
1. Introduction

In a previous paper [1] this author derived mathemat-
ically rigorous expressions for the classical Rayleigh-
Sommerfeld and Kirchhoff boundary-value diffraction
integrals pertaining to circular apertures and slits illu-
minated by normally incident plane waves. In spite of
their functional differences, these diffraction integrals
were found to be surprisingly similar and nearly indis-
tinguishable in most of the near zone. They exhibited
significant differences only in the immediate proximity
of the aperture, but in this region their physical proper-
ties were obscured by the fact that they or their normal
derivatives, or both, do not reproduce the assumed inci-
dent field. In these circumstances it was not possible to
assess their physical significance by merely comparing

them to one another. In the present paper, they will be
re-examined by applying them to the specific case of
diffraction by a reflecting half plane and their physical
properties will be interpreted in the context of
Sommerfeld's [2] rigorous theory of half-plane diffrac-
tion and Maxwell's equations.

2. Comparison of Scalar Wave Functions

The scalar wave functions U discussed in this paper
all denote the complex disturbance at a point of ob-
servation P(x, y, z) in the diffraction pattern of a per-
fectly conducting, infinitesimally thin, semi-infinite
screen that occupies the half plane x > 0, z = 0 of a
cartesian coordinate system, as depicted in Fig. A1 of
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Appendix A. The primary field is assumed to be a
monochromatic plane wave with irradiance E0, wave-
length λ, and circular wave number k = 2π/λ that is
normally incident from the half space z < 0 and is
plane polarized so that, in accordance with Maxwell's
equations, ∂U/∂z or U are continuous and equal to
zero on crossing the screen. The resulting diffraction
pattern is independent of y and will be denoted by

so that we have |u| ≤ 1.
Sommerfeld's half-plane theory dates back to the late

1800s and used to be discussed at length in textbooks
[3-5]. However, it appears to be no longer included in
modern curricula of theoretical optics, and therefore its
main features are summarized and supplemented by
new expressions for the diffracted irradiance in
Appendix A, below. On combining Eqs. (A3a-c) and
(A8a,b) of Appendix A it follows that, for normally
incident light, Sommerfeld's solution is reduced to

(1a)

(1b)

(1c)

where and V(ρ) is the complex Fresnel-
type integral defined by Eq. (A3d). These expressions
are rigorously valid everywhere in the xz-plane of Fig.
A1, except that along the x-axis ρ and ρ must be eval-
uated as

(1d)

(1e)
where z = ±0 refers to the positive and negative sides of
the screen, respectively. This distinction is necessary
because and are discontinuous on cross-
ing the screen, and is taken into account in
Sommerfeld's theory by “wrapping” the diffracting half
plane in a semi-infinite, two-sided Riemann surface so
that its positive and negative sides are distinguished by
the values 2π and 0 of the polar angle φ in Fig. A1.

The corresponding results given by the Rayleigh-
Sommerfeld theory are obtained from Eqs. (10a,b) of
Ref. [1] by suitably modifying the limits of integration,
leading to

(2a)

(2b)

where are Hankel functions of the first
kind and nth order. These expressions are valid for
z > 0, only, and will be supplemented in this paper by
the assumptions made in their derivation for z ≤ 0;
namely,

(2c)

and

(2d)

respectively.
Kirchhoff's diffraction integral, which will be required
for the discussion in Sec. 3 is equal to the arithmetic
mean of the Rayleigh-Sommerfeld integrals (2a,b),

(2e)

and can therefore be easily deduced from the above
expressions.
In the paraxial Fresnel approximation where z is posi-
tive and large compared to λ and x/z is small all of the
above-mentioned solutions converge to the familiar
Fresnel limit uF. That is,

(3a)

where the right-hand expression follows from Eqs.
(1a-c) by letting so that

The same
result is obtained from Eqs. (2a,b) on replacing , 

, and β by the leading terms of their asymptotic and

Volume 108, Number 1, January-February 2003
Journal of Research of the National Institute of Standards and Technology

