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nttworlts has been described in detail b) Sallcn 6. K c j  (Rci 1) 
variations of the nchvorh which allou L of 
amplifier respcctively r igure 2 she\ e i L I  as a funcLion of I< foi  these 
two circuits The poles of the positii n s L i  leach the J W  a i s  at 11 = 3 0 7nd 

1 i,me 1 shons two 

L 

cross  the axis at right angles T b i  , ve s ~ s t e m  is absolutely stable Tnd 
achieves high Q by moving the p o i c b  d 01-1 trie oiigin as the magnitude of I< 
increases The importcant charactcris of se iw o neb\ o r  11 c shown i n  
Table I The sensitivity of Q to gain c ,e ,h ind n s it very difficu 
to  use the positive gain realization a A Q  Tne 11 tive gain reali- 
Lation minimizes this sensitivity JL dires very 11 =I , un  and requiies inoidi- 
nately large capacitors Lquired precludes the use of tnis method 
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The high g 1 

t 

'It either high Q o r  high frequency 
diffcrential voltage amplifier and a single feedback loop by using a feedback net- 
work having zeros of transmission (phantom LLros) on the JW axis as  shown in 
r igure 3a (Ref 2)  
?xis 2nd thcreby greatly reduce the Q sensitivity to amplifier gain change 
7eros prevent the poles from moving into the right half plane and thereby ensure 
an insensitive absolutely stable system The root loci for this network are shown 
in Figure 3b 
small for a large change in gain i f  the gain is high as it must be for hiLh Q Actu- 
' ~ l ly ,  the Q sensitivity is both small  and approximately constant (S&K +1) A s  can 
be scen the circuit complexity is increased (six passive elements a r e  required in 
order to obtain two complex poles) and the amplifiei gain required is relatively 
high (for Q = 50  K = 199), thereby severely limiting the high frequency capability 
of this c i r c u t  In addition the large amount of negative feedback well away from 
center frequenc can cause difficulty in amplifier stabilization due to incidental 
phase shifts caused by parasitic elements The configuration shown in Figure 3 3  
is 2 modified form of the phantom zero network in which one zero is located at  the 
01 igin and one at infinity so  that a true second-order band pass function is obtained 
This is done by applying the input signal to the normally grounded section of the 
twin-T 

A pair of complex poles can be obtaincd with a 

These phantom Leias terminate the complex pole loci at the J W  
The 

The reduction in Q sensitivity is evident since the pole motion is 

This work will describe the use of right-half-plane complex-phantom zeros 
to achieve a significant gain reduction for a given pole Q, thereby increasing the 
high fi equency capability without greatly increasing the Q sensitivity Network 
IcTlizations will  be shown foi both lumped and distributed RC networks Design 
equations a re  given for the lumped element case and design charts for the distrib- 
uted case 
change and the frequency of maximum response as a function of the real  part of the 
right-ha1 f-plane phantom zero position CT complete the design data 

Plots of the gain required for  a given Q of the Q sensitivity to gain 
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where 

Right I i a l  f Plane Phantom Zeros Using Lumped T.:lci-nents 

For  the twin-T shown in Figure 4 ,  the transfer function is 

The definition of b and k is indicated in Figure 4. If we now combine this net- 
work with a negative gain amplifier a s  shown in Figure 5, we produce a t rue band- 
pass function (one zero at D. C. and one at infinity) as given below: 

( P  - CY)P 
T(p) = -(Lj '* 

1 + K  p2-r [ ( P i - ~ K ) / ( l + K ) ] p + l  

K will be used to indicate the magnitude of the amplifier gain in  all of the 
following equations. The Q of the poles in equation (4) is 

1 t K  
p + a!K 

Q E  

and therefore the gain required for a given Q is 

PQ - 1 K =  1 - a Q  

(4) 

Note that negative values of a! (that is right-half-plane phantom zeros) reduce 
K,  and that small /3 is also advantageous. The system gain at center frequency, 
W o  = 1 rps,  is 

I€ we now determine the sensitivity of Q to changes in K we find that 

Since the root locus is circular,  the frequency sensitivity to changes in K is 
negligibly small at high Q. We are now in a position to select values of a! and /3 



