still a NG boson.

- ChPT with EM at $\mathcal{O}(p^4,p^2e^2)$:

$$M_{\pi^{\pm}}^{2} = 2mB_{0} + 2e^{2}\frac{C}{f_{0}^{2}} + \mathcal{O}(m^{2}\log m, m^{2}) + I_{0}e^{2}m\log m + K_{0}e^{2}m$$
$$M_{\pi^{0}}^{2} = 2mB_{0} + \mathcal{O}(m^{2}\log m, m^{2}) + I_{\pm}e^{2}m\log m + K_{\pm}e^{2}m$$

Dashen's theorem :

The difference of squared pion mass is independent of quark mass upto $\mathcal{O}(e^2m)$,

$$\Delta M_{\pi}^2 \equiv M_{\pi^{\pm}}^2 - M_{\pi^0}^2 = 2e^2 \frac{C}{f_0^2} + (I_{\pm} - I_0)e^2 m \log m + (K_{\pm} - K_0)e^2 m$$

C is a new low energy constant. I_{\pm}, I_0 is known in terms of C.

EM splittings on lattice

• The correlator for neutral meson is calculated using the interpolation field of the third component of isospin:

$$C_{X^0}(t) = \frac{1}{2} \left[\left\langle J_X^{uu}(t) J_X^{uu\dagger}(0) \right\rangle_{conn} + \left\langle J_X^{dd}(t) J_X^{dd\dagger}(0) \right\rangle_{conn} \right]$$

 Quark mass renormalization due to EM has dependence to renormalization prescription. The counter term for quark mass due to EM:

$$\frac{3e^2}{16\pi^2}Q^2 m_q \log(\mu^2 a^2) \sim 10^{-3}m_q \quad \text{ for } \quad \mu \to 2 \times \mu \quad ,$$

thus the ambiguity of quark mass renormalization is tiny. \sim 0.01 MeV for light quarks and \sim 0.1 MeV for strange quark.

• Isospin breaking due to quark mass, $m_u - m_d$, is higher order effect in π , $\mathcal{O}\left((m_u - m_d)^2, (m_u - m_d)e^2\right)$. This is not the case for Kaons and Nucleons.

EM splittings on lattice

- In 1996, Duncan, Eichten, Thacker carried out SU(3)×U(1) simulation to do the EM splittings for the hadron spectroscopy using quenched Wilson fermion on $a^{-1} \sim 1.15$ GeV, $12^3 \times 24$ lattice.
- Using $N_F = 2$ Dynamical DWF ensemble (RBC) would have advantages such as better scaling and smaller quenching errors.
- Especially smaller systematic errors due to the the quark massless limits, $m_f \rightarrow -m_{res}(Q_i)$, has smaller Q_i dependence than that of Wilson fermion, $K \rightarrow K_c(Q_i)$.
- Generate Coulomb gauge fixed (quenched) non-compact U(1) gauge action with $\beta_{QED} = 1$. $U_{\mu}^{EM} = \exp[-iA_{\mu}(x)]$.
- Quark propagator, $S_{q_i}(x)$ with EM charge $Q_i = q_i e$ with Coulomb gauge fixed wall source

$$D\left[\left(U_{\mu}^{EM}\right)^{Q_{i}} \times U_{\mu}^{SU(3)}\right] S_{q_{i}}(x) = b_{src}, \quad (i = \text{up,down})$$
$$q_{\text{up}} = 2/3, q_{\text{down}} = -1/3$$

photon field on lattice

- non-compact U(1) gauge generated using FFT.
- static lepton potential on $16^3 \times 32$ lattice ($\beta_{QED} = 100$, 4,000 confs) vs lattice Coulomb potential.
- L=16 has significant finite volume effect for $ra > 6 \sim 1.5r_0 \sim 0.75$ fm. We hope it's less problematic for the calculation EM splitting of hadron due to confinement. It would be worth considering for generation of U(1) on a larger lattice and cutting it off.

