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\{\4{&@2‘@/ The use of the voltage amplifier >r VCVS in simiple single loop ctive RC
networks has been described in detail by Sallen & Key (Retr 1) liguie 1 shows two

variations of the network which allow v of > ve gun and 1 negative ,1un
amplifier respectively TI'igure 2 sho el c1 as a funcuon of K for these
two circuits The poles of the posiin ns soi 1each the jw axis at k =3 0 and
cross the axis at right angles The . ve 4 system 1s absolutely stable 1nd
achieves high Q by moving the poics « r o tne origin as the magnitude of K
increases The important characteris of se two nctwor 12¢ shown 1n
Table I The sensitivity of @ to gainc  _e ohand m s 1t very difficult
to usc the positive gain realization a aQ Tne n . tive gain reali-
cation mmimizes this sensitivity 4res very o , o un and requires mordi-

nately large capacitors The high g1 cquired precludes the use of tnis method
at either high Q or high frequency A pair of complex poles can be obtaincd with a
differential voltage amplifier and a single feedback loop by using a feedback net-
work having zeros of transmission (phantom zcros) on the jw axis as shown in
- I'igure 3a (Ref 2) These phantom zeros terminate the complex pole loci at the jw
1x1s 1nd thereby greatly reduce the @ sensitivity to amplifier gain change The
zeros prevent the poles from moving into the right half plane and thereby ensure
an insensitive absolutely stable system The root loci for this network are shown

5 % i Iigure 3b  The reduction 1n Q sensitivity 1s evident since the pole motion 1s

%\ Q._ small for a large change in gain 1f the gain 1s high as it must be for igh Q@ Actu-
A o) ally, the Q sensitivity 1s both small and approximately constant (Sg = +1) Ascan

N be scen the circuit complexity 1s increased (six passive elements are required 1n

%:M I order to obtain two complex poles) and the amplifier gamn required 1s relatively

"; \ high (for Q =50 K = 199), thereby severely limiting the high frequency capability

of this circwit In addition the large amount of negative feedback well away from

o Lﬁﬁ center frequenc can cause difficulty in amplifier stabilization due to incidental
3 phase shifts caused by parasitic elements The configuration shown in Iigure 3a
rX i z
£ N 1s 1 modified form of the phantom zero network in which one zero 1s located at the
= ~ S
Z a Q&‘ origin and one at infinity so that a true second~order bandpass function 1s obtained
3 \IQ ;‘ This 1s done by applying the mput signal to the normally grounded section of the
g N &
f 5§3 twin-T
g }%'s
5 This work will describe the use of right-half-plane complex~phantom zeros
z to achieve a significant gain reduction for a given pole Q, thereby increasing the

09 Weod MDVE - hjoh frequency capability without greatly increasing the Q sensitivity Network
1c1lizations will be shown for both lumped and distributed RC networks Design
cquations are given for the lumped element case and design charts for the distrib-
uted case Plots of the gain required for a given Q of the Q sensitivity to gain
change and the frequency of maximum response as a function of the real part of the
right-hal f-plane phantom zero position 0 complete the design data
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Right Half Plane Phantom Zeros Using Lumped Elements

For the twin-T shown in Figure 4, the transfer function is

E 2
out p” + ap + 1
= T(p) = (1)
Ein p2 + Bp + 1

where

a=b+2_1 2)
k
b 1 1
B=b+ g+ +5g (3)
The definition of b and k is indicated in Figure 4. If we now combine this net-
work with a negative gain amplifier as shown 1n Figure 5, we produce a true band-
pass function (one zero at D. C. and one at infinity) as given below:

_ <N (B - a)p
T(p>—~<1+K/ p?+ [(B+aK)/(1+K)]lp+1 ®

K will be used to indicate the magnitude of the amplifier gain in all of the
following equations. The Q of the poles in equation (4) is

-~ 1+ K
Q=S Tor (5)
and therefore the gain required for a given Q is
_BQ -1
K= 1 - aQ (6)

Note that negative values of « (that is right-half-plane phantom zeros) reduce

K, and that small B is also advantageous. The system gain at center frequency,
We = 1lrps,is