(consistent with 11, k) to achieve a particular K to  Q relation, and then determilie 

is necessary to obtain an acceptable set of values. Note that CY = 0 gives SQ = 
the sensitivity SK Q If this is not acccptnble, a second iteration is usually all that 

K 1 4- I< 

If we take for example, b = 0.727, k = 1 0 ,  ( a  = -0.2, 1.” = 2 25) in  order to place 
the zeros in the right half plane and minimize ,f3, we find from equation (1) that the 
transfer function of the twin-T is 

The complex zeros are in the right half plane at p = g +  j w  = 0.1 Itj 0.995. 
Combining this network with a negative gain amplifier as in Figure 5 ,  we obtain the 
following transfer function 

/ \ 
T2(p) = -tL, a 2 . 4 8 ~  

1 + K j - 2  I 2 28 - 0.2K ~ , 

If we now select Q = 50, we f:m I;on~ ec,uatioii (6) that K = 10.3 is required, 
that the system gain at center frequency is [eq (7)], IT(p) l p  = 
sensitivity to amplifier gain change i s ,  Ley (8)1, S$ = 10.3 The reduction in gain 
and consequent increase in center frecpency capability by a factor of 19 3 compared 
to the symmetrical twin-T (when the real  part of the phantom zero position, 
(r = - a /2  = 0 ,  K = 199 for the symmetrical twin-T or  I( = 113 for the b,  k of this 
example when a = 0) is accompanied by a greatly increased freedom from parasitic 
oscillations. The Q sensitivity is increased, of course, but this is controllable by 
choice of 0 (and therefore a ) ,  and an appropriate compromise can be made between 
the gain reduction and the sensitivity increase. The gain reduction illustrated above 
is about as much as is practical. The Q sensitivity to changes in the passive ele- 
ments is quite complex, but if we look at the effect of changes in b o r  k ,  Figure 4 ,  
we find that the resonant frequency is independent of changes in b and k ,  that they 
affect a and p as given by equations (2) and (3),  and that the Q sensitivity to changes 
in a ,  and /3 are 

= 206, and that the 

- -  QPQ - a p ( 1  + K) 
SQ - 

p - ( p  - a )  ( p  + a K )  p - a 

Equations (11) and (12) show that the use of negative values of a increase the 
sensitivity to changes in either a o r  ,B and that these sensitivities increase with Q. 
This indicates that large negative values of a should be avoided, but of course, 
equation (8) also precludes the use of large negative values of a due to  the intoler- 
ably large Q sensitivity to amplifier gain change that results. The fact that S z  and 
SQ have opposite signs can be used to produce some degree of cancellation of the P 



hvo effects, hut, of course. t h i s  must be interpreted in terms of expectcd changes 
in 13, k Thc normalized resonant frequency [eq (lo)] is wo = 1 rps Appropriate 
impedance and frequency scaling can be used as desired 
unaffected by this scaling A single-tuned bandpass filter aniplifier was designed 
for use at a frequency of 4 78 MHz with a Q of 50. The values used were 

= - Q! = 0.1, and k = 10 .  This results in 13 = 0.727 from equation (2), and ,8 = 2.28, 
2 from equation ( 3 ) ,  as in the previous example and therefore that I< = 10.3 and S$ = 

10.3. The circuit is shown in Figure G The measured performance of this filter- 
amplifier is shown in Fig-ure 7 .  The actual gain required was  12.7 and as shown in 
Figure 7,  the center frequency was 4.55 MIlz. Since the discrepancy between com- 
puted and experimental gain requirements was significant, tests were  made at  a 
lower center frequency (50 kHz) to reduce the effect of stray capacities and ampli- 
fier phase shift. Good agreement was found between calculated and measured 
amplifier gain and center frequency While the 4.5 MHz filter performance as 
measured shows the indicated deviations in gain and center frequency due to these 
effects, the difference is not sufficiently great to prevent use of this network at 
high frequency in most applications 

