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ABSTRACT 

This paper presents a generic approach to mesh global optimization via node movement, based on a discrete graph-theoretic 
model. Mesh is considered as an electric system with lumped parameters, governed by the Kirchhoff’s voltage and circuit laws. 
Each mesh element is treated as a multi-pole electric component, relating input electric potentials to the output via a transfer 
function. We automatically derive an element transfer function and finally a mesh optimization model using a formal analysis of 
the coefficients couplings in the finite element stiffness matrix, similar to the method, used in Algebraic Multigrid. Our mesh 
model is a transient dynamic system and proposed optimization can be also used for mesh deformation problems. We will show 
that new method works well for realistic 3D meshes and provide a number of mesh optimization examples and details of our 
implementation. 
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1. INTRODUCTION 

Most of partial differential equations (PDEs) in science and 
engineering cannot be solved analytically in closed form and 
require numerical methods for approximate solution. The 
Finite Element (FEM) and the Finite Volume (FVM) 
methods are among the most popular choices for such 
numerical approximations. Both the FEM and the FVM 
require domain discretization into a set of geometrical 
simplicies – a mesh [1]. With increasing complexity of 
discretized geometry the most efficient way of mesh 
generation is a fully automatic one. However, automatic 
unstructured meshing on free form geometry frequently 
produces meshes of unsatisfactory quality, especially for all – 
hexahedral and hybrid meshes. As stability and convergence 
of the FEM and the FVM depend on mesh quality, in recent 
years a lot of effort has been put into research on mesh 
quality improvement via node movement, also known as 
mesh smoothening or optimization [2]. 

A Posteriori methods of mesh optimization have been 
developed since early 1970 ([1][2] Chapter 33). Two general 
approaches based on the mesh proximity criterion are used 
for optimization – local and global. While local optimization 
solves optimization problem in the vicinity of a specific mesh 
node (like Laplacian smoothing [2][3][4]), global 
optimization is oriented on optimization of mesh quality 
metrics for an entire domain (like Jacquotte method [5], 

Dvinsky method [6]). As local smoothing cannot guarantee 
overall mesh improvement, global mesh optimization is a 
preferred choice though it is more computationally 
expensive. Therefore research on efficient methods of global 
mesh optimization has become an important issue recently. 

One of the key aspects of the optimization technique is mesh 
distortion metrics. There are two main groups of metrics: 
firstly, related to interpolation error of numerical method and 
secondly, to condition number of discretized PDE matrices in 
the FEM or FVM ([1][7]). In the first group geometric 
metrics are popular for mesh optimization (e.g. [8][9][10]). 
Geometric metrics provide meaningful results, but suffer 
from a certain lack of generality. Freitag and Knupp [11][12]] 
proposed a more general approach, based on matrix norms 
and Jacobian condition numbers, associated with the 
transformation to a reference equilateral element. This 
metrics uses a distance of a given element to some ideal 
element, and it can also be attributed to the first group of 
metrics. The other popular choice in the first group is a range 
of physical metrics. As a rule it provides some energetic 
criterion, forcing a physical analog of a mesh to change its 
state to some state with a minimal energy, corresponding to a 
globally optimal mesh shape. Different physical models are 
used in this approach, ranging from a simple lumped spring-
mass analogy (e.g. [13]) to complex hyper-elastic models 
(e.g. Jacquotte [5]). Different formalisms are used to derive a 
mathematical model of mesh in this group - spanning from an 
elasticity theory to neural networks [14] and graph-theoretic 
methods [15]. 



The second group, condition number related metrics, is very 
effective, but it is less popular because of its dependence on 
solved PDE and the general complexity of analytical 
expressions for bounds of quality measures [7]. Therefore, it 
would be highly desirable to have an automatic method for 
the derivation of that metrics type for mesh optimization. 

Improving the efficiency of A Posteriori global mesh 
optimization in an attempt to automate the stiffness matrix 
condition number related metrics, we formulate a new graph-
theoretic method. It is based on an electrical model mesh 
analogy and automatic definition of an electric system 
topology. The ideal system state is formally defined using a 
new analogy between the mesh stiffness matrix and cutset 
matrix (see Addendum for definitions) of the mesh model in 
a graph-theoretic form. 

