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Figure � seq Apend \*Alphabetic \c �A�-� seq figs �1�.  Example of a GN Geodetics and Mask File
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� seq Apend \*Alphabetic \c �B�.� seq head2 �1�	Purpose� seq head5 \r0 \h �� seq head4 \r0 \h �� seq head3 \r0 \h �

This appendix provides a background of spacecraft orbital mechanics to assist the NPAS user with the orbital aspects of coverage modeling.  Further information can be found in the many texts and documents on the subject. Some of these are listed in the bibliography.

� seq Apend \*Alphabetic \c �B�.� seq head2 �2�	� seq head5 \r0 \h �� seq head4 \r0 \h �� seq head3 \r0 \h �Basic Terms of Spacecraft Motion

For most of the purposes of NPAS, the motion of the spacecraft is that of mass point moving through space. The forces acting on a spacecraft affect its velocity and thus how it moves through space. The time dependent path through space is the spacecraft's trajectory� XE "trajectory:defined" �. More technically, the trajectory is a function whose domain is time and whose range is three-dimensional space. The orbit� XE "orbit:defined" � of the spacecraft is the set of points it moves through together with the sense of direction. The use of the term "orbit" is not precisely defined in the literature but we find the above distinction between trajectory and orbit to be useful. It is sometimes useful, for example, to distinguish between "intersecting orbits" and "intersecting trajectories."

The state of the spacecraft is a set of six numbers that specify the of position and velocity of the spacecraft. For example, the three components of the Cartesian position vector and the three components of the Cartesian velocity vector specify the state in Cartesian coordinates. Another set of six numbers is the Keplerian elements.

If the position and velocity of the spacecraft are known at some point in time and if the forces on the spacecraft are known from that time onwards then the trajectory is determined. In other words, the state of the spacecraft at a point in time together with the forces on the spacecraft determine the state at all subsequent times.

If there are only external forces on the spacecraft, that is, there is no thrust, then the trajectory is said to be ballistic� XE "ballistic" �. 

The specific angular momentum� XE "angular momentum:specific" � h of the spacecraft, with respect to a reference point, is a vector that is the cross product of the spacecraft's position vector and its velocity vector with respect to that point. See � REF FigAngMom \* MERGEFORMAT �Figure B-1�. It is thus perpendicular to both the position and the velocity vectors. If r denotes the spacecraft position vector and v the velocity vector, then

� EMBED Equation.2  ���

For a spacecraft orbiting the Earth, the reference point is usually the center of the Earth. The angular momentum� XE "angular momentum" � is the specific angular momentum times the mass of the spacecraft. For most purposes in NPAS the specific angular momentum is used to specify a direction and thus in the discussion there is some laxity in specifying specific angular momentum or angular momentum.

�

Figure � seq Apend \*Alphabetic \c �B�-� seq figs �1�.  Spacecraft Angular Momentum, h

An ephemeris� XE "ephemeris:defined" � for a spacecraft is a sequence of "snapshots" of the spacecraft's trajectory; each snapshot, called an ephemeris point� XE "ephemeris point" �, consists of the time of the snapshot and state of the spacecraft at that time.

� seq Apend \*Alphabetic \c �B�.� seq head2 �3�	� seq head5 \r0 \h �� seq head4 \r0 \h �� seq head3 \r0 \h �Orientation of Coordinate Systems

� XE "orientation:defined" �Coordinate systems are used to measure the position, angular displacement, and velocity of objects such as spacecraft. Often several coordinate systems are used that have the same origin but are "oriented" differently. In NPAS there are two instances of this:

Various Earth-centered coordinate systems.

Various spacecraft-centered coordinate systems.

In this subsection we present a method of describing how one coordinate system is oriented with respect to another, both having the same origin.

�

Figure � seq Apend \*Alphabetic \c �B�-� seq figs �2�. Z-Axis Rotation By Angle (

If we start with an initial Cartesian coordinate system with axes x0, y0, and z0 and rotate the system about one of the axes then we obtain a new system that has the same origin but new axes, x1, y1, and z1. The direction of the rotation is that of a "right-handed screw" along the positive axis of rotation. For example, in � REF FigZRot \* MERGEFORMAT�Figure B-2� the (x1, y1, z1) system is obtained from the (x0, y0, z0) system by a rotation about the z-axis by an angle, (, that is about 20 degrees. Note that the z1 axis is the same as the z0 axis. The phrase "rotate about the z-axis" means to rotate about the third axis.

Any arbitrary orientation between two coordinate systems can be specified by up to three such rotations, performed one after the other. Each rotation starts with the coordinate system that the previous rotation ended with. The axes of rotation need not all be different, but the same axis is not used in consecutive rotations. � REF FigOrient1 \* MERGEFORMAT �Figure B-3� shows an example of an orientation defined by three rotations.

�

Figure � seq Apend \*Alphabetic \c �B�-� seq figs �3�. An Orientation Defined by Three Axial Rotations

� seq Apend \*Alphabetic \c �B�.� seq head2 �4�	Reference Model of the Earth Surface � seq head5 \r0 \h �� seq head4 \r0 \h �� seq head3 \r0 \h �

The geometric reference model of the Earth surface used in NPAS is shown in � REF FigEarthSurfMod \* MERGEFORMAT �Figure B-4�. The fundamental items in a geometric model of the Earth are the Earth center and the Earth's spin axis. The Earth's equatorial plane� XE "Earth:equatorial plane" � is then defined to be the plane passing through the center of the Earth and perpendicular to the spin axis. The Earth "bulges out" � XE "Earth:bulge" �at the equator (about 21.4 km). The Earth's surface is modeled as an ellipsoid whose major (larger) axis is in the equator and whose minor (smaller) axis, the "polar axis," is along the spin axis. The ellipsoid is determined by specifying the Earth's equatorial radius and polar radius. The oblateness, or "flatness," of the Earth shape is measured by the relative difference between the equatorial and polar radii. To be precise, the flattening coefficient� XE "flattening coefficient:defined" �, f, is the difference between the equatorial radius and the polar radius divided by the equatorial radius.  The inverse flattening coefficient, 1/f, is the reciprocal of the flattening coefficient. 