The Q and the gain I< are 

Right Half Plane Phanbum Zeros Gsmg Distributed Elements 

The distributed RC network suiteir to the production of right-half-plane 
complex-zeros (Ref. 3)  is shown in Figure 8 The resistance and capacitance are 
assumed to be uniformly distributed. Computer analysis shows that this network 
has complex zeros as shown in Fig-ure 9.  Values of G1 for  specific complex-zero 
positions a r e  shown along the root locus. Note that for GI > 17 8 mhos, the zeros 
are in the right half plane. A s  can be seen from the network of Figure 8, the 
element complexity is considerably reduced. If right half plane zeros are chosen 
by proper selection of G1, the gain required is also considerably reduced as com- 
pared to jo axis, o r  left half plane zero positions, thereby enhancing the high 
frequency capability. The value of R1 (where R 1  = 1/G1) for any given value of the 
real part of the zero position, u, is approximately 

1 
17.80 + 5.400 $. 0.529u2 R1 2 (13) 

accurate to within &0.4% from 0 = 0 to CT = 5 0. This is more than adequate for most 
purposes since the choice of R1 is a compromise between the gain required and the 
resulting Q sensitivity, and is not at all critical. If we add a negative gain amplifier 
to the network of Figure 8 ,  and apply the input to the normally grounded resis tor ,  
R,, we obtain the circuit shown in Figure 10.  We now have an overall transfer 
function with a zero at D.C. and a zero at infinity. A digital computer program was  
used to determine the Q, the frequency of maximuim response, urnax, and the Q 
sensitivity, S$, as functions of the gain, and the real part of the right-half-plane 
phantom-zero position, u. Figure 11 shows the Q and the Q sensitivity, e, as 
functions of 
sensitivity to be easily made. After an appropriate choice of CJ from Figure 11, R, 
is determined by means of equation (13).  The value of urn= = wo as a function of 

and K. This allows an appropriate compromise between gain and 



I< and (7 is shown in  I* ig-ui-e 12 
of' K and CT is shown in I*'i;?urc 1 '3  Sotc  mat Llie arizplificr g x n ,  IC, required to pro- 
duce a given system gain is reduced as Cr is increased (phantom zeros moved pro- 
gressively further into the right half plr,:ic) 
shown in Figure 13 
amplifier having Q = 50 and a Q sensitivity S$ 2 10  is required 
we find that IC = 42 and IT zz 0 8 
0.045G. From Figure 12 we find that iiie frec,wncy of rilaximuni response is 12 
rps ,  and from Figure 13, the system gain at wlllLa is found to be approximately 
51 dB. The resulting network is shown in Figure 14 
is higher when the distributed RC! line is used as compared to the lumped element 
of Figure 5 the Q sensitivity to changes in the passive elements is considerably 
reduced. Since only a single capacitor is used, changes in this capacitor cannot 
produce any change in the system Q ,  Yfiat is S 2  = 0. If the two resis tors  Ro and 
l/G1 of Figure 8 are constructed in such a manner that changes in their value due 
to manufacturing tolerances or  temperature will occur equally in both, then the Q 
sensitivity to changes in R, and Ro talcen together is also zero 
concerned, then, only with the Q sensitivity to active element change which is given 
in Figure 11 and was used as a design specification in the example. 

inti tlic OL crai: systcrn gain at u ~ ~ ~ ~ : ~ .  :IS n iunctlon 

This quality of the circuit is clearly 
A s  a design example, we will assume that a bandpass filter- 

From Figure 11, 
Solvir?g equation (13), for  R, gives a value of 

Although the gain required 

We need to be 

Conclusions 

The use of phantom zeros in the right-half-plane provides an additional 
parameter which allows a compromise between amplifier gain required and Q- 
sensitivity-to-amplifier-gain-change €or a given Q .  The lumped element network 
used was  the twin-T with appropriately modified element values, and the signal 
input point changed in order to produce a true second order bandpass function 
Tapering the lumped element twin-T (k > 1) greatly reduced the gain required for  
a given Q ,  and the Q-sensitivity-to-gain-change. A set of design charts are pro- 
vided which allow one to obtain similar performance with a uniformly distributed 
RC line. The use of a uniform RC line required considerably more amplifier gain 
for a given Q than the lumped element network. The distributed line could also be 
tapered, of course, and it would be expected that this would result in a considerable 
decrease in the gain required for a given $. Design charts a r e  not yet available for  
that case The primary advantages of the gain reduction obtained by the use of this 
synthesis method are  the capability of operation at higher frequency and the reduced 
likelihood of parasitic oscillations. 

The assistance of Greg Schaffer and Charles 1;. Shaffer in this work is 
gratefully acknowledged. 
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