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In response to recent critcism, we show how to define the spectator equations for
negative energies so that charge conjugation invariance is preserved. The result,
which emerges naturally from the application of spectator principles to systems of
particles with negative energies, is to replace all factors of the external energies
W; by /W2, insuring that the amplitudes are independent of the sign of the
energies W;.
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I. INTRODUCTION

In a recent set of papers [1,2], Pascalutsa and Tjon have criticized the spec-
tator formalism by claiming that it violates charge conjugation invariance, C.
When applied to the self energy of a Dirac particle, X(po, p), this requirement is

CZ(po,p)C ! = X" (—po, —p) , 1)

where C is the Dirac charge conjugation matrix and the superscript T refers
to the transpose in the Dirac space. The spectator equations have been previ-
ously applied only to the positive energy subspace, and the transformation (1)
is the only one of all the transformations in the full Lorentz group that connects
states of positive and negative energy. Before it can be tested, the definition
of the spectator equations must be extended to negative energy. The claim of
Pascalutsa and Tjon that the spectator formalism violates charge conjugation in-
variance (and hence Lorentz covariance) follows from their consideration of how
the spectator equations should be extended to negative energy.

In this short paper we confirm that the extension of the spectator formalism
to negative energies proposed by Pascalutsa and Tjon does indeed violate C in-
variance, but that a more natural extension does not. Since the equations have
never been applied to negative energies before the work of Refs. [1,2], our discus-
sion is, strictly speaking, a proposal for how the equations should be extended
to negative energies in such a way as to preserve C invariance. We will show
that this extension is a natural and a fathful application of the basic principles
guiding the construction of the spectator theory.

In the next section we review the basic principles underlying the spectator
theory [3], and apply these principles to the study of systems with negative
energy. This leads naturally to the principle that all external energies, referred
to collectively as W;, should be interpreted as {W;| (or v/W2), insuring that the C
invariance condition (1) is trivially satisfied. In Sec. III we present some examples
in 141 dimension, where numerical results can be easily obtained without the
use of form factors. We summarize our conclusions in a final section.

II. PRINCIPLES OF THE SPECTATOR THEORY AND ITS
EXTENSION TO NEGATIVE ENERGIES

The principles of the spectator theory are illustrated by a simple A @2 ¥t¥
theory, where ¥ is a “heavy” fermion field of mass m (refered to as a “nucleon”)
and ¢ is a “light” self-conjugate boson with mass p (refered to as a “meson”).
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FIG. 1. The bubble (a) and “crossed bubble” (b) diagrams.

The one-loop diagrams in the theory are the second order bubble diagrams shown
in Fig. 1. Here P = (W, 0) is the total four-momentum of the pair, and p is the
external four-momentum of the heavy Dirac particle. While we assume a scalar
interaction for simplicity, all of our results are independent of the Dirc structure
of the interaction.

The Feynman integral for the bubble diagram (a) is

. dik (m+¥-k)
Z)u.(P) = l)‘z/ (271.)4 (/"2 — k2)(m2 - (P — k)z)

F(k% k- P, P?), (2)

where F is a function that depends on the form factors or regularization pre-
scription used in the calculation, and must depend on the arguments k2, k - P,
and P2. Changing P — —P and k — —k shows immediately that

Ta(~P) = CZ(P)CT, 3)

and the diagram is invariant under charge conjugation. A similar argument
works for the crossed bubble (b). Hence the four-dimensional calculation of these
diagrams is C invariant.