-K(B -
T0) i1 = e @)

If we now determine the sensitivity of Q to changes in K we find that

Qaf/Q _KQ __K (p-a
KT OK/K ™ QoK 1+ K\B-+

+ aK (8)

Since the root locus is circular, the frequency sensitivity to changes in K is
negligibly small at high Q. We are now in a position to select values of o and 8



(consistent with b, k) to achieve a particular K to Q relation, and then determine
the sensitivity S% If this is not acceptable, a second iteration 1s usually all that

is necessary to obtain an acceptable set of values. Note that o = 0 gives SQ 111 i

If we take for example, b = 0.727, k = 10, (¢ = -0.2, 8 = 2 28) in order to place
the zeros in the right half plane and minimize §, we find from equation (1) that the
transfer function of the twin-T is

p2 - 02p + 1
p2 + 228p + 1

Ty(p) = )

The complex zeros are in the right half plane at p =0+ jw = 0.1 =} 0.995.
Combining this network with a negative gain amplifier as in Figure 5, we obtain the
following transfer function

\ 2.48p
1+ K/ o 228 - 0.2K
/ 0% + 1+ K

Ta(p) = - (10)

p+t1

If we now select Q =50, we fina icom equation (6) that K = 10.3 is required,
that the system gain at center frequency is [eq (7}], lT(p)i = 206, and that the
sensitivity to amplifier gain change is, |eq (8)l, 5% = 10.3 TlJle reduction in gain
and consequent increase in center frequency capability by a factor of 19.3 compared
to the symmetrical twin-T (when the real part of the phantom zero position,
o=-0a/2=0,K=199 for the symmetrical twin-T or K = 113 for the b, k of this
example when o = 0) is accompanied by a greatly increased freedom from parasitic
oscillations. The Q sensitivity is increased, of course, but this is controllable by
choice of ¢ (and therefore «), and an appropriate compromise can be made between
the gain reduction and the sensitivity increase. The gain reduction illustrated above
is about as much as is practical. The Q sensitivity to changes in the passive ele-
ments is quite complex, but if we look at the effect of changes in b or k, Figure 4,
we find that the resonant frequency is independent of changes in b and k, that they
affect o and B as given by equations (2) and (3), and that the Q sensitivity to changes
in &, and B are

Q_ _ oB(l+X)  _ oBQ

Sa = - B _ B+ aK) B-o (11)
Q_ _apl+K) 8Q

8= B-a)B+aK) B-a (12)

Equations (11) and (12) show that the use of negative values of « increase the
sensgitivity to changes in either o or j and that these sensitivities increase with Q.
This indicates that large negative values of & should be avoided, but of course,
equation (8) also precludes the use of large negative values of @ due to the intoler-
ably large Q sensitivity to amplifier gain change that results. The fact that Sg and
S% have opposite signs can be used to produce some degree of cancellation of the



two effects, hut, of course, this must be interpreted in terms of expected changes
in b, k The normalized resonant frequency [eq (10)} is wy =1 rps Appropriate
impedance and frequency scaling can be used as desired The @ and the gain K are
unaffected by this scaling A single-tuned bandpass filter amplifier was designed
for use at a frequency of 4.78 MHz with a @ of 50. The values used were
0=-2=0.1, and k = 10. This results in b = 0.727 from equation (2), and g = 2.28,
from equation (3), as in the previous example and therefore that K = 10.3 and SK =
10.3. The circuit is shown in Figure 6 The measured performance of this filter-
amplifier is shown in Figure 7. The aciual gain required was 12.7 and as shown in
Figure 7, the center frequency was 4.55 MHz. Since the discrepancy between com-
puted and experimental gain requirements was significant, tests were made at a
lower center frequency (50 kHz) to reduce the effect of stray capacities and ampli-
fier phase shift. Good agreement was found between calculated and measured
amplifier gain and center frequency While the 4.5 MHz filter performance as
measured shows the indicated deviations in gain and center frequency due to these
effects, the difference is not sufficiently great to prevent use of this network at
high frequency in most applications