58

0 ( , ),U E u x z=

( , )
S S S

i i
S S

ˆ     ( , ) ,
ˆˆe V( ) , e V( ),

p s

kz - kz

u x z u u

u uρ ρ
=

= =

∓

2 [ sign( ) ],  0,z r x r x zρ
λ

= − + − − ≠

2ˆ [ sign( ) ],  0,z r x r x zρ
λ

= − + + − ≠

2 2r x z= +

 ̂

| | | |ˆ2 ,  2sign( ) ,  0,x xx zρ ρ
λ λ

= = = −

| | | |ˆ2sign( ) ,  2 ,  0,x xx zρ ρ
λ λ

= − = − = +

( )
S

pu ( )
S /su z∂ ∂

( ) (1)
RS 0( , ) d( )H ( ),

2

x
p ku x z xξ β

−

−∞

= −∫
2 2( ) ,  0,k x z zβ ξ= − + >

(1)2
( ) 1
RS

H ( )i( , ) d( ) ,  0,
2

x
s k zu x z x zβξ

β

−

−∞

= − >∫

(1)H J iYn n n= +

( )
( )RS
RS

( , 0)
i  or 0,   ( , 0) 1 or 0,

          0 or 0,   for 0,

p
su x

k u x
z
x x z

∂ +
= + =

∂
< ≥ = +

( , ) i i i
RS ( , ) e  or (e e ),

     0 or 0,  for 0

p s kz kz kzu x z
x x z

−=
< ≥ ≤ −

∓

( ) ( )
K RS RS

1( , ) [ ( , ) ( , )],
2

p su x z u x z u x z= +

( , ) ( , )
S RS K F

i

( , ) ~ ( , ) ~ ( , ) ~ ( , )

2         e V ,   | |,( )

p s p s

kz

u x z u x z u x z u x z

x z x
zλ

= − >>

~ [1 /(2 )],r x z x z± ±
1

S Sˆ ˆ2 / ,  8 / ,  and .x z z u uρ λ ρ λ= − = − <<
(1)
0H

(1)
1H

1 For large negative values of z, Sommerfeld’s theory also yields a
comlementary term for the Fresnel approximation of the reflected
diffraction pattern on the lit side of the half plane.



Taylor expansions. The Fresnel approximation, Eq.
(3a), is estimated to be accurate within 1 % for z >>
100λ.

For numerical applications it is also useful to know
that the above solutions all predict the same value,

(3b)

in the positive shadow boundary (x = 0, z > 0). In the
case of the Rayleigh-Sommerfeld integrals, Eqs. (2a,b),
this result follows from the identity

(3c)

and was used in this work as the starting value for
recursive numerical integrations as described in Ref.
[6].

The above expressions for and
were used to compute the squared magnitudes of these
functions in the immediate proximity of the positive
and negative sides of the aperture plane, as shown in
Figs. 1 and 2. For these computations, Eqs. (2a,b) were
evaluated as noted above and the Fresnel sine and
cosine integrals required for the computation of V(ρ)
and were evaluated using the algorithms of Ref.
[7]. The main conclusions drawn from these results are
as follows.

(1) On the positive side of the aperture plane the
Sommerfeld and Rayleigh-Sommerfeld solutions are
surprisingly similar, even at very small distances z. The
real and imaginary parts of contribut-
ing to the results plotted in Fig. 1 agree within ± 1 % or
better for z = 0.1λ, and additional computations
showed that this agreement improves rapidly for larger
values of z. It follows that for all practical purposes the
Rayleigh-Sommerfeld integrals are adequate for com-
putations throughout the positive near zone, and hence
it may be inferred that this will also be the case for the
corresponding solutions for circular apertures and slits
derived in Ref. [1].

(2) The agreement for negative values of z is unsat-
isfactory. In Sommerfeld's theory diffraction manifests
itself as a field phenomenon that occurs on both sides
of the aperture plane, so that the incident geometrical
field is modified before it reaches the screen. On the
other hand, in the Rayleigh-Sommerfeld theory diffrac-
tion on the source side is explicitly ruled out, and here
the results obtained from Sommerfeld's theory show
that the assumed geometrical field (2d) is only a crude

approximation of the true field. Thus, the main problem
with the Rayleigh-Sommerfeld and Kirchhoff integrals
appears to be not so much that they fail to reproduce the
assumed geometrical field values, but that the latter are
themselves objectionable.