The paper is outlined as follows. In Paragraph 2 we discuss 
the graph-theoretic methods for derivation of the global 
optimization models. In paragraph 3 we present new 
automatic mesh optimization algorithm and in paragraph 4 
discuss the implementation issues. In paragraph 5 we provide 
the first results of the method application to mesh 
optimization in 2D and 3D, while paragraph 6 and 7 give 
future work and conclusions. 

2. GRAPH-THEORETIC MESH OPTIMIZATION 

As a starting point for our optimization we have taken the 
procedure of the automatic graph-theoretic systems modeling 
(e.g. Karnopp et al. [16]). For the electrical schemes, graph 
theory has been used since Kirchhoff’s contributions to 
network theory back in 1840s, but it was Trent [17] who 
recognized the generality of the graph theory approach in all 
physical systems. The key point of this modeling technique is 
that a linear graph becomes a system graph when it is used in 
a system model, in our case a mesh model. 

Using the graph theory in the context of mesh optimization is 
not entirely new. Djidjev in [15] proposed a force-based 
mesh optimization model. The method uses the technique 
developed in graph drawing. A mesh is represented as a 
mechanical system with vertices replaced by steel rings and 
edges by springs that exert repulsive or attractive forces on 
their endpoints, depending on the edge lengths. The method 
showed general applicability and robustness of the graph 
based modeling for mesh global optimization, but as meshes 
correspond to very large graphs the efficiency of optimization 
is still a problem. 

Independently Mezentsev et al. [18] proposed a generic mesh 
optimization model, based on functional of energy 
formulated in terms of electrical variables. The model used 
the graph-theoretic approach (e.g. presented in [17]) to derive 
a physical optimization model. As compared to the graph 
method used by Djidjiev [15], that method permits the use of 
an arbitrary physical model within unified graph-theoretical 
framework. It is not limited to ring-force analogy and permits 
to tune the model according to the requirements of mesh 
optimization. The other important advantage of that method 
is it’s directly applicability for mesh metamorphosis (e.g. 
Baker [19]). However, this approach only provided efficient 
graph-theoretic formalism for automatic generation of 

different optimization models. It has not introduced new 
physical or geometric models for mesh optimization. 

For the sake of completeness, we will go through derivation 
procedures of a directed graph-theoretic model of a mesh. 

2.1 Nodal directed graph model for mesh 
optimization 
We introduce an equivalent scheme (or network diagram) of 
a mesh element as an electric system (Figure 1). In the 
simplest case, each node of the equivalent scheme represents 
X, Y, Z coordinate of mesh node (here – node 1). We use the 
reference node (Node V, Figure 1), corresponding to the 
potential reference point of our electrical network. 

Figure 1.  A 2D quadrilateral mesh element and its 
equivalent scheme. A call out shows equivalent 

scheme of multi-pole component with single DOF. 

Terminal multi-pole component model (in Figure 1 – 3-pole 
component, hereinafter referred as component) links nodes I, 
II of the equivalent scheme, corresponding to mesh 
connectivity. Here we show only one electric pole, 
corresponding to the X-coordinate. Poles, corresponding to 
the degrees of freedom in Y and Z directions will be the 
same. A multi-pole component can have an arbitrary internal 
structure, representing any given physical behavior, i.e. 
spring-mass, beam or a hydraulic physical model. The user 
can combine different electrical primitives, realizing a 
different equivalent scheme of component and creating 
different physical models of the mesh (see [20]). Here for 
example we use 4 electric primitives: current source Ie, 
inductance Le, resistance Re and capacitance Ce (shown inside 
the callout on Figure 1). Note, that in this example we 
deliberately reproduce the topology of the known spring-
mass model [13]. The current in the source can be driven by 
any of the known optimization metrics, for example it might 
be proportional to the distance from an ideal element in the 
chosen metric space.  