�

Figure � seq Apend \*Alphabetic \c �B�-� seq figs �4�.  Earth Surface Model

The ellipsoid is a model of the Earth's surface. It is a reference surface. Actual points on the Earth can be on, outside, or inside the ellipsoid.

The meridian� XE "meridian" � of a point is the intersection of the Earth ellipsoid with the half-plane determined by the Earth axis and the point. The Greenwich meridian, or prime meridian, is the meridian of a particular observatory in Greenwich, England. See � REF FigEarthFixCart \* MERGEFORMAT �Figure B-5�.

�

Figure � seq Apend \*Alphabetic \c �B�-� seq figs �5�.  Earth-Fixed Cartesian Coordinate System

� seq Apend \*Alphabetic \c �B�.� seq head2 �5�	Earth-Fixed Coordinate Systems� seq head5 \r0 \h �� seq head4 \r0 \h �� seq head3 \r0 \h �

� XE "Earth-fixed coordinate system" �In this subsection we describe several coordinate systems that are fixed relative to the Earth. 

� seq Apend \*Alphabetic \c �B�.� seq head2 \c �5�.� seq head3 �1�	Earth-Fixed Cartesian Coordinates� seq head5 \r0 \h �� seq head4 \r0 \h �

This is the simplest Earth-fixed coordinate system. It is depicted in � REF FigEarthFixCart \* MERGEFORMAT �Figure B-5�. The origin of the system is the Earth center; the z-axis is along the Earth spin axis (positive toward the North pole); the x-axis is the intersection of the equatorial plane with the half-plane of the prime meridian; and the y-axis is also in the equator, ninety degrees east of the x-axis. The x, y, and z-axes form a right-handed Cartesian coordinate system. This system is also termed the body-centered rotating (BCR) coordinate system� XE "body-centered rotating" �.

� seq Apend \*Alphabetic \c �B�.� seq head2 \c �5�.� seq head3 �2�	Geodetic Coordinates� seq head5 \r0 \h �� seq head4 \r0 \h �

�xe "geodetic coordinates:defined"�The geodetic coordinates of a point, be it a station or a spacecraft, are the "longitude, latitude, and height" of the point. See � REF FigGeodetic \* MERGEFORMAT �Figure B-6�. 

�

Figure � seq Apend \*Alphabetic \c �B�-� seq figs �6�.  Geodetic Coordinate System

The terminology defining the geodetic coordinates of a point is:

The east longitude� XE "longitude:defined" � of the point is the angle, measured positively in the eastward direction, from the Greenwich meridian to the meridian of the point.

The local vertical�xe "local vertical"� is a line through the point and perpendicular to the reference ellipsoid. The point of intersection of the local vertical and the reference ellipsoid is the subpoint�xe "subpoint:defined"�. 

The height �xe "height:defined"�of the point is the distance between the point and the subpoint, measured positively outside the ellipsoid and negatively inside. 

The geodetic latitude�xe "geodetic latitude"� of the point is the angle between the local vertical and the equatorial plane, measured positively in the northern hemisphere.

The geodetic coordinates, or simply the geodetics� XE "geodetics" \t "See geodetic coordinates" �, of the point are then the three numbers: east longitude, geodetic latitude, and height.

� seq Apend \*Alphabetic \c �B�.� seq head2 \c �5�.� seq head3 �3�	Topocentric Coordinates� seq head5 \r0 \h �� seq head4 \r0 \h �

Topocentric coordinates are commonly used to express the position of a point in space relative to an observer on the Earth. The usual case is that of the position of a spacecraft as seen by a ground station.

The topocentric coordinates�xe "topocentric coordinates"� are azimuth angle, elevation angle, and range. They are depicted in � REF FigTopocentric \* MERGEFORMAT �Figure B-7� and are defined as follows. Construct the local vertical of the station as done for defining geodetic coordinates. The plane passing through the station and perpendicular to the local vertical is the local horizontal plane�xe "local horizontal plane"�.  The intersection of the local horizontal plane and the plane containing the station and the Earth spin axis is the North-South line. The azimuth angle�xe "azimuth"�, Az, is measured clockwise from the North line to the projection of the station-to-spacecraft position vector in the local horizontal plane. The elevation angle, El,�xe "elevation angle:defined"� is measured from the local horizontal plane to the station-to-spacecraft position vector, positively upwards. The range, (, is the distance between the station and the spacecraft.

�

Figure � seq Apend \*Alphabetic \c �B�-� seq figs �7�.  Topocentric Coordinate System

� seq Apend \*Alphabetic \c �B�.� seq head2 �6�	� seq head5 \r0 \h �� seq head4 \r0 \h �� seq head3 \r0 \h �Two-Body Motion

� XE "two-body motion" �The motion of the Earth about the Sun is predominately determined by the gravitational attractive force between the Earth and the Sun.  Similarly the motion of a spacecraft in Earth orbit is predominately determined by the gravitational force between the spacecraft and the Earth. As a good approximation, the interaction between the Earth and the Sun as well as the interaction between a spacecraft and the Earth are that of two mass points; each body is modeled by a point that contains all the mass of the body. The problem of determining the trajectories of the two points is the two-body problem.�xe "two-body problem"� 

The solution, by Newton, of the two-body problem is that if an "inertial" coordinate system is used as the reference frame for measuring the positions and velocities of the two bodies then:

The center of mass of the two bodies moves at a constant velocity. 

And if the origin of the inertial system is taken to be at the center of mass, then furthermore: 

The trajectory of each body is a conic section with a focus at the origin. 

The angular momentum of each body about the origin is constant. 

The motion of both bodies is confined to a plane that is fixed in "inertial space" and passes through the origin. 

Two-body motion is depicted in � REF FigTwoBod \* MERGEFORMAT �Figure B-8�; note that the angular momentum vector is perpendicular to the plane of the orbit. This vector is often used to specify the orbital plane.