The residual differences between for
z > 0 can be attributed to the imperfect boundary condi-
tions assumed in the Rayleigh-Sommerfeld theory.
These boundary values are step functions that violate
the wave equation and are the probable cause of the
fact, shown in Appendix B, that the Rayleigh-
Sommerfeld integrals also do not obey the wave equa-
tion in the immediate proximity of the aperture plane.
Although this wave-equation failure is small in most of
the near zone, and thus unimportant for practical pur-
poses, it is worthwhile to mention that it might be reme-
died by replacing the boundary values Eq. (2c) with the
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corresponding values given by Sommerfeld's theory for
z = +0; namely,

(4b)

The real and imaginary parts of these functions are
plotted in Fig. 3, where it should be noted that
is discontinuous and singular, and  is not continu-
ously differentiable, for x = 0. Nonetheless, they consti-
tute improved boundary values because Sommerfeld's
theory obeys the wave equation even at the diffracting
edge itself (see Appendix B).

When Eqs. (4a,b) are substituted into the derivation
of the Rayleigh-Sommerfeld integrals for the half plane
one finds

(4c)

(4d)

where the integration now extends from –∞ to +∞.
Because the boundary values Eq. (2c) and Eqs. (4a,b)
are the same for x < 0 and the former are zero for x ≥ 0,
this can be rewritten as
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Fig. 2. (-----) and (–—) vs x/λ at the
distance z = –0.1λ from the aperture plane.
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Fig. 3. Real (–—) and imaginary (-----) parts of the boundary values
Eqs. (4a,b) predicted by Sommerfeld's theory for p- and s-polarized
lincident light.

( )
( ) (1)S
S 0

( , 0)
( , ) d( ) H ( ), 0,

2

p
p u xku x z x z

z
ξ β

∞

−∞

∂ +
≡ − ≥

∂∫

(1)2
( ) ( ) 1
S S

H ( )i( , ) d( ) ( , 0) ,  0,
2

s sk zu x z x u x zβξ
β

∞

−∞

≡ − + ≥∫



(4e)

where

(4f)

(4g)

are correction terms that can be added to the Rayleigh-
Sommerfeld integrals to convert them to the exact val-
ues given by Sommerfeld's theory. These expressions
should be free of errors because Eqs. (4c) and (4d) are
rigorous expressions of the Helmholtz' theorem in
which and are the same on both sides of the
equal sign.

This method was originally proposed by Braunbek
[8-10], who envisioned its use for constructing
improved solutions for large apertures of finite width
and are bounded by straight or even curved edges.
Braunbek's work involved the assumption that

and rapidly become negligibly small on
the dark side of the screen, so that the effective ranges
of integration in Eqs. (4f,g) are only a few wavelengths
wide and approximative methods can be used.
According to Fig. 3 this is a valid assumption for

but not for , so that computational difficul-
ties could be encountered in the case of .

3. Irradiance and Energy Flow

Although the squared magnitudes of scalar wave
functions are commonly identified with the irradiance
of the field, the data plotted in Figs. 1 and 2 must not
be interpreted in this manner. The diffracted field spec-
ified by Sommerfeld's solution is a bidirectional field
composed of two plane waves, uS and ±ûS which prop-
agate in the opposite directions of the incident primary
field and its reflection from the screen. When
Maxwell's equations are invoked, as in Eqs. (A5)
through (A7) of Appendix A, it is found that in accor-
dance with the principle of interference these waves
cannot interfere with one another2 so that the effective
energy flow is composed of mutually incoherent com-

ponents in the forward and reverse directions. For nor-
mally incident light, these respective directions are par-
allel and anti-parallel to the unit vector n = [0,0,1] in
the direction of the positive z-axis, and the final expres-
sion for the time-averaged Poynting vector (A7c) is

(5)

where ES and ÊS are the forward and reverse irradiances
incident on the opposite sides of any given area element
dx dy containing the point of observation P.3 These irra-
diances are given by the squared magnitudes of the
basic Sommerfeld functions uS and ûS themselves, and
thus the quantities |uS – ûS|2 or |uS + ûS|2 do not represent
the irradiances of the field for p- and s-polarized light.
Accordingly, the forward and reverse irradiances of the
field are independent of the state of polarization of the
incident light, and in this connection it should also be
noted that in practice the reverse irradiance ÊS is not
easily observable as it may be obscured by a detector
placed in the path of the forward field.