We use a systematic graph-theoretic approach to 
automatically derive the model of our electric system, 
corresponding to the mesh. In terms of graph-theoretic 
terminology (e.g. [20]), the across variables (or potential type 
variables in electric systems) will form the vector of 
unknowns for system’s mathematical model. Across variables 
define through type variables (currents). Any physical 
system: electrical, mechanical, hydraulic, etc. can be 
represented in this framework using the analogies of across 
and through variables. For example, across variables in 
electrical subsystem – voltages – will correspond to velocities 
in mechanical subsystem (see Table 1). 

Properties of any component or primitive in a physical 
system are defined by component equations, providing 
functional dependence on through type variables from across 
type variables. In the simplest case of 2-pole resistance 
element the Ohm’s law defines the component equation of 

through variables I from across variables U: 
R
UI = . 

Component equations could be linear and non-linear, 
algebraic, differential or integral. Each multi-pole component 
of the modeled system has it’s own set of component 
equations, describing specific physical behavior. Component 
equations are coded by developer/user and are included in 
libraries in graph theoretic software. 

Subsystem Through 
variables 

Across 
variables 

Mechanic translational Force Velocity 
Mechanic rotational Momentum Angular 

velocity 
Electric Current Voltage 

Hydraulic/pneumatic Flow rate Pressure 
Thermal Heat flux Temperature 

Table 1.  Through and across variables 

 

 

Figure 2.  A 1D graph-theoretic mesh model 

The lowest level of a multi-pole component hierarchy 
contains primitives or 2-poles. There are three main types of 
electrical primitives: 

• Dissipation element – R-type element with 
corresponding component equation I=U/R;  

• Capacitance element – C-type element with 
corresponding component equation I=C(dU/dt);  

• Inductance element - L-type element with 
corresponding component equation U=L(dI/dt); 

The R-type primitive transforms energy from one type to 
another, while the C-type and the L-type primitive 
accumulate potential and kinetic energy of the system. 

The discrete system of arbitrary complexity can be 
represented by a simple combination of R-L-C primitives and 
sources of current and potential. However, objects with 
complex component equations have large system graphs and 
should be modeled using multi-pole components [20]. Using 
multi-pole approach it is not difficult to derive a more 
complex mesh optimization models, for example, mimicking 
properties of different variational models (e.g. [5][10]). Note, 
that multi-pole component can be not just a superposition of 
R-L-C primitives, but be a “black box” with non-linear 
transfer function of input across variables to output. 

Let us go through the process of the 1D mesh model 
derivation using 2-pole primitives, as shown in Figure 2. We 
assume that we do know a priory the reference ideal mesh 
and it will be equally spaced, as shown in Figure 2. The 
difference in positions of nodes 2 and 3 with respect to ideal 
state shown below generates the currents I1 and I2. Nodes 1 
and 4 of the mesh correspond to the reference node of our 
discrete model (node I) with constant potential. Optimization 
of potentials 2 and 3 is based on the minimization of the 
electric energy functional over capacitances C1 and C2 and 
inductances L1, L2, L3. The Kirchoff’s voltage law (see 
equation (1)) presents equilibrium of the system. Our mesh 
optimization model can now be automatically derived 
through the analyses of the system’s graph, also shown in 
Figure 2. Note, that we have chosen mesh element model (L-
C-I) topology and we only use a graph theoretic method to 
generate the system’s model in an automatic way. Currents I1 
and I2 are taken proportional to displacements of node 2 and 
3 of the mesh and will drive the system back to an ideal state. 

 

 

 

 

 

 

 

 

 

Figure 3.  Mesh fragment and multi-pole model of 
component 
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The equivalent scheme of mechanical interpretation for the 
same discrete model is also given in Figure 2 and we can see 
correspondence of electric and mechanic formulations. Using 
mechanical analogy, our sources correspond to forces F1 and 
F2, inductances L1, L2, L3 to springs S1, S2, S3, etc. It is 
important, that our formulation treats mesh as a generic 
discrete dynamic system with lumped parameters, not 
necessarily mechanic. Let us discuss now how we represent 
mesh using multi-pole components. Figure 3 shows a 
fragment of a hybrid mesh in 2D with nodes 1–6 and internal 
structure of multi-pole component as well. Figure 4 presents 
the equivalent scheme of the given mesh as electric model 
with multi-pole components. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Equivalent scheme of the mesh fragment  

Boxes in Figure 4, designated M n-n represent 5-pole 
components, corresponding to mesh edges. Solid links on the 
equivalent scheme are the electrical connections and poles of 
the scheme correspond to the x,y-components of the across 
variables (potentials) at nodes 1-7 of the mesh in Figure 3. 