�

Figure � seq Apend \*Alphabetic \c �B�-� seq figs �8�.  Two-Body Motion (only one body shown)

An inertial� XE "inertial" � system is "fixed relative to the stars." Note that an Earth fixed system rotates with the Earth and is thus not inertial.

Since the Earth is much more massive than any spacecraft, the center of mass of the Earth-spacecraft system can be approximated to be the center of the Earth. In other words, we can approximate the situation as a one-body system; a central fixed Earth (mass point) causes a central attractive force and the spacecraft moves along a conic section one of whose foci is the center of the Earth. The motion is called one-body motion�xe "one-body motion"�. If the spacecraft doesn't have enough velocity to escape the Earth's gravity then its conic section orbit is an ellipse. The motion of a spacecraft in an elliptic orbit is periodic� XE "orbit:periodic" �; the position and velocity of the spacecraft at any time are exactly the same as one period before, one period after, two periods after, etc.

The basic parameters of an elliptical trajectory are depicted in � REF FigEllipTraj \* MERGEFORMAT �Figure B-9� and are defined as follows:

The point of the orbit that is closest to the center of the attractive force ("main" focus of the ellipse) is called the perigee�xe "perigee:defined"� and the point farthest from the focus is called the apogee�xe "apogee:defined"�. (The "gee" refers to the Earth, so more generally they are the perifocus�xe "perifocus"� and apofocus.�xe "apofocus"�) 

The semimajor axis�xe "semimajor axis:defined"�, a, of the ellipse is the distance between the center of the ellipse and either the apogee or perigee. It is half the length of the major axis, the line from perigee to apogee. 

The eccentricity�xe "eccentricity"�, e, of the ellipse is a measure of the ellipse's "flatness."  It equals the difference between semimajor axis and the perigee distance divided by the semimajor axis. As indicated in the figure there are alternate formulas for the eccentricity.

The period�xe "period:defined"� of the spacecraft is the smallest positive fixed time interval between successive identical states. It is the time it takes the spacecraft to traverse one orbit.

The true anomaly, (, of the spacecraft is the angle from the perigee vector to the spacecraft position vector; it is measured positively along the direction of motion.

The mean motion, n, of the spacecraft is the average rate of change of the true anomaly. It equals 360 degrees per period.

The mean anomaly�xe "mean anomaly"�, M, of the spacecraft measures the fraction of the period elapsed since the last perigee passage. A full period is 360 degrees. Some examples are: (1) at perigee passage M = 0 degrees; (2) at apogee passage M = 180 degrees; (3) M = 90 degrees means that the spacecraft is halfway in time in traversing from perigee to apogee. 

�

Figure � seq Apend \*Alphabetic \c �B�-� seq figs �9�.  Elliptical Trajectory

The size and shape of the ellipse are completely determined by its semimajor axis and eccentricity.  The period is completely determined by the mass of the central body and the semimajor axis.  The position of the spacecraft in its orbit can be specified by either the true anomaly or the mean anomaly. The velocity  of the spacecraft depends only on the size and shape of the orbit, the position of the spacecraft in the orbit, and the mass of the central body.

One special but important case of an elliptical orbit is that where the eccentricity is zero.  The ellipse is then a circle and the center of the ellipse coincides with the focus. The spacecraft moves at a constant speed and thus the true anomaly changes at a constant rate and equals the mean anomaly.

It can be shown that the gravitational attraction of a body whose density depends only on the distance from the center of the body is the same as that of a mass point containing all the mass of the body.  Such a density is said to be "spherically symmetric." Thus modeling a body by a spherically symmetric density is equivalent to modeling it as a mass point.

� seq Apend \*Alphabetic \c �B�.� seq head2 �7�	Inertial Coordinate Systems� seq head5 \r0 \h �� seq head4 \r0 \h �� seq head3 \r0 \h �

� seq Apend \*Alphabetic \c �B�.� seq head2 \c �7�.� seq head3 �1�	� seq head5 \r0 \h �� seq head4 \r0 \h �Need and Meaning of Inertial

�xe "inertial coordinate systems"�As indicated in the prior subsection on two-body motion, the description of spacecraft trajectories is most easily done by using an inertial coordinate system.  Furthermore, Newton's law of momentum, the law that specifies how the forces on the spacecraft determine its trajectory, assumes that position and velocity are expressed in an inertial system. Thus to compute any trajectory, two-body or otherwise, an inertial coordinate system is convenient. 

Newton described an inertial system as one that "in its own nature, without relation to anything external, remains always similar and immovable." Modern textbooks use phrases as "fixed in absolute space," "axes point to the fixed stars," "non-accelerating and non-rotating." These descriptions are good enough for our purposes.

Clearly any Earth-fixed system is not inertial; it only takes a night's observation to see that the Earth rotates relative to the stars. In an inertial system the Earth would rotate. To construct a usable inertial system we have to find some more stable, some less obviously moving, astronomical references.

� seq Apend \*Alphabetic \c �B�.� seq head2 \c �7�.� seq head3 �2�	� seq head5 \r0 \h �� seq head4 \r0 \h �Astronomical Geometry

Inertial systems are defined by using the following astronomical geometrical objects:

The Earth’s center� XE "Earth:center" � is the center of mass of the Earth.

The Earth spins in space about a line called the Earth’s axis� XE "Earth:axis" �.

The equatorial plane� XE "Earth:equatorial plane" � is the plane that is perpendicular to the Earth’s axis and passes through the Earth’s center. 

The orbital plane of the Earth, or more accurately, of the Earth-Moon center of mass, about the Sun is the ecliptic� XE "ecliptic:defined" �.  The angle between the ecliptic and the equatorial plane is called the obliquity of the ecliptic� XE "ecliptic:obliquity" �.

Ecliptic north� XE "ecliptic north" � is the direction perpendicular to the ecliptic, reckoned positive in the direction of the Earth’s angular momentum with respect to the Sun.

The line of equinox, or simply the equinox� XE "equinox" �, is the intersection of the equatorial plane and the ecliptic.