Right Half Plane Phantom Zeros Using Distributed Elements

The distributed RC network suited to the production of right-half-plane
complex-zeros (Ref. 3) is shown in Figure 8 The resistance and capacitance are
assumed to be uniformly distributed. Computer analysis shows that this network
has complex zeros as shown in Figure 9. Values of Gy for specific complex-zero
positions are shown along the root locus. Note that for G; > 17.8 mhos, the zeros
are in the right half plane. As can be seen from the network of Figure 8, the
element complexity is considerably reduced. If right half plane zeros are chosen
by proper selection of Gy, the gain required is also considerably reduced as com-
pared to jw axis, or left half plane zero positions, thereby enhancing the high
frequency capability. The value of Ry (where R = 1/ Gq) for any given value of the
real part of the zero position, 0, is approximately

1
R, 13
1 17.80 + 5.400 + 0.52902 (13)

accurate to within £0.4% from 0 = 0 to ¢ =5 0. This is more than adequate for most
purposes since the choice of R{ is a compromise between the gain required and the
resulting Q sensitivity, and is not at all critical. If we add a negative gain amplifier
to the network of Figure 8, and apply the input to the normally grounded resistor,
Rl’ we obtain the circuit shown in Figure 10. We now have an overall transfer
function with a zero at D.C. and a zero at infinity. A digital computer program was
used to determine the Q, the frequency of maximum response, Wigxe and the Q
sensitivity, S¥, as functions of the gain, and the real part of the right-half-plane
phantom-zero position, 0. Figure 11 shows the Q and the Q sensitivity, S%, as
functions of ¢ and K. This allows an appropriate compromise between gain and
sensitivity to be easily made. After an appropriate choice of 0 from Figure 11, Rq

is determined by means of equation (13). The value of wy, = w, as a function of



K and 0 1s shown in Tigure 12 and the overail system gain at w ... as 2 function
of K and ¢ is shown in Ingure 13 Note that the amplifier gain, K, required to pro-
duce a given system gain 1s reduced as 0 is increased (phantom zeros moved pro-
gressively further into the right half plane). This quality of the circuit is clearly
shown in Figure 13 As a design example, we will assume that a bandpass filter-
amplifier having Q@ = 50 and a Q sensitivity SK = 10 is required Irom Figure 11,
we find that K =42 and 0 = 0.8 Solving equation (13), for Ry gives a value of
0.045Q. From Figure 12 we find that the frecuency of maximum response is 12
rps, and from Figure 13, the system gain at w .. is found to be approximately

51 dB. The resulting network is shown in Figure 14 Although the gain required

is higher when the distributed RC line is used as compared to the lumped element
of Figure 5 the @ sensitivity to changes in the passive elements is considerably
reduced. Since only a single capacitor is used, changes in this capacitor cannot
produce any change in the system Q, that is S% = (. If the two resistors Ry and
1/ Gy of Figure 8 are constructed in such a manner that changes in their value due
to manufacturing tolerances or temperature will occur equally in both, then the @
sensitivity to changes in R and R taken together is also zero. We need to be
concerned, then, only with the @ sensitivity to active element change which is given
in Figure 11 and was used as a design specification in the example.

Conclusions

The use of phantom zeros in the right-half-plane provides an additional
parameter which allows a compromise between amplifier gain required and Q-
sensitivity-to-amplifier-gain-change for a given Q. The lumped element network
used was the twin-T with appropriately modified element values, and the signal
input point changed in order to produce a true second order bandpass function
Tapering the lumped element twin-T (k > 1) greatly reduced the gain required for
a given Q, and the Q-sensitivity-to-gain-change. A set of design charts are pro-
vided which allow one to obtain similar performance with a uniformly distributed
RC line. The use of a uniform RC line required considerably more amplifier gain
for a given Q than the lumped element network. The distributed line could also be
tapered, of course, and it would be expected that this would result in a considerable
decrease in the gain required for a given Q. Design charts are not yet available for
that case The primary advantages of the gain reduction obtained by the use of this
synthesis method are the capability of operation at higher frequency and the reduced
likelihood of parasitic oscillations.

The assistance of Greg Schaffer and Charles L. Shaffer in this work is
gratefully acknowledged.
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