Now look at the spectator calculation of these two diagrams. The philosophy
underlying the spectator approach, as commonly stated, is to approximate the
diagram (a) by picking up the leading positive energy heavy particle pole, and
to lump all other contributions from these diagrams with the higher order terms
included if the calculation were to be carried out to third (or higher) order. Of
course, if we only need the result to second order (for example, when calculating
high energy scattering for a weak coupling when perturbation theory gives a
reliable result) it is simple enough to obtain the exact answer in this case. But



in the more general case (for example, when the coupling is strong or an infinite
sum of diagrams is needed at low energy of near bound state poles — even when
the coupling is small) then we will need a systematic approach which sums all
ladder and crossed ladder diagrams efficiently. For this simple theory, the bubble
diagram (a) plays the role of a fourth order ladder diagram [where

2 g2

s @

T

is the effective coupling from a very heavy meson exchange of very short range]
and the crossed bubble plays the role of the fourth order crossed ladder. [This
can be easily demonstrated by writing down these diagrams and letting the heavy
meson mass, M — o0]. :

Understanding of the mathematical and physical motivation behind the spec-
tator theory comes from a study of the singularities of the two bubble diagrams in
the complex ko plane. In the next section we will give a numerical demonstration
of the following discussion; here we focus on a qualitative understanding. The
two bubbles each have four poles in the complex kg plane. In the rest frame of
the two particles, the four poles for diagram 1(a) are at

ko = % (w(k) — ie)
=W — E(k) +ic

=W + E(k) — ie, (5) “

S
where w(k) = +/p? + k? and E(k) = vm? + k2. For diagram 1(b), the poles are
at

ko = £ (w(k) — ie€)
=W —2E(p) - E(k) + ie
=W — 2E(p) + E(k) — ic. , (6)

The location of these poles is shown in Fig. 2 for the case when k ~ 0, p ~ 0, and
|W| ~m+pu. When W > 0 [panels (a) and (b)] the coutour shown in the figures
is closed in the upper half plane, and encloses the negative energy meson pole
and [in panel (a)] the positive energy nucleon pole or [in panel (b)] the negative
energy nucleon pole. In panels (c¢) and (d) the opposite is true; the contour is
closed in the lower half plane and encloses the positive energy meson pole and [in
panel (c)] the negative energy nucleon pole or [in panel (d)] the positive energy
nucleon pole.

First suppose that the external energy is positive, and W =~ m+ p, so that the
location of the singularities is as given in panels (a) and (b). Closing the contour

(a) (b)
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FIG. 2. The poles in( t):he complex ko plane for the two d(iagrams shown in Fig. 1.
Panel (a) shows the poles for diagram 1(a) and panel (b) the poles for diagram 1(b)
when W = |[W| > 0. Panels (c) and (d) show the corresponding locations of the poles
when W = —|W| < 0. '

for diagram (a) in the upper half plane gives two contributions: the positive
energy nucleon pole and the negative energy meson pole. At first it looks like
the negative energy meson pole will introduce a large correction (because it is so
close to the nucleon pole), but it turns out that the contribution from the negative
energy meson pole is almost exactly cancelled by a similar contribution from the
crossed bubble (b), and hence the nucleon pole alone gives a very accurate result.
This will be demonstrated numerically in the next section. Hence, for W > 0,
the spectator result for both of the bubble diagrams in Fig. 1 is the nucleon pole
contribution from (a)

o [ &% (m+¥ -k
ES(W)’W>O =2 / (27)2 2E(k) [w2(k) — (W — E(K))?]

F(E%k-P,P%, (1)

where k = (W — E(k), —k). Since the internal energy of the nucleon is positive,
the internal energy cannot be changed and the argument used to demonstrate C
invariance for the four-dimensional calculation fails.

However, the same physics which lead to the selection of the positive energy
nucleon pole will yield a different result if the bubbles are to be evaluated at
a negative external energy W ~ —(m + u). Since negative external energies
are unphysical, this case was not considered in the original formulation of the
spectator theory. We look at it now.