Unfortunately none of these objects is 100% inertial since: 

The Earth center does not move at a constant velocity but, rather, it revolves about the Sun-Earth center of mass. 

The Earth axis, and the accompanying equatorial plane, moves in a combination of a 26,000-year precession and a complex “wobble” called a nutation.

The ecliptic plane is also not inertial; the Earth’s orbit plane is perturbed by the other planets.

However these geometrical objects are close to 100% inertial and, furthermore, we can tie them down to their values at a particular instant of time called an epoch� XE "epoch" � or date.

� seq Apend \*Alphabetic \c �B�.� seq head2 \c �7�.� seq head3 �3�	� seq head5 \r0 \h �� seq head4 \r0 \h �True of Date  System

� XE "true of date:defined" �An Earth Inertial Equatorial True of Date, or simply true of date, coordinate system is defined as follows:

Pick an instant of time and call it the “date.”

The origin of the coordinate system is the center of the Earth.

The z-axis is through the Earth center and in the direction of the Earth spin axis�xe "Earth:axis"� (positive northwards) at the date.  This direction is called Celestial North� XE "celestial north" �.

The x-axis is the equinox, taken positive in the direction where the Sun crosses the equator from south to north.

The y-axis is in the equatorial plane and completes a right-handed system. 

This system is shown in � REF FigTrueDate \* MERGEFORMAT �Figure B-10�. The axes of this system are inertial by construction. Due to the motion of the Earth center, this system is not 100% inertial.

�

Figure � seq Apend \*Alphabetic \c �B�-� seq figs �10�.  Earth Inertial Equatorial True of Date Coordinate System�		 (Earth and Sun not to scale)

If a spacecraft ephemeris is said to be in a true of date� XE "true of date" � system, then what is usually meant is that the coordinate system for each point is true of date where the “date” is the time instant of that point. For such an ephemeris both the origin and the axes move and is thus “less inertial” if the “date” were the same for each ephemeris point.

� seq Apend \*Alphabetic \c �B�.� seq head2 \c �7�.� seq head3 �4�	Precession, Nutation and the Mean Equator� seq head5 \r0 \h �� seq head4 \r0 \h �

As mentioned earlier, both the equatorial and ecliptic planes are not fixed in inertial space. They move due to the gravitational interplay of the Sun, Earth, Moon, planets, and the oblateness, or “bulge”, of the Earth. The motion is defined in terms of two components: precession and nutation. 

Nutation� XE "nutation:defined" � is a “wobble” of the equatorial plane composed of periodic, or nearly periodic, components with periods ranging from days to several decades. The largest component has an amplitude of nine arc-seconds and a period of 18.6 years. If the nutation is averaged out then the remaining motion of the equatorial plane is the precession. It is a steady rotation of the Earth’s axis about ecliptic north with a period of 26,000 years. The ecliptic has a slight precession.

The mean equator� XE "mean equator" � is the fictitious equator if there were no nutation. The intersection of the mean equatorial plane and the ecliptic is the mean equinox� XE "mean equinox" �.

� seq Apend \*Alphabetic \c �B�.� seq head2 \c �7�.� seq head3 �5�	� seq head5 \r0 \h �� seq head4 \r0 \h �Mean of Date  System

� XE "mean of date:defined" �An Earth Inertial Equatorial Mean of Date, or simply mean of date, coordinate system is defined as follows:

Pick an instant of time and call it the “date.”

The origin of the coordinate system is the center of the Earth.

The z-axis passes through the Earth center and is in the direction of the mean Earth spin axis (positive northwards) at the date; it is perpendicular to the mean equatorial plane at the date.

The x-axis is the mean equinox, taken positive in the direction where the Sun crosses the equator from south to north.

The y-axis is in the mean equatorial plane and completes a right-handed system. 

A mean of date coordinate system is just “as inertial” as a true of date system. Several mean of date systems have wide use:

Mean of B1950� XE "Mean of B1950" � is the mean of date system where the “date” is the start of 1950 as measured by the Besselian system of measuring years.

Mean of J2000� XE "Mean of J2000" � is the mean of date system where the date is the start of 2000 as measured by the Julian system of measuring years.

The Besselian method of measuring years is an older method that has been superseded by the current Julian method where a year is defined to be exactly 365.25 days. 

� seq Apend \*Alphabetic \c �B�.� seq head2 \c �7�.� seq head3 �6�	� seq head5 \r0 \h �� seq head4 \r0 \h �Ecliptic  Systems

� XE "ecliptic coordinate system" �Another inertial coordinate system is the Earth Inertial Ecliptic shown in � REF FigEcliptic \* MERGEFORMAT �Figure B-11� and defined as follows:

Pick an instant of time and call it the “date.”

The origin of the coordinate system is the center of the Earth.

The z-axis is through the Earth center and in the direction of the Ecliptic North at the date.

The x-axis is the equinox or mean equinox at the date, taken positive in the direction where the Sun crosses the equator from south to north.

The y-axis is in the ecliptic and completes a right-handed system.

If the equinox is chosen for the x-axis, then the system is Earth Inertial Ecliptic True of Date; if the mean equinox is chosen, then the system is Earth Inertial Ecliptic Mean of Date.

�

Figure � seq Apend \*Alphabetic \c �B�-� seq figs �11�.  Earth Inertial Ecliptic Coordinate System�(Earth and Sun not to scale)

� seq Apend \*Alphabetic \c �B�.� seq head2 �8�	� seq head5 \r0 \h �� seq head4 \r0 \h �� seq head3 \r0 \h �Use of Coordinate Systems

An Earth-fixed coordinate systems is useful in making astronomical or spacecraft observations using equipment fixed on the Earth while an inertial system is most convenient in calculating the trajectories of natural or man-made objects in space. Calculations involving Earth based observations of a spacecraft can use several coordinate systems and the transformations between them.  For example, suppose it is desired to compute the azimuth, elevation, and range of a spacecraft at a time, t1, at a certain ground-based antenna and the state of the spacecraft is known for time t0 in Mean of 2000. The computational steps are:

Using the Mean of 2000 coordinate system propagate the spacecraft to t1.