It now seems reasonable to interpret the Rayleigh-
Sommerfeld theory in a like manner, so that the quanti-
ties and defined by Eqs. (2a,b) are also regard-
ed as bidirectional wave functions that can be resolved
into mutually incoherent forward and reverse compo-
nents, uK and ûK. Thus we define, in analogy to Eq. (1a),

and hence it follows that the corresponding forward and
reverse irradiances, EK and ÊK, will be given by an
expression analogous to Eq. (5),

(6b)

It will be noted that the forward wave function uK

defined by Eq. (6a) and Kirchhoff's integral (2e) are
identically the same, and therefore the subscript “K”
was retained in the above equations. The Kirchhoff and
Rayleigh-Sommerfeld solutions were originally
derived on the mutually exclusive assumptions of black
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2 Except for grazing incidence, where interference can occur as in
Fresnel’s mirror experiment.



and metallic screens, and it is generally agreed that Eq.
(2c) has no definable physical meaning as it would
somehow imply the coherent superposition of two
orthogonal states of polarization. However, in the pres-
ent context, the Rayleigh-Sommerfeld integrals are
interpreted as composite quantities and taking their sum
and difference is tantamount to resolving them into
their basic components. Accordingly, Kirchhoff's inte-
gral uK now appears as an integral part of the Rayleigh-
Sommerfeld theory for metallic screens so that and

provide the framework for the evaluation of all
field parameters while uK and its counterpart ûK define
the flow of field energy. This new interpretation of
Kirchhoff's integral has a precise, physically realizable
meaning.

A numerical comparison of the forward irradiances
ES and EK defined by Eqs. (5) and (6b) is presented in
Figs. 4 and 5. As expected, these quantities are essen-
tially the same on the positive side of the aperture
plane, the agreement being on the order of a few per-
cent for z = +0.1λ and increasingly better for larger val-
ues of z. This confirms that the identification of |uK|2
with the forward irradiance EK is a valid assumption. As
also expected, the agreement is poor on the negative
side because in this region EK represents only the undif-
fracted geometrical field. The even symmetry of the
irradiance Es shown in Fig. 5 suggests that the modifi-
cation of the geometrical field due to diffraction is
isotropic in the immediate vicinity of the edge.

4. Conclusions

The above comparison of the classical Rayleigh-
Sommerfeld boundary-value theories with
Sommerfeld's rigorous theory for diffraction by a per-

fectly reflecting half plane has added substantially to
the understanding of the physical significance of these
theories.

It was found that the mathematical expressions and
algorithms presented in Ref. [1] for the Rayleigh-
Sommerfeld integrals are in very satisfactory agree-
ment with Sommerfeld's half-plane theory. Thus, they
are well suited for computations in most of the positive
near zone, and it is inferred that this will also be the
case for the corresponding Rayleigh-Sommerfeld inte-
grals and slits derived in Ref. [1]. Sommerfeld's theory
also confirms that, on the whole, the differences
between these respective solutions for p- and s-polar-
ized incident light are small so that polarization effects
are small, as might be expected for normally incident
light. All in all, it appears that the use of Helmholtz'
theorem has proved remarkably effective in compensat-
ing for the inadequate boundary conditions assumed in
deriving the classical boundary-value integrals. The
residual differences between the Rayleigh-Sommerfeld
and Sommerfeld solutions are confined to sub-wave-
length differences from the screen, and it is shown in
Appendix B that in this region the former do not obey
the wave equation.

The comparison with Sommerfeld's theory and its
interpretation in terms of Maxwell's equations has also
revealed a previously overlooked aspect of diffraction
by a reflecting screen; namely, that the optical field is
bidirectional and comprises light traveling in opposite
directions even on the positive side of the screen.
According to the principle of interference, the observ-
able Poynting vector is given by the incoherent vector
sum of its components in the forward and reverse com-
ponents, and thus it is impermissible to express the
near-zone irradiance of the field as the squared magni-
tudes of scalar wave functions. Rather, the latter must
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be resolved into their forward and reverse component
and it turns out that Kirchhoff's integral is the appropri-
ate expression for the forward irradiance of the field
even in the Rayleigh-Sommerfeld theory. The forward
and reverse irradiances were found to be independent
of the state of polarization of the incident field.

It was noted that the residual deficiencies of the
Rayleigh-Sommerfeld and Kirchhoff solutions in the
proximity of the positive aperture plane can be
removed by replacing the originally assumed boundary
values with those predicted by Sommerfeld's theory.
This was not be pursued further as it would produce
only marginal improvements on the positive side of the
screen, without removing the problem that the classical
boundary-value integrals all exhibit discontinuities
with respect to the incident geometrical field. A more
effective approach would be the derivation of improved
approximations for the entire field by constructing ana-
lytical continuations of the existing boundary-value
solutions into the half space z ≤ 0. This will be attempt-
ed in a subsequent publication.