2.2. Automatic graph-theoretic method for 
modeling of system topology 

The overall system’s computational model is formulated 
using the nodal graph-theoretic method. A model is a 
unification of the component (see also paragraph 2.1) and 
topological equations [20]. Remember, that component 
equations provide functional dependence of through type 
variables from across type variables. Topological equations 
describe connection of system’s components. They are 
generated using the fundamental energy conservation 
equation – the first Kirchoff's current law:  

0)( =ϕI                                 (1) 

where I – is the vector of the through type variables (currents, 
forces, thermal fluxes), ϕ  - is the vector of across type 
variables, defining the state of the given system’s node 
(potentials, velocities, temperatures). 

We can derive topological equations from (1) using the 
incidence matrix (see Appendix for definitions) of a system 
graph: 

0=AI                                  (2) 

where I – is the vector of the through type variables on real 
branches of the system’s graph; A - is the system matrix of 
the system graph, also known as the matrix of contours and 
cuts. For mesh optimization we need to derive topological 
equations of our mesh model. This is easily formalized, using 
the information stored in the cutset matrix of the systems’ 
graph. The cutset matrix M is derived from the graph of our 
physical system’s equivalent scheme and specifically from 
the graph tree. The procedure of the cutset matrix formation 
is as following: each chord of the system’s graph is included 
in turn into the tree forming a closed contour of the graph. 
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Figure 5.  Graph of the terminal model in Figure 1 
and its M-matrix 

Then we loop over each contour in the direction of the chord, 
entering +1 in the row of cutset matrix, corresponding to the 
chord, when the branch direction coincides with the loop 
direction and –1 if it does not. For example, Figure 5 shows 
the system graph of the 3-node terminal model with an 
equivalent scheme presented in the callout of Figure 1. The 
table in Figure 5 illustrates the formation of the M-matrix for 
the given system graph.  

Comparing the A -matrix in (2) with the cutset matrix M 
and also taking into account, that each fictious branch with 
given current has a node, from which it originates, we can 
observe that 

tMA −=                                 (3) 

Further we can modify the topological equations of the 
system with respect to potentials U and currents I: 

0=+ chordsdep UMU                       (4) 

0=− chords
t

branches IMI           (5) 

where Udep – is the potential on dependent branches of the 
system’s graph. 

As all branches of the graph’s tree are fictious, then 
0=branchesI  and from (2) we receive: 

0== AIIM t                           (6) 
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where I is the through type variable on the real branches of 
the system graph. 

From (3) we can obtain dependence of across variables from 
through variables on real branches of the system graph tree. 
As a first approximation, we can represent the voltage drop in 
dependent branches of the graph as the potential on the 
branch: ϕ=depU  and therefore 

0=+ UM ϕ                            (7) 

or 

0=− UA tϕ                            (8) 

So we include ϕ  to the vector of unknowns in our mesh 
model, after that component equations are discretized and we 
impose the restriction on the form of the component equation 
to be strictly the dependence of through variable from the 
across variable, i.e. )(ϕII =  or )(tII = , where t is the 
time. 

Further on the discretized and linearized system of equations 
for our mesh model will be as follows: 
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where 
U
IY

∂
∂

=31  the matrix of partial derivatives of the 

component equations over the across type variables, K – the 
nodal non-convergence vector of the system. After exclusion 
of the sub-vectors U∆  and I∆  from (9) we can write: 

KMY t−=∆ϕ                          (10) 

where MYMY t
31=  is the matrix of currents derivatives 

over voltages 
i

i

U
I

∂
∂

 at node i of the model, KM t  - is the 

vector of the through type variables in the nodes of the 
model. Finally we end up with the standard algebraic system 
of equations: 

bG =ϕ                                 (11) 

The main advantage of this nodal formulation is the 
efficiency of multi-pole models that permits us to represent 
mesh as a discrete system with smaller system graph, as 
compared to 2-pole primitives. 