Transform the spacecraft state from Mean of 2000 to Mean of t0 .

Transform from Mean of t0 to True of t0.

Transform from True of t0  to Earth-fixed Cartesian.

Transform from Earth-fixed Cartesian to topocentric at the antenna.

� seq Apend \*Alphabetic \c �B�.� seq head2 �9�	� seq head5 \r0 \h �� seq head4 \r0 \h �� seq head3 \r0 \h �Earth Rotation and the Sidereal Day

In an inertial coordinate system the Earth rotates. The time it takes for one revolution (360 degrees) is called the sidereal day�xe "sidereal day"�.  The "day" of everyday life is defined differently; it is termed the solar day�xe "solar day"� and is the time it takes for the Sun to complete one revolution as seen in an Earth-fixed coordinate system. The solar day consists of � EMBED Equation.2  ��� seconds. (The second is the fundamental unit for time measurement.) 

We now calculate the length of the sidereal day. Using an Earth-centered inertial coordinate system as shown � REF FigTrueDate \* MERGEFORMAT �Figure B-10�, we see that the Sun orbits the Earth with a period of one year and thus during a solar day the Sun has moved about the Earth by 360 degrees divided by the number of days in a year. During the same time the Earth has made one complete revolution plus the amount the Sun has moved. Thus one solar day equals � EMBED Equation.2  ���sidereal days. Inverting and some more arithmetic gives:

1 sidereal day	= 0.99727 solar days  

		= 86164.1 seconds

		= 23 hr, 56 min, 4.1 sec

The sidereal day can be defined either by using the “fixed stars” or the equinox as a reference. Slightly different numbers are obtained. The sidereal day and the corresponding sidereal hour and second are mainly used in astronomy.

� seq Apend \*Alphabetic \c �B�.� seq head2 �10�	Keplerian Elements� seq head5 \r0 \h �� seq head4 \r0 \h �� seq head3 \r0 \h �

Consider a spacecraft orbiting the Earth. We will assume that the only force on the spacecraft is the gravitational force of the Earth and that the Earth acts as a mass point. Then this is an example of two-body motion: looking with an inertial coordinate system, the spacecraft moves in an orbital plane and the shape of the orbit is a conic section. This orbit is shown in � REF FigKepler \* MERGEFORMAT �Figure B-12� where the coordinate system is an Earth Inertial Equatorial one.

�

Figure � seq Apend \*Alphabetic \c �B�-� seq figs �12�.  The Keplerian Elements W, i, and w and The True Anomaly, n, in and 			 Earth Inertial Equatorial Coordinate System

Now, rather than using position and velocity to specify the spacecraft state�xe "spacecraft:state"� at point in time, it is possible to use instead a description of the conic orbit and the place of the spacecraft on the orbit. Five numbers are needed to specify the conic orbit and one is needed to specify a point on the orbit. These six numbers are called the Keplerian�xe "Keplerian elements:defined"� elements of the spacecraft at the point in time. Since the conic orbit doesn't change, the first five Keplerian elements are constant. The (six) Keplerian elements for the case of an elliptical orbit are:

a, the semimajor axis�xe "semimajor axis"�.

e, the eccentricity�xe "eccentricity"�.

i, the inclination�xe "inclination"� is the angle between the equatorial plane and the orbit plane. It is also the angle between perpendiculars to these planes, the Earth spin axis (northward) and the spacecraft angular momentum vector. It is between zero and 180 degrees, inclusively.

W, the right ascension of the ascending node� XE "right ascension of the ascending node" � is the angle between the positive x-axis (which points to the vernal equinox) and the line from the origin to the ascending node, measured positively to the east.

w, the argument of perigee�xe "argument of perigee"� is the angle between line from the origin to the ascending node and the similar line to the perigee, measured positively in the direction of motion. 

M, the mean anomaly�xe "mean anomaly"�.

The elements a, e, and M were defined in the prior discussion on two-body motion. The line�xe "line of nodes"� of nodes is the intersection of the orbit plane with the equatorial plane. The ascending node�xe "ascending node:defined"� is the point on the orbit, and on the line of nodes, at which the spacecraft is crossing the equatorial plane from south to north. If the inclination, i, is under ninety degrees then the orbit is termed prograde �xe "orbit:prograde"�or direct; if i equals ninety degrees the orbit is polar�xe "orbit:polar"�; and if i is over ninety degrees the orbit is retrograde�xe "orbit:retrograde"�.

The semimajor axis and eccentricity determine the size and shape of the orbit. Three Keplerian elements are needed to specify the orbit's orientation in space. They are W, i, and w. Note that the orientation can be obtained from a "basic" x-y orientation, as shown in � REF FigEllipTraj \* MERGEFORMAT �Figure B-9�, by three rotations: (1) a z-axis rotation by W; (2) a x-axis rotation by i; and (3) a z-axis rotation by w. Such a sequence of rotations is shown in � REF FigOrient1 \* MERGEFORMAT �Figure B-3�. The sixth and last Keplerian element, M, defines the position of the spacecraft in its orbit.

If the Keplerian elements are known, then it is possible to calculate the position and velocity (assuming a given central force). Thus the six Keplerian elements are equivalent to the position and velocity (also described by six numbers). A set of Keplerian elements is an alternate method of specifying the spacecraft's state.



� seq Apend \*Alphabetic \c �B�.� seq head2 �11�	Nonspherical Geopotential� seq head5 \r0 \h �� seq head4 \r0 \h �� seq head3 \r0 \h �

If all the mass of the Earth were concentrated at the center of the Earth, or if the Earth's density only depended on the distance from the center, then the Earth's gravitational force would be the same as that of a point mass. The gravitational force vector would point to the Earth center and its magnitude would depend only from the distance from the Earth center. The force vector would not depend on the latitude and longitude; it would be "spherically symmetric." In reality this is only a good approximation. We have already noted that the Earth has an equatorial bulge. This bulge � XE "Earth:bulge" �is the predominant source of the nonspherical part of the Earth's gravitational potential. A model of the nonspherical part of the Earth's gravitation is called a nonspherical geopotential model�xe "nonspherical geopotential" �.