For negative external energies W ~ —(m + p) the poles are as shown in
panels (¢) and (d). Now the role of the upper and lower half planes are changed,
and the negative energy nucleon pole dominates diagram (a), with the positive
energy meson pole giving the leading correction. Furthermore, as in the positive
energy case, this leading correction (from the positive energy meson pole now) is
cancelled by the contribution from the crossed bubble. Hence, for both diagrams
the same physical/mathematical argument yields, for negative energy,

o [ &% (m+¥ -k
zs(W)|w<o = / (27)3 2E(k){w2(k) — (W + E(k))’]

F(E* k- P P?%), (8)

where k = (W + E(k), —k). Comparing Eqs. (7) and (8) [after changing k — —k]
shows that

=CsL(W) cl. 9)

ZS(VV)‘W<Q - 2S(_lv‘/l)}WK(} w>0

This is the proof of C invariance we seek. Note that the natural extension of the
spectator equations to negative energy has lead to a result which can be obtained
from the positive energy result by using the transformation (9).

If we separate the Xg into scalar functions according to

E:S(‘/V)'W>O - x)A(VV)'W>0 + B(W)'W>O
ZS(W)!W<0 - PA(W)!W<0 + B(W)‘W<0 ’ (10)

then, from Egs. (7) and (8)

o[ @k mF@Ek-PP?
BW)| e = 2 / @) 2E(R) 2 (k) — (W — E(k))%]

oy [ A% m F(k?k - P, P?)
BW) w<o A (27)3 2B(k)[w?(k) — (W + E(k))?]
a2 [ Pk F(k?k- P, P?)
AW 50 =2 / @) 2W (w2 (k) — (W — E(k))7]

&#k  Fkk-PP?)

AWy o = T / (@) 2W [ (k) — (W + ER)] -

Hence

B(W)| - B(W)[

Ww<o

A0,y 400

Ww>0

. 12
Ww>0 (12)
These are precisely the properties of the scalar functions A and B required by C
invariance. They are possible because A and B for W < 0 are different algebraic
functions of W. The simple relationships (12) between the functions for W < 0
and W > 0 permits us to write them as a single function of [W1:

BW)| _ =BW)| _ =B(W|)=BNW?)
AW =AW = AwD) = AV, (13)

as stated in the introduction. While the rule (13) was only derived in this section
for a simple @*-type theory, examination of the details of the derivation will
convince one that it can be extended to the general case. ‘

We turn now to short numerical study of these results.

III. NUMERICAL EXAMPLES IN 141 DIMENSION

The discussion in the last section showed that the natural extension of the
spectator equations to negative energies preserves charge conjugation invariance.
In this section show that

e failure to use the prescription W — |W| when applying the spectator theory
to negative energies does indeed lead to very serious numerical errors, as
pointed out in Refs. [1,2], and

e the spectator approximation to the sum of the bubble and the crossed
bubble is a better approximation that the exact bubble diagram itself.

In order to keep the discussion simple and to the point, we limit these numer-
ical examples to the B function in 1+1 dimensions, where the integrals converge
without form factors [4]. Extension of the results to the A function, and to higher
dimensions yields similar results, but is complicated by the need for form factors
or cutoffs.

In 141 dimension, the B functions for diagrams 1(a) and (b) are



) d’k m
Bo(P) = 2>\2/ (2m)2 (% — K2)(mZ — (P — k)2)
, a2k m
By(P) = iX* / (@n)? (42 — K2)(m? — (P - 2p - k)%)

where the form factor function has been set to unity. These integrals are easily
evaluated. Numerical results for the case when M = m/u = 7, N2/(2np?) = 3,
p = (E(p),p), and W = E(p) + w(p), corresponding to scattering in the forward
direction, are shown in in Fig. 3. Note that the bubble (a) and crossed bubble

(14)

(b) are comparable in size, and that their sum (the heavy dotted line) is almost

identical to the positive energy (because W > 0!) nucleon pole contribution from
diagram (a) alone. This latter is

mA? dk

dr | E(k)[p? —m2 - W2+ 2E(k)W]

_omA? [ dx

=t |, TR EEWAT

where k = px and e(k) = vV M2 + k2 is the dimensionless form of E(k).