Our initial graph-theoretic approach in [18] uses a direct 
analogy of a mesh topology and topology of a corresponding 
discrete system with lumped parameters. We can generate a 
physical model automatically from the mesh description and 
the mathematical model is derived automatically using any 
appropriate graph-theoretic software (e.g. PA7, [24]). An 

accurate choice of component equations for discrete 
elements, representing the energy links between mesh nodes, 
resolves the problem of the singular energy functional 
behavior in the neighborhood of non-convex boundaries and 
ensures the convergence of the optimization algorithm. 
Euristic optimization models could be easily changed without 
any coding effort, using multi-pole elements with different 
component equations. But this method only provides a 
systematic and automated way of using different physical 
models for mesh global optimization. The main drawback is a 
large system graph for realistic unstructured meshes, making 
optimization process rather computer intensive. However, 
this is true for any other global mesh optimization techniques, 
and therefore it is common to combine global and local 
optimization methods. In the graph-based force approach 
Djidjev [15] circumvented the problem of large mesh graphs, 
using a combination of Laplacian-like smoothening and a 
global graph optimization method, but that potentially could 
degenerate to local optimization. As compared to the 
approach in [15] our multi-pole representation is 2-5 times 
more memory efficient and it can be used for realistic global 
optimization. We can handle meshes up to 106 elements on a 
32-bit PC within 5 hours of computing time. However, we 
managed to improve our approach further, introducing 
system graph coarsening and automatic derivation of mesh 
optimization models for hyperbolic PDEs as discussed below. 

3. AUTOMATIC COARSENING AND 
DERIVATION OF THE GRAPH-THEORETIC 

MODEL  

Let us consider fully discretized FEM problem in a standard 
matrix form: 

),...,2,1(
1

nibxaorbxA
n

j
ijij ===⋅ ∑

=

   (12) 

where A is the n by n coefficient matrix (in the FEM 
terminology – the stiffness matrix), x – 1 by n vector of 
unknowns, b – is a 1 by n right hand vector. We use formal 
analyses of the stiffness matrix structure to derive 
automatically a mesh optimization model in the graph-
theoretic form. Unlike in the discussed method with 
primitives, where topology of a physical mesh optimization 
model needs to be defined by the user and then computational 
model is automatically derived using graph-theoretic 
framework, this approach provides a completely automatic 
workflow. 

The idea is to provide the optimal conditioning of matrix A in 
the discretized problem (12). A number of publications (see, 
for example, Shewchuk [7]) show, that the difficulty of 
solving of linear system (12), typically grows with the 

condition number 
K

K

k
min

max

λ
λ

=  of the global stiffness 

matrix A, where 
K
maxλ  and 

K
minλ  are the largest and smallest 

eigenvalues of A. Global matrix is assembled from an 
element stiffness matrices Ke and therefore it is roughly 
proportional to the largest eigenvalue of the stiffness matrices 
of the elements [8]. 



Analyzing the typical structure of matrix A (12) for different 
PDEs and meshes and comparing it to the structure of matrix 
G (11) in graph-theoretic model with different realizations of 
mesh optimization model we observed a systematic similarity 
of A and G. It appears possible to directly derive optimization 
model using formal analyses of matrix A. The only concern is 
high dimensionality of obtained graph-theoretic model (11). 
In our method we came up with a new approach for reduction 
of that model. It is based on automatic algebraic coarsening 
of the FEM matrix A (see equation 12) and then the automatic 
generation of mesh optimization model using (9). For 
coarsening of matrix A we use the Algebraic Multigrid 
method (AMG) [21][22]. The AMG is successfully applied 
for solving discretized PDE on unstructured meshes using 
coarsening and also for certain classes of discrete problems, 
not arising from differential equations [23]. 