The simplest geopotential model that has a nonspherical part is a mass point together with a ring in the equatorial plane. The mass point would model the spherical part of the gravity field, while the ring would model the bulge. The gravitational force on the spacecraft would be sum of the central force exerted by the mass point and the force exerted by the ring. Such a model is often used when only the simplest calculations are needed or possible.

In more advanced models the geopotential is specified by a combination of mass point that contains all the Earth's mass and of a complex nonspherical geopotential model.  Commonly used nonspherical geopotential models consist of an array of numbers. The numbers are called nonspherical geopotential coefficients and are generally arranged in rows and columns, as in � REF TableGeopot \* MERGEFORMAT �Table B-1�, which depicts Goddard Earth Model Nine.  The coefficients in the first row have degree 2, those in the next row have degree 3, and so on. The coefficients in the first column have order 0, those in the next column have order 1, and so on. If the order is greater than the degree, then the coefficient has zero value.  A further technical detail is that for all but the first column, there are actually two coefficients in each row-column box; they are either  a magnitude and phase value or, as in the example, a cosine and sine coefficient.

Table � seq Apend \*Alphabetic \c �B�-� seq table �1�.  Example of a Nonspherical Geopotential Model (GEM-9)
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.�.0�.0��20� .164E-06� .572E-09�-.979E-08�-.855E-10� .146E-09�-.166E-10� .120E-10�.  .  .�-.511E-31�-.509E-31�.0�.0��21�-.842E-08�-.534E-08� .323E-08� .295E-09� .131E-09� .384E-11� .358E-11�.  .  .�.0�.0�.0�.0��Note that the magnitude of the coefficients generally decreases for increasing order and degree. Thus the model can be "simplified" by "chopping off" coefficients after a certain order and degree.

The coefficients in the first column are called zonals� XE "zonals" � and it is they that model the equatorial bulge. Note that the topmost one of these, the negative of which is denoted by J2, is several orders of magnitude larger than any other coefficient. Thus the nonspherical geopotential model that uses only this coefficient is a good first approximation of a nonspherical geopotential; a model consisting of central mass and J2 is similar to the model consisting of a mass point and a ring in the equator that was described above.

� seq Apend \*Alphabetic \c �B�.� seq head2 �12�	Actual Spacecraft Motion and Other Keplerian Element Types

� seq Apend \*Alphabetic \c �B�.� seq head2 \c �12�.� seq head3 �1�	Perturbations

� seq head5 \r0 \h �� seq head4 \r0 \h �� seq head5 \r0 \h �� seq head4 \r0 \h �� seq head3 \r0 \h �The actual forces on the spacecraft are more complex than just the gravitational attractive force of a point mass. In addition to a nonspherical geopotential, one could consider: the gravitational attraction of the Sun, Moon, and other planets; the movement of the oceans; atmospheric drag; solar radiation pressure; and spacecraft thrusts. The actual trajectory is thus not exactly a two-body one that can be completely described by a set of Keplerian elements.  Such a deviation from normal or idealized behavior is called a perturbation.�xe "perturbation"� Just like in any other real world activity, perturbations can be both small and large. 

� seq Apend \*Alphabetic \c �B�.� seq head2 \c �12�.2	� seq head5 \r0 \h �� seq head4 \r0 \h �Osculating Keplerian Elements

Even if the trajectory is perturbed, Keplerian elements can still be used to specify the state of the spacecraft. At any point in time the spacecraft has a state that can be specified by a particular position and velocity. If from that point in time onwards, all the perturbing forces were ignored and just the central gravitational force were left, then that position and velocity would determine a two-body trajectory that could be described by a set of Keplerian elements. These elements would be the actual Keplerian elements at the point in time if all the perturbing forces suddenly vanished. They are called the osculating Keplerian elements�xe "Keplerian elements:osculating"� at the time point. The corresponding two-body orbit is called the osculating orbit�xe "orbit:osculating"� at the time point.  The term osculating trajectory is similarly defined. The osculating trajectory osculates (kisses) the actual trajectory at this point in time in that the positions and velocities of the two trajectories are equal. If the osculating Keplerian elements are known for a specified time point then the position and velocity could be calculated. At each instant of time there is an associated set of osculating Keplerian elements.

If the perturbing forces are small then, except for the mean anomaly, the osculating elements change slowly. An Earth-orbiting spacecraft encounters only small perturbations if it: (1) is high enough to escape most of the Earth's atmosphere, and thus the resulting drag forces; (2) is low enough so that the gravitation pulls of the Moon, Sun, and other planets are very low relative to the gravitational pull by the Earth; and (3) there is no thrust.

The main gravitational perturbing force on a low-Earth orbiting spacecraft it that of the Earth’s bulge� XE "Earth:bulge" �. This causes the orbital plane to rotate about the Earth’s axis and the orbit to also rotate within the orbital plane. This will be described in terms of osculating Keplerian elements. The right ascension of ascending node, W, increases or decreases with time (a rotation of the line of nodes) and similarly for the argument of perigee, w. For a prograde orbit, W decreases at a rate that is larger as the inclination and altitude decrease, reaching about 9( per day for a spacecraft with about a one-degree inclination and an altitude of 200 km. For a retrograde orbit, W increases similarly.  If the inclination is between 63.4( and 111.6(, then w decreases up to 4( per day. For other inclinations, w increases with time reaching about 18( per day for orbits lying close to the equator with an altitude of 200 km.

Although the trajectory is no longer periodic there are still ways to specify various types of quantities that are "almost periods”: 

The anomalistic period�xe "period:anomalistic"� is the time between successive perigee passages.

The nodal period�xe "period:nodal"� is the time between successive passages through the ascending node. 

The sidereal period�xe "period:sidereal"� is the angular period as seen in an inertial coordinate system.

Another method of specifying the spacecraft's state is by means of Brouwer mean elements�xe "Brouwer mean elements"�.  These elements consist of the six Keplerian quantities but they are calculated in a slightly different manner and are designed to be used with certain approximate, but very efficient, methods of orbit propagation.