simulation parameters

- $N_F = 2$ Dynamical DWF configuration for QCD
- $a^{-1} = 1.691(53)$ GeV.
- degenerate quark mass at dynamical quark mass points, $m_{val} = m_{sea} = (0.02), 0.03, 0.04 \sim 50\%$, 75%, 100% of $m_{strange}$.
- $16^3 \times 32$ or (1.9 fm)³.
- Ls = 12, $m_{res}a = 0.0013$ or a few MeV.
- EM charge: $e = 1.0, 0.6, 0.3028 = \sqrt{4\pi/137}$
- \sim 94 \rightarrow 190 configurations for each m
- one or two QED configuration per a QCD configuration.
- All 16 mesonic connected correlators + Neutron, Proton.

Analysis methods

• Analysis method I :

Fit correlator for each charge combination separately, then calculate the mass splittings under jackknife.

$$X = \pi, \rho, N : \Delta M_X = M_{X^{\pm}} - M_{X^0},$$

 Analysis method II : Subtract charged correlator by neutral correlator, and fit it by a linear function in t:

$$\begin{aligned} C_X(t) &= A(e^2) e^{-M_X(e^2)t} \\ \frac{C_{X^{\pm}}(t) - C_{X^0}(t)}{C_{X^0}(t)} &= \Delta M_X \times t + Const \end{aligned}$$

Taku Izubuchi, RBRC "RHIC Physics in the context of the Standard Model", 23/Jun/2006

results

• $G(t) = \langle J_5(0) J_5(t) \rangle$ at m = 0.04 and 0.03.

• larger e^2 doesn't help to reduce error for J_5 : relative error stays almost same.

• Fluctuations due to SU(3) are comparable to that from U(1): by double the QED statistics: ΔM_{π} reduces by ~ 4, 10, (30) % for $A_4, J_5, (N)$ resp. at m = 0.04.

$$\frac{\sigma_{QCD}^2 + 0.5\sigma_{QED}^2}{\sigma_{QCD}^2 + \sigma_{QED}^2} = (0.9)^2 \Longrightarrow \sigma_{QED}/\sigma_{QCD} \sim 0.85$$

Taku Izubuchi, RBRC "RHIC Physics in the context of the Standard Model", 23/Jun/2006

ΔM_{π}^2

• Mass splitting of Π_0 and Π_\pm with fixed quark mass.

• preliminary results

$$m_{\pi}^{\pm} - m_{\pi}^{0} = 3.5(6) \text{MeV}(4.43 \text{exp}) m_{d} - m_{u} = 2.6(3) \text{MeV}$$

• ρ and Nucleon EM splitting is milder.

Dashen's theorem

• $M_{\pi,Q}$: pure QCD pion ($e^2 = 0$)

$$M_{\pi^0}^2 - M_{\pi^Q}^2 = Ie^2 m \log m + K e^2 m$$

• Extraction of quark masses, m_{up} , m_{down} , $m_{strange}$, from experimental values of $m_{\pi^{\pm}}$, $m_{\pi^{0}}^{0}$, $m_{K^{\pm}}$, $m_{K^{0}}$.

non-perturbative technique with perturbative one

- In Lattice QCD calculations, perturbative treatment is often used.
- If the expansion paramter is enough small why not rely on perturbative methods if it extends the reach to a new region ! Perturbation is nice, intuitive, particle picture....

[answer] = [pertubative vlue] * [non-pertubative value]

'*' could be a simple operation (multiplication) or a compilcated operation (integrals):

answer	pertubative	non-perturbative	*
$\Gamma(\pi \to e \bar{\nu}_e)$	$G_F V_{ud} m_{\mu}$	F_{π}	mult.
ϵ_{K} $(K_0 - \overline{K_0})$	$\propto~G_F^2 M_W^2~\left[V_{qq'}F'{f S} ight]$	B_K	lin. comb.
$O(\alpha^2)g - 2$	kernel $f(q^2)$	$\Pi_{\mu\nu} = \left\langle V_{\mu}V_{\nu}\right\rangle\left(\boldsymbol{q}\right)$	fit & integ.
EM splits	Photon prop. $G_{\mu\nu}(q)$	$\langle H V_{\mu}(\boldsymbol{q})V_{\nu}(-\boldsymbol{q}) H\rangle$	M.C. integral