The coarse matrix HA  is formed from fine level matrix hA  

taking a coarse subset hC  from a set of FEM coefficients 
hΩ  so that 

hhh FC ∪=Ω                               (13) 

AMG is working with the directed weighted connectivity 
graph of the matrix A. The matrix coefficients (1,...,n) are the 
vertices of connectivity graph. If coefficient aij not equal to 0, 
there is an edge eij from i to j with weight wij. The larger wij 
the stronger the connection from i to j. Formally eliminating 
coefficients with weak connections we can construct a coarse 

subset hC . So, defining hH C=Ω , the coarse level AMG 
system will be as follows: 

)( H

l

H
k

H
l

H
klH

H
H kbxaorbxA

H

Ω∈== ∑
Ω∈

   (14) 

It is constructed using Galerkin coarsening [22], i.e. coarse 
matrix HA  is defined as the Galerkin operator: 

h
Hh

H
hH IAIA =:                         (15) 

where H
hI  - is the restriction operator performing mapping 

from fine to coarse level, h
HI  - interpolation operator 

performing mapping from coarse to fine level. In contrast to 
geometric multigrid, AMG uses no information on the 
problem mesh. A Galerkin operator is constructed purely 
algebraically, satisfying variational principle for the coarse 
subset correction process. 

The traditional application of AMG produces a set of 
coarsening matrix coefficients on different levels for (12). 
Our experience shows, that one level of algebraic coarsening 
is sufficient in terms of A-matrix coarsening to produce a 

subset hC  of matrix coefficients, small enough to reduce the 
optimization problem. 

The next step is an automatic derivation of the graph-
theoretic mesh optimization model. For our multi-pole 
terminal presentation we propose a formal correspondence of 

the HA matrix and accumulated graph-theoretic model cutset 
matrix M (see paragraph 2.1). Each positive non-zero entry of 
the coarsened HA matrix corresponds to +1 value of the 
cutest matrix M, each negative non-zero entry corresponds to 
–1, zero values are the same. The procedure of optimal 
automatic definition of sub-matrix 31Y  is still open to further 
research in our first prototype (Paragraph 4 and 5) we used 
the euristic approach, based on the direct scaling of the AMG 
weights wij on the coarse level. 

Ultimately, our algorithm of the graph-theoretic mesh global 
optimization using A-matrix condition number with AMG 
coarsening will be as follows: 

1. Accumulate a stiffness A matrix for a given 
problem and material properties. 

2. Define the condition number of matrix A as 
optimization criterion. 

3. Using the AMG coarsening algorithm, reduce the 

FEM matrix A (12) to a coarse subset hC  
(equations 13-15). 

4. Analyze the structure of coarsened matrix HA  and 
automatically generate graph-theoretic cutset and 
nodal conductance matrices. 

5. Formally derive a discrete graph-theoretic mesh 
model corresponding to defined cutest and nodal 
conductance matrices. 

6. Perform a dynamic evolution of the graph-theoretic 
mesh model up to a steady state. That state will 
define optimal positions of coarse mesh nodes with 
respect to the optimal conditioning of matrix A. 

7. Using h
HI  interpolate coarse level positions to fine 

level. 
8. Check the validity of the optimized mesh. If 

invalid, correct weights in 4 and return to 5. 

It is important, that based on this formulation we derive the 
mesh optimization model as a union of multi-pole terminal 
components in a graph-theoretic framework. Together with 
coarsening, this method permits us to reduce significantly the 
number of edges in a graph, representing a mesh. Moreover, 
in some cases it is possible to represent boundary elements 
with fixed nodal positions and “good” elements as multi-pole 
components with a reduced number of outer poles. While 
"bad" elements have as outer terminals all the nodal 
potentials plus an energy pole, the "good" elements will have 
only energy-related outer node, not contributing to node 
movement. 