� seq Apend \*Alphabetic \c �B�.� seq head2 �13�	Sun-synchronous Orbit

� seq head5 \r0 \h �� seq head4 \r0 \h �� seq head3 \r0 \h �A Sun-synchronous orbit�xe "orbit:Sun-synchronous"� is one whose orbit plane revolves about the Earth’s axis at the same rate as the Sun, about 1( eastward per day (360( per year). See � REF FigSunSynch \* MERGEFORMAT �Figure B-13�. One purpose of such an orbit is to maximize the exposure of the spacecraft to the Sun; in this case the phase of the orbit would be such that the Sun is constantly in the plane perpendicular to the orbit plane.

�

Figure � seq Apend \*Alphabetic \c �B�-� seq figs �13�.  Sun-synchronous Orbit

From the prior discussion of the effects of the Earth’s bulge, we see that a Sun-synchronous orbit can be achieved only by a retrograde orbit. The rate of change of the right ascension of the ascending node, W, must equal 360(/365.25 = 0.9856 deg/day. The relation among the orbital elements to achieve this rate of change of W is, approximately:

	� EMBED Equation.2  ���

where i is the inclination, re is the radius of the Earth, m is the Earth’s gravitational parameter, J2 is the second zonal geopotential coefficient, a is the semimajor axis, and e is the eccentricity. Substituting values for known quantities, the formula is:

	� EMBED Equation.2  ���.

For example, for a spacecraft in a circular orbit at a height of four hundred kilometers, the above formula yields i = 97.0 degrees. It should be emphasized that not only is this formula an approximation to the effect of J2 on W, but that other effects are not taken into account.

We now consider how to make the orbit plane "face" the Sun as broadly as possible, that is, to maximize the angle between the orbit plane and the spacecraft-to-Sun line. From � REF FigSunSynch \* MERGEFORMAT �Figure B-13� this is clearly accomplished when the line of nodes is perpendicular to the projection of the Earth-Sun line onto the equatorial plane. This is expressed mathematically by the relation

W =  a ( 90(

where the angle ( is the Sun’s right ascension. The value for the Sun's right ascension at a given epoch can be found in an astronomical ephemeris or can be approximated using the rate of change of a and the fact that a = 0 at the vernal equinox (about March 21). The "+" is chosen if the maximization is more important during the (northern) winter and the "-" is chosen if the maximization is more important during the (northern) summer. Note that � REF FigSunSynch \* MERGEFORMAT �Figure B-13� depicts a northern summer Sun.

The above relation between the Sun's position and the line of nodes can be expressed using the concept of local time. The ancient measure of local time is based solely on the apparent position of the Sun. It is time measured by a sundial and it has the fault that days throughout the year have a different real length. The modern concept of local time is local mean time (LMT).�xe "local mean time"� LMT of a point in space is 12 hours plus the angle from the point’s meridian to the meridian of the mean Sun, measured in a westerly direction. The mean Sun is an abstract Sun that moves at the average rate of the apparent Sun. LMT also equals Greenwich Mean Time (GMT) plus the longitude, measured in hours, of the local point.

The right ascension is measured in time units (one revolution equaling 24 hours) and positively in a westerly direction. In these terms the relation is that at the nodes

Local Mean Time = 1200 ± 0600.

The simplest way of calculating local solar time at a given point on the Earth (or in space for that matter) is to add the point's east longitude, measured in hours, to the Greenwich time.

� seq Apend \*Alphabetic \c �B�.� seq head2 �14�	� seq head5 \r0 \h �� seq head4 \r0 \h �� seq head3 \r0 \h �Atmospheric Drag

� XE "drag:described" �The force of atmospheric drag is caused by the impacts of atmospheric gas molecules upon the spacecraft.  The force is mostly in the direction opposite to the motion of the spacecraft relative to the atmosphere. Drag dissipates the energy of the spacecraft causing the semimajor axis to decrease up to an eventual impact with the Earth. The effects of drag extend up to a height of one thousand kilometers.

The acceleration due to drag is proportional to the density of the atmosphere and the area of the spacecraft in the direction of its relative motion and is inversely proportional to the mass of the spacecraft. 

Drag also depends on the shape of the spacecraft; the more streamlined the "face" presented to the atmosphere, the lower the drag. This factor is specified by a drag coefficient� XE "drag coefficient:defined" �, denoted by CD; the drag force is directly proportional to the drag coefficient. Theoretically, a sphere has a drag coefficient of 2.0 and a flat plate has a drag coefficient of 4.0.

Of all these variables, the most difficult to model is the density of the atmosphere� XE "atmosphere" �. Some of these difficulties are discussed in the following excerpt from the GTDS Mathematics manual (Long, 1989):

Atmospheric density models can be divided into two types. Models of the first type are characterized by their dependence on altitude and their independence on any other parameters. Those of the second type are characterized by their dependence not only on altitude, but also on the position of the Sun relative to the Earth and the amount of energy emitted from the sun.

Several atmospheric models have been constructed over the past several years ... to account for various geomagnetic and solar activities. There are three main types of solar radiation known to affect the atmospheric density. The first type, which is the most important in terms of the effect on the structure of the atmosphere, results from solar ultraviolet�xe "ultraviolet radiation"� radiation impinging on the atmosphere. Its effect on temperature and density is a maximum 2 to 3 hours after local noon. This radiation heats the atmosphere by conduction and thereby increases the density at higher altitudes. The process is known as the diurnal (or day-night) effect and causes a redistribution of density, resulting in a diurnal bulge� XE "diurnal bulge" � in the atmosphere.

The second type of solar activity affecting the atmosphere results from extreme ultraviolet radiation. The atmospheric oscillations that are in phase with this solar flux are often referred to as the erratic or 27-day variations, since the oscillations sometimes exhibit a semiregular character for intervals of several months, during which a period of 27 days is easily recognizable. It has been found that the decimetric flux� XE "Sun:flux" � from the sun apparently varies in the same manner as the extreme ultraviolet emission and can therefore be used as a fairly reliable index of short-term solar activity. The decimetric flux, specifically the 10.7 cm radiation, is expressed in units of 10-22 watt/m2/hz bandwidth and is denoted by the symbol F10.7.