 $(K_{l3}:$ (Shoichi's talk), SF (NEDM!): (Kostas' talk), $B_K:$ (Jun's talk))

Decay Constant

 $\sqrt{2}\langle 0|A_{\mu}(0)|\pi(q)\rangle = if_{\pi}q_{\mu}$ (non-perturbative part)

 $G_F V_{ud} m_\mu \bar{\nu} (1 - \gamma_5) \mu$ (perturbative part) $\implies \Gamma(\pi \rightarrow e \bar{\nu}_e)$

• linear fit to pseudo-scalar data gives

 $F_{\pi} = 142(6) MeV$

(quenched: 129.0(7.3) MeV)

Nucleon decay matrix elements

(Y. Aoki)

• One of the largest uncertainties for life time is Hadron matrix elements, a factor 10 difference among model calculations.

$$\Gamma_P \propto \left| ar{v}_e \left\langle \pi | \epsilon_{abc} (u^{aT} C P_{R/L} d^b) P_L u^c | P
ight
angle
ight|^2$$

• Experimental bound on mean life time of proton:

$$au_p > 10^{31} \sim 10^{33}$$
 years

Taku Izubuchi, RBRC "RHIC Physics in the context of the Standard Model", 23/Jun/2006

- Non-perturbative renormalization at $\mu = 2$ GeV $\overline{\text{MS}}$ for $N_F = 0$ and 2.
- LO ChPT (Indirect) approximation gives systematically larger values for $P \rightarrow \pi$.
- Consistent results with the conservative choice in phenomenology.
- DWF scales better than Wilson fermion (JLQCD).

Direct calculation of the each QED diagram

- Each of the perturbative pieces could be obtained by a *direct calculation of QED diagram* treating QCD non-perturbatively. This method may have the following advantages:
 - Could obtain the contribution from each QED diagram separately, and/or order by order in $\alpha.$
 - The charge, e and q_i , could be input later than simulation.
 - Would help or avoid the subtractions, for example in the light-by-light calculation.

$$\partial_{\chi} D^{-1}(\chi) = -D^{-1} \partial_{\chi} D D^{-1}$$

 $\chi = m, (m_u - m_d), \boldsymbol{e}, \mu_q$

• An example for meson EM splittings :

Taku Izubuchi, RBRC "RHIC Physics in the context of the Standard Model", 23/Jun/2006

Direct calculation ...

- Prepare a $U_{SU(3)\mu}$, and an A_{μ} .
- 1. Solve

$$Dig[U_{SU(3)}ig] S_q^{(1)}(x) = b,$$

- 2. multiply $-iA_{\mu}(x)K_{\mu}$ or $-ieq_iA_{\mu}(x)K_{\mu}$ to the first solution vector, $S_q^{(1)}(x)$, where K_{μ} is the kernel of the conserved vector current: $V_{\mu}^{con}(x) = \bar{\psi}K_{\mu}\psi$.
- 3. Sequentially solve

$$D[U_{SU(3)}]S_q^{(2)}(x) = -iA_\mu(x)\gamma_\mu S_q^{(1)}(x),$$

- (4. Repeat 2, 3. (n-1) times for $S_q^{(n)}$)
- Then $\text{Tr}[S_q^{(2)}\Gamma\gamma_5[S_q^{(2)}]^{\dagger}\gamma_5\Gamma]$ is the $e^2q_1q_2$ diagram of the $G(t;q_1,q_2)$ in the background fields,

Future prospects

- EM splittings using non-perturbative QED.
- Nucleon mass splittings in progress. (important !)
- EM splittings using the direct calculation of the QED diagrams.
- $\mathcal{O}(\alpha)$ contribution to $g_{\mu} 2$ (pure QED).

- Auxially small uniform E/M field on lattice.
- $\mathcal{O}(\alpha^3)$ contribution (light-by-light) to $g_{\mu}-2$.