5. Appendix A. Sommerfeld's Half-Plane
Theory

In Sommerfeld's rigorous treatment of diffraction by
a straight edge the screen is assumed to be a perfectly
conducting, infinitesimally thin, semi-infinite sheet that
covers the half-plane x > 0, z = 0 of the Cartesian coor-
dinate system in Fig. A1. It is assumed, further, that the
primary field is a monochromatic plane wave, p- or s-
polarized with respect to the xz-plane and incident upon
the screen in a given angular direction α. As the optical
field so defined must be independent of y it will be con-
venient to use cylindrical coordinates (r,φ,y) given by

(A1a)

so that φ and α are measured clockwise from the posi-
tive x-axis, and the illuminated and shaded sides of the
screen are distinguished by φ = 0 and 2π, respectively.4
In this notation, the primary field, its reflection by the
screen, and the unit vectors in their respective direc-
tions of propagation are

(A1b)

where the time factor of the field is assumed as e–iωt,
k = 2π/λ is the circular wavenumber of the light, E0 is
the incident irradiance, and the dual sign of Ugeom

accounts for polarization-dependent phase changes on
reflection.

According to these definitions, the diffracted field at
a given point P(r,φ) must obey the scalar wave equa-
tion,

(A2a)

as well as the boundary conditions for φ = 0 and φ = 2π,

(A2b)

according as the light is p- or s-polarized. Furthermore,
in the limit these solutions must correspond to
the optical field according to geometrical optics, and in
this respect it is necessary to distinguish three regions
of space as indicated in Fig. A1:
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I. The reflection space (0 < φ < α), where the inci-
dent and reflected waves are both present and the geo-
metrical field is 

II. The transmission space (α < φ < α + π), where
only the incident wave is present and the geometrical
field is 

III. The shadow space (α + π < φ < 2π), where the
geometrical field is zero.

Sommerfeld's solution of the diffraction problem so
defined is:

(A3a)

(A3b)

(A3c)

(A3d)

where C(ρ) and S(ρ) denote the usual Fresnel cosine
and sine integrals.

Although the derivation of these expressions is too
complicated to be included in this paper, it is not diffi-
cult to verify that they have the following properties:

(1) As shown in Appendix B, uS and ûS obey the wave
equation, Eq. (A2a), everywhere in space, inclusive of
the diffracting edge itself. They represent plane waves
which propagate with space-dependent amplitudes,
V(ρ) and V(ρ), in the respective directions of the unit
vectors, Eq. (A1c). Except in the reflection space and at
small distances r from the diffracting edge, ûS is signif-
icantly smaller than uS, and in the limit r → ∞ Eqs.
(A3a,b) are reduced to the above-mentioned geometri-
cal solutions.

(2) In addition to the usual plane-wave components
which are proportional to uS and ûS themselves, the
derivatives,

(A4a)

(A4b)

contain terms which involve the derivatives of V(ρ)
and V(ρ) with respect to r and, thus, are singular as

at the diffracting edge. This suggests the exis-
tence of cylindrical waves which originate at the edge,
but nonetheless the edge does not radiate energy.
Although the radiant intensity I of the edge is infinite as

, the radiant flux IdΩ emitted into any given solid
angle element dΩ = rdφ dy is zero as r → 0. These
cylindrical waves are evanescent and vanish in the limit
r >> λ.

(3) Equations (A3b) and (A4a,b) show that (uS – ûS)
and ∂(uS – ûS)/∂x are continuous on crossing the screen
(φ = 0 → φ = 2π), whereas ∂(uS – ûS)/∂z is not.
Conversely, ∂(uS + ûS)/∂z is continuous, whereas (uS –
ûS) and ∂(uS + ûS)/∂x are discontinuous. These are the
expected properties of the tangential (magnetic or elec-
tric) field vector components when the light field is
polarized parallel or perpendicular to the diffracting
edge, and thus it is permissible to apply Maxwell's
equations in the form

(A5a)

(A5b)

where m = [0,1,0] is the unit vector in the direction of
the positive y-axis, ε and µ are the dielectric constant
and magnetic permeability of the medium of propaga-
tion, and normalization factors were used so that the
squared field vectors have the dimension of irradiance
[W/m2]. On substitution of the derivatives Eqs. (A4a,b)
and re-arranging terms, this leads to
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where

(A6c)

are the unit tangent vectors indicated in Fig. A1, and

(A6d)

are unit vectors in the directions of the above-men-
tioned evanescent cylindrical waves. The middle por-
tions of Eqs. (A6a) and (A6b) are equivalent to the
expressions cited by Bouwkamp [11] for the electro-
magnetic field components given by Sommerfeld's
solution. However, it appears that their representation
in terms of the unit vectors defined by Eqs. (A6c,d) has
not previously appeared in the literature.