4. IMPLEMENTATION 

Our implementation of the described mesh optimization 
model is based on the PA7 graph-theoretic code [24]. This 
code provides internal meta-language for a definition of 
modeled system topology and parameters. Exstensive 
libraries of different electric, mechanic, hydraulic and 
pneumatic multi-pole models are available for users. These 
libraries permit us to derive graph-theoretic mesh 
optimization models directly as discussed in paragraph 2.1. A 



number of optimal matrix and numerical integration 
algorithms are implemented in the code, making graph-
theoretic modeling very efficient (for details, see [25]).  

Initial 2D meshes for further optimization were generated by 
the research indirect hybrid code of Dr. O. Hassan 
(University of Wales, Swansea), initial 3D all-tetrahedral and 
hybrid meshes were generated by the MezGen unstructured 
constrained Delaunay mesh generator [25]. MezGen is coded 
in an Object-Oriented style using polymorphism and meta-
templates. It is based on the constrained Delaunay mesh 
generation and boundary recovery algorithms, developed at 
the University of Wales Swansea [26]. However, MezGen 
also provides a number of algorithmic extensions related to 
indirect hybrid mesh generation and reflecting application of 
the Standard Template Library - STL. It is also capable of 
generating prismatic meshes, using a normal offsetting 
method and has direct CAD interface to ACIS (Spatial Inc.) 
model. 

The analysis of the finite element stiffness matrices is carried 
out within the framework of the CSP4.0 FEM code, 
developed by S. Matthäi et al. [27]. For a given PDE 
accumulation of the problem’s stiffness matrix is carried out 
in a standard way, see [27] and paragraph 5.2 for details. 

We use a commercial version 21b1-12 of the AMG code [28] 
for coarsening. After the formal analyses of the stiffness 
matrix we generate corresponding graph-theoretic M-matrix 
and automatically derive a meta-language description of the 
corresponding discrete optimization model using the PA7 
code. At this stage, the specific equivalent scheme and 
structures of multi-pole components of the mesh model are 
automatically written to a file.  

5. TEST CASES 

5.1 Graph-theoretic model with primitives 

The proposed graph-theoretic optimization technique was 
tested in our first prototype of the automated mesh 
optimization module for unstructured meshes in 2D and 3D. 

Figure 6.  Optimized versus the initial quadrilateral 
mesh for multi-component airfoil. Graph-theoretic 

multi-pole optimization model, emulation of the 
Jacquotte method 

Firstly, we checked the generality of our multi-pole graph-
theoretic method presented paragraph 2.1 emulating a 
number of mesh optimization models, described in literature. 
For example, Figure 6 gives the comparison of mesh quality 
before and after optimization with the multi-pole graph-
theoretic model similar to the Jacquotte method [5]. 

The multi-pole terminal model uses primitives in its structure 
to emulate the variational strain based mesh optimization 
algorithm. It calculates the nodal potentials at each 
optimization’s iteration, minimizing the objective function. 
Summation of energy over all mesh cells gives total potential 
energy, stored in the mesh. Minimization of that energetic 
functional with respect to the across variables of the system is 
the objective of optimization. The optimal configuration of 
the system will correspond to the minimal potentials at the 
nodes and is achieved during Newton-Rahpson iterations. 

Model Nodes Ele- 

ments 

Angle 
before 
Min 

Angle 
after 
Min 

Time, 
secon

ds 

Hybrid 

Airfoil 

10786 10489 2.54 8.11 28.4 

Tet 
Reserv

oir 

131380 594934 2.0e-3 7.0e-1 1610.0 

Hybrid 
Reserv

oir 

125750 630531 4.5e-3 4.6e-1 1417.4 

Table 2. Test cases characteristics 

Compassion of the efficiency of the discrete model to the 
variational model is presented in Table 2. We would like to 
point out again that the graph mesh optimization model uses 
rather large system graph, requiring certain computer power 
for global optimization. 

However, our tests show, that due to discussed 
dimensionality reduction assumptions in the model and high 
efficiency of graph-theoretic algorithms (paragraph 2.2) 
proposed optimization technique is nearly 70% faster than the 
Jacquotte optimization, which we implemented as a 
benchmark. 