The bulge� XE "diurnal bulge:model" � caused by solar heating can be modeled by inserting into the density calculation the factor,

� EMBED Equation.2  ���,

where:

y is the central angle between the point at which the density is being calculated, say at a spacecraft, and the bulge apex. 

r 3 is the fractional increase of atmospheric density at bulge apex. 

n is a positive integer called the power of the cosine term. 

The position of the bulge is specified by a constant lag angle between the Sun and the apex of the bulge; the bulge apex has the same declination as the Sun and its right ascension is that of the Sun increased by the lag angle. Along the direction of the apex of the bulge this factor multiplies the atmospheric density by 1 + r3 and the factor decreases to 1 along the opposite direction. The bulge model is pictured in � REF FigAtmosBulge \* MERGEFORMAT �Figure B-14�.

�

Figure � seq Apend \*Alphabetic \c �B�-� seq figs �14�.  Atmospheric Bulge Model

� seq Apend \*Alphabetic \c �B�.� seq head2 �15�	� seq head5 \r0 \h �� seq head4 \r0 \h �� seq head3 \r0 \h �Solar Radiation Pressure

The photons, the particles of light, emanating from the Sun exert a small pushing force upon sunlit surfaces. This is called solar radiation pressure�xe "solar radiation pressure" \b�. The force is directed in the direction away from the Sun. The perturbing acceleration is proportional to the effective area normal to the incident radiation, proportional to the surface’s solar reflectivity coefficient, CR, and is inversely proportional to the mass of the spacecraft.  CR  varies from 1.0 for a surface which absorbs all the incident solar radiation to 2.0 for a surface which perfectly reflects all the radiation. 

� seq Apend \*Alphabetic \c �B�.� seq head2 �16�	� seq head5 \r0 \h �� seq head4 \r0 \h �� seq head3 \r0 \h �Thrust and Transfer Orbits

� seq Apend \*Alphabetic \c �B�.� seq head2 \c �16�.� seq head3 �1�	Purpose

� XE "orbit:transfer" �� seq head5 \r0 \h �� seq head4 \r0 \h �If a spacecraft does not apply thrust�xe "thrust"� then its trajectory is totally under the control of the external gravitational and drag forces. Its trajectory is ballistic�xe "trajectory:ballistic"�.  By using thrust the spacecraft's trajectory can be modified. This is usually done to change the trajectory from the parking orbit achieved by the main launch booster into the orbit specified for mission operation. The thrust is usually applied over a short period of time. After the first thrusting is applied, the new orbit may be the final orbit, the one sufficient for mission operation. If not, then one or more thrusts need to be �applied till the final orbit is reached. The intermediate orbits are called transfer orbits. The most common cases are of only one or two thrusts.

Thrusts after launch are also needed on interplanetary missions. Thrust is applied to transfer from an Earth parking orbit to an interplanetary trajectory, then again for one or more midcourse corrections to the trajectory, and finally to transfer into an orbit about the target body.

Transfer orbits can be partitioned into two classes by their objective:

Orbit modification�xe "orbit:modification"�.—The objective of the transfer orbit is only to modify one or more of the original orbital elements.

Rendezvous�xe "orbit:rendezvous"� orbits or reconnaissance orbits.—The initial trajectory of the spacecraft and of a target body are known. The objective of the transfer orbit is to modify the trajectory of the spacecraft so that the spacecraft either impacts the target body or comes close to it.

� seq Apend \*Alphabetic \c �B�.� seq head2 \c �16�.� seq head3 �2�	� seq head5 \r0 \h �� seq head4 \r0 \h �Impulsive Thrusts

� XE "thrust" �� XE "impulsive orbital maneuver" �The simplest method of modeling thrusts is to assume that they occur instantaneously. Then instead of modeling the thrusting force, one specifies the velocity change to be effected by the thrusting. There is also an instantaneous loss in mass of the spacecraft by the amount of fuel needed for the trusting. Another way of expressing the effect of the thrust impulse is to say that there is an instantaneous change in the state�xe "spacecraft:state"� of the spacecraft; the position doesn’t change over the instant but the velocity changes by the amount specified. There is thus also an instantaneous change in the spacecraft's osculating Keplerian elements. This approximation to the real situation is usually adequate for initial mission planning purposes.
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Station

E. Longitude

(deg).

Char. 21 to 35.



BDA        32.3514       295.3423       -33.8

            0.0            5.0                     Bermuda

          360.0            5.0 

SBG        78.120000      15.400000     +00.00     Spitsbergan, Norway

          000.0           01.2

          020.0           01.2

          070.0           03.3

          080.0           02.7

          095.0           02.8

          110.0           02.1

          170.0           06.7

          180.0           04.3

          200.0           03.5

          220.0           02.0

          240.0           01.2

          260.0           01.0

          290.0           01.1

          300.0           01.3

          310.0           00.8

          320.0           01.5

          330.0           01.1

          360.0           01.2

GDS8       35.341517     243.126394     911.45

            0.0            4.7

           53.0            3.4

           57.0            2.8

           87.0           14.4

           93.0           14.4

          145.0            4.3

          160.0            4.3

          261.0           11.8

          273.0           14.5

          282.3            7.9

          297.0            3.0

          340.0            6.6

          360.0            4.7



Azimuth (deg)

Char. 6 to 20.

First value must be 0.0.



Each line, after the first, specifies an Azimuth and Elevation point on the mask. Azimuth must increase for successive points. Limit of 361 points.





Last azimuth value must be 360.0.



Elevation (deg).

Char. 21 to 35.



Station Height (above reference ellipsoid) (m).

Char. 36 to 50.



Station Geodetic Latitude (deg).

Char. 6 to 20.
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on any line.

Char. 51 on.



Station Name.

Char. 1 to 4.