(4) Equations (A5a,b) and (A6a,b) express each of
the electromagnetic field vectors as the sum or differ-
ence of two components which, like Sommerfeld's
wave functions u and û themselves, are easily recog-
nized as representative of a forward or reverse wave
motion. It is obvious that these components must be
mutually incoherent because, in all cases of practical
interest, they propagate in opposite or nearly opposite
directions, thus precluding any interference between
them. Therefore, the corresponding Poynting vectors
are given by the expressions

(A7a)

(A7b)

where it must be also be taken into account that, as
mentioned above, the terms in have no energetic
significance. Thus, these terms must be ignored and the
following simple result is obtained for the observable
Poynting vectors [5] of the field,

(A7c)

where ES and ÊS are the forward and reverse irradi-
ances5 incident on area elements normal to the unit vec-
tors in the directions of propagation of the incident and
reflected field,

(A7d)

as indicated in Fig. A1. These equations are not a part
of Sommerfeld's original theory and may be interpreted
as follows:

(a) In the vicinity of the diffracting edge the wave
functions uS and ûS , and thus the forward and reverse
irradiances ES and ÊS as well, are similar in magnitude.
Therefore, light traveling in both directions is present
on both sides of the screen except, in the Fresnel
approximation where ûS is negligibly small. This is a
significant departure from the classical formulation of
Huygens' principle, where a reverse flow of energy on
the positive side of the aperture is precluded by the
explicit assumption that light does not travel back-
wards. Instead, Sommerfeld's theory asserts the pres-
ence of a bidirectional flow of energy on both sides of
the aperture plane, and in this connection it is relevant
to cite two earlier papers on Sommerfeld's theory by
Braunbek [12] and Braunbek and Laukien [13]. The lat-
ter includes an interesting diagram depicting a swirling,
bidirectional flow of energy at sub-wavelength dis-
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respectively



tances from the diffracting edge. Although it appears
that Braunbek and Laukien assumed a coherent super-
position of the forward and reverse fields, the eddy cur-
rents shown in their diagram can be regarded as
Maxwellian analogues of Huygens' wavelets.

(b) In spite of the explicit assumption of separate
boundary conditions for p- and s-polarized incident
light, the forward and reverse irradiances ES and ÊS

defined by Eq. (A7c) are the same in both cases. The
composite wave functions pertain to different
states of polarizations only insofar as their phases are
concerned, but their squared magnitudes cannot be
used to describe the energy flow in the field as they
contain non-observable cross terms in uSûS. This dis-
tinction disappears in the Fresnel region, where the
field on the positive side of the aperture plane is unidi-
rectional (ûS << uS) and the usual definition of irradi-
ance as the squared magnitude of the total wave func-
tion is justified.

(6) For a normally incident field (α = π/2) one finds

(A8a)

(A8b)

Hence, the starting equations in Secs. 2 and 3 of the
main text are obtained by using Eqs. (A1a) to reintro-
duce Cartesian coordinates and noting that the sine
term in the central portion of Eq. (A8b) is always posi-
tive, while the cosine term and z are opposite in sign.

6. Appendix B. Wave-Equation
Conformance

It is commonly agreed that one of the most important
measures of the physical significance and mathematical
rigor of scalar diffraction theories is whether, or how
well, they satisfy the wave equation [Eq. (A2a)]. In this
appendix, this aspect of the Sommerfeld and Rayleigh-
Sommerfeld theories is analyzed. It is shown that
Sommerfeld's solution obeys the wave equation rigor-
ously everywhere in space, whereas the Rayleigh-
Sommerfeld integrals (and, thus, Kirchhoff's integral as
well) exhibit deviations from the wave equation in the
immediate proximity of the aperture plane.

6.1 Sommerfeld's Solution

In this subsection, Sommerfeld's solution (A3a-d)
will be written as

(A9a)

Thus, ∂/∂φ = ∂/∂β and

(A9b)

(A9c)

(A9d)

(A9e)

(A9f)

Hence it follows immediately that the wave equation,
Eq. (A2a), is rigorously satisfied. It should be noted
that this is true everywhere in space, even at the dif-
fracting edge itself where each component of the
Laplace operator is singular.