The Figure shows clearly that the spectator contribution gives a much better
description of the sum of the direct and crossed bubbles than that given by the
direct bubble alone. The reason is that the (large) contribution from the nearby
negative energy meson pole is cancelled by a similar contribution from the crossed
bubble diagram. Such a cancellation between ladder and crosses ladder diagrams
is the foundation of the spectator theory [3], but is was initially assumed that this
cancellation would only be important when light mesons were exchanged between
the scattered particles. Since a four point interaction is equivalent to the exchange
of an infinitely heavy meson [cf. Eq. (4) above], this discussion demonstrates
that the same cancellation is also important even if the effective mesons being
exchanged are very heavy. This has been recently noted by Pascalutsa and Tjon
[2] and by the author [5].

What should we do it there is no exchange term (exchange bubble in our
example)? This situation could arise in a p3-type theory, for example the familiar
theory Ufys¥¢. In this case the lowest order self energy diagram would be
a bubble of the type shown in Fig. 1(a), and there would be no contribution
similar to diagram 1(b). Hence there is no diagram to cancel the negative energy
meson pole, and the taking the positive energy nucleon pole will not give a good
description of the full result. For this reason, Surya and I [6,7] decided to use
spectator equations based on the positive energy meson pole, which would emerge
by closing the contour in Fig. 2(a) in the lower half plane. The positive energy

Bs(W) = —

(15)
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FIG. 3. The scalar functions B/m for the bubble and “crossed bubble” shown in
Fig. 1. The light solid line is the exact bubble, B,, the dashed line is the crossed
bubble, B, (for forward scattering), the heavy dotted line is the sum, and the heavy
solid line is the positive energy nucleon pole contribution, Bs.

meson pole which is isolated in this way is very distant from the negative energy
nucleon pole and gives a good approximation to the exact bubble. Of course one
could just asd well calculate the bubble exactly, but we intended to eventually
imbed the equations in the N N7 system, and wanted to preserve the spectator
formalism in a three body system [8].

As shown in Fig. 4, the positive energy meson pole does an excellent job
approximating the exact result for the direct bubble 1(a) [the solid line and the
dotted line agree very well]. However, if W < 0, the positive energy meson
pole gives a very different result. This positive energy meson pole contribution
for negative W' is identical to the negative energy meson pole contribution for
positive W, and this is the result shown (the dashed line) in the figure. We see,
in agreement with Refs. [1,2], that using the positive energy pole for both W > 0
and W < 0 violates C invarinace very significantly. However, if the positive
energy pole is used when W > 0 and the negative energy pole when W < 0, as
suggested by the spectator philosophy, the results are identical and C invarinace
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FIG. 4. The scalar function B/m as a function of the scaled energy W/m. The
solid line is the positive energy meson pole contribution to B,(W); the dashed line is
the negative energy meson pole contribution, and the dotted line is the exact result
(identical to Fig. 3).

is satisfied. This brings us back to the discussion and derivation in the previous
section.

IV. CONCLUSIONS

In this paper we have shown that

o the spectator equations satisfy charge conjugation invariance exactly pro-
vided the on-shell internal particle(s) are on their positive energy mass-shell
when the external energies are positive, and on their negative energy mass-
shell when the external energies are negative;

o this requirement is equivalent to extending the positive energy spectator
theory to negative energies by replacing all external energies W; by |W;| =
/W2, and is consistent with the spectator philosophy;

10

e spectator equations with the the heavy particle on-shell should be used in
all cases when there are exchange forces; and

e spectator equations with the light particle on-shell (or the Bethe-Salpeter
equation) should be used if there are no exchange forces.

We close this discussion by emphasizing that the simplified one channel spec-
tator theory described in this paper cannot be used when it is important to get
an accurate description of the self energies or scattering amplitudes in a region
where the external energy W is near zero. The simplified treatment described
here has unphysical singularities at W = 0 [clearly evident in Eq. (8)], and un-
physical cuts for W2 < 0. In studies of the pion, where chiral symmetry requires
an accurate description near m, = W ~ 0, and C invariance requires that the ¢¢
system be treated symmetrically, the four channel spectator equation originally
introduced in Ref. [9] must be used.
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