6.2 Rayleigh-Sommerfeld Integrals

In this next subsection, the wave equation
conformance of the Rayleigh-Sommerfeld integrals
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(x, z) is analyzed by computing numerical values
of the quantities,

(A10a)

which would everywhere be identically equal to zero if
the wave equation is satisfied. For this purpose, the first
and second derivatives of the Hankel functions appear-
ing in Eqs. (2a,b) are evaluated by means of the identi-
ties

(A10b)

(A10c)

Hence, the required x-derivatives of are found by
differentiating Eqs. (2a,b) with respect to the upper
limit of integration, yielding

(A10d)

(A10e)

and the z-derivatives are obtained by substitution of

(A10f)

(A10g)

into Eqs. (2a,b). The final expressions are

(A10h)

(A10i)

The integrals on the right-hand side of these expres-
sions were evaluated by recursive numerical integration
as described in Ref. [7]. In accordance with Eq. (3b),
the starting values used for these computations were

(0, z) = 0.
The real and imaginary parts of (A10h,i) are plotted

in Fig. A2 for z = 0.1 , showing that at this distance the

Volume 108, Number 1, January-February 2003
Journal of Research of the National Institute of Standards and Technology

67

2 2
( , ) ( , )
RS RS2 2 2

1( , ) 1 ( , ),p s p sw x z u x z
k x z

  ∂ ∂= + +  ∂ ∂  

(1) (1) (1)
(1)0 1 2
1

dH ( ) H ( ) ( )dH ( ),  ,
d d

Hβ β ββ
β β β β

 
= − = − 

 

(1)(1) 2 2
32

2 2

( )H ( )d ,  ,  .
d

H k x k z
x z

ββ β β
β β ββ β

  ∂ ∂= − = =  ∂ ∂ 

( ) (1) ( ) 2 (1)
RS 0 RS 1

2 2

H ( ) i H ( )
,  ,

2 2

                  ,

p s
x x

x

x

u k u k z
x x

k x z

β β
β

β

∂ ∂
= =

∂ ∂

= +

2 ( ) 3 (1) 2 ( ) 4 (1)
RS 1 RS 2
2 2 2

H ( ) i H ( )
,  ,

2

p s
x x

x x

u k x u k xz
x x

β β
β β

∂ ∂
= − = −

∂ ∂

2 (1) (1) 2 (1)
20 1 2

2 2

H ( ) H ( ) ( ) H ( )
,

kzk
z

β β β
β β

 ∂
= − − ∂  

2 (1)2 (1) (1)2 4
31 2

2 2 3

( ) H ( )i H ( ) 3H ( )i ,
2 2

kzk z k z
z

ββ β
β β β

  ∂ = − −  ∂    

(1)
( ) 1
RS

(1) 2 (1)
(1) 1 2
0 2

H ( )
( , )

H ( ) ( ) H ( )
d( ) H ( ) ,

2

p x

x

x

kx
w x z

kzk x

β
β

β βξ β
β β

−

−∞

= −

 
+ − − + 

 
∫

2 (1)
( ) 2
RS 2

2 (1)(1) (1)2
31 2

2 3

i H ( )
( , )

( ) H ( )H ( ) 3H ( )i d( ) .
2

s x

x

x

k xzw x z

kzk z x

β
β

ββ βξ
β β β

−

−∞

= −

 
+ − − + 

 
∫

Fig. A2. Real (–—) and imaginary (-----) parts of the quantities
defined by Eqs. (A10h,i) at the distance z = +0.1λ from the aperture
plane.

( , )
RS

p su

( , )
RS

p su

( , )
RS

p sw

a

b



wave-equation failure is substantial. Additional compu-
tations indicated that the corresponding values of

(x, z) decrease at larger distances z, but fall below
0.01 only when z > 30λ so that calculable departures
from the wave equation are present throughout the near
zone. This is not surprising because, otherwise, the
Rayleigh-Sommerfeld and Kirchhoff boundary-value
integrals would be rigorously correct. On the other
hand, the above results are at odds with a fallacious
belief that these integrals must obey the wave equation
because their integrands do. The fact of the matter is
that the assumed boundary conditions Eqs. (2c,d)
abruptly truncate the incident field at the edge and,
thus, transform these integrands into discontinuous
functions that violate the wave equation.
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