5.2 Graph-theoretic Multi-pole component 
model 
The second test presents the efficiency of our fully automatic 
mesh optimization approach for the solution of the Darcy 
equation, used in subsurface flow simulation in porous media 
[29]. It is basically a Laplacian equation with the following 
definition of the advection velocity v: 

Pkv ∇=
µ

                             (16) 

where P  - is pressure in the domain, Pa, k  - is permeability, 
m2, µ  - is porosity of the rock mass.  



We solve (16) using the standard Bubnov-Galerkin Finite 
Element method with linear elements, to define velocity for 
further transport simulation with a hyperbolic advection-
dispersion equation. So, the equation (16) is used in spatio-
temporal discretization scheme for multiphase flow 
simulation in realistic fractured reservoirs [30]. Due to large 
difference in the permeability tensor k  in different regions 
of the mode (up to four orders of magnitude) spatial 
discretization results in an extremely stiff system of ordinary 
differential equations. It is therefore very important to 
provide quality spatial discretization, as a single poorly 
shaped element will further complicate temporal 
discretization of the problem. Here mesh optimization with 
respect to minimization of the FEM (stiffness) matrix 
condition number is required. Using the new method of mesh 
optimization as discussed in Paragraph 2.2, we managed to 
improve significantly both the geometric and computational 
quality of the mesh. Table 2 and Figure 7 provide the 
comparison of the geometric mesh quality of the mesh. 

 

 Figure 7.  Mesh quality before and after 
optimization 

Figure 8 and Figure 9 shows the elements of the tetrahedral 
unstructured mesh of the realistic fractured reservoir (mesh 
generated by the Mezgen code (A. Mezentsev [25]). In the 
Figures 8 and 9, solid blue outline depicts the elements in the 
mesh with the element stiffness matrix condition number [16] 
higher then 5*104 before and after mesh optimization, based 
on the graph-theoretic model with multi-node terminal 
presentation of mesh elements. 

 

Figure 8.  Elements of the fractured reservoir 
tetrahedral mesh with the stiffness matrix condition 

number larger than 50000 before optimization – 
2874 

 

 

Figure 9.  Elements of the fractured reservoir 
tetrahedral mesh with the stiffness matrix condition 
number larger than 50000 after optimization – 341 

Table 2 provides the CPU times for all discussed 
optimizations for the SuSE Linux-64 AMD64 3200+ 
workstation with 3.0 GB. of RAM. As we can see, the 
efficiency of the mesh optimization permits us to state an 
applicability of the new method to the complex unstructured 
meshes with up to 1 million elements on complex free form 
geometry in Boundary Representation (BREP) format. Our 
tests show, that for pressure equation (16) proposed mesh 
optimization permits us to achieve convergence of the 
applied preconditioned Conjugate Gradient Solver. The 
solution does not converge without optimization. Using the 
AMG solver is more straightforward, however standard 



settings also fail to provide convergence in numerical 
solution without mesh optimization. 

6. DISCUSSION AND FUTURE WORK 

Our first results show applicability of the general graph-
theoretic approach to the problem of mesh optimization. It is 
combining physical interpretation of the optimization process 
with efficient automatic model derivation technique. 

However, though the theory of graph-theoretic method is well 
formulated for discrete mesh models with primitives and 
multi-poles, heuristic assumptions of analogy of the FEM 
stiffness and cutest matrices in the graph-theoretic method 
require further validation and rigorous theoretical validation. 
It is also not clear what the limits are of AMG-type 
coarsening and how stable is the coarse/fine interpolation 
between meshes in Galerkin operator (equation 15). These 
questions should be addressed in future work. 

Here we would also like to point out the applicability of the 
new method to the problem of mesh movement and 
metamorphosis. Due to the inherently dynamic nature of our 
approach, it appears possible to use a discrete graph-theoretic 
mesh model instead of Laplacian and elastic variational 
approaches, considered by Baker [19]. On the other hand, it is 
also possible to emulate practically an arbitrary model of the 
mesh element within our graph-theoretic framework. These 
two aspects of the graph-theoretic model stimulate further 
research in the dynamic mesh area. 

7. CONCLUSIONS 

We have developed and tested a new automated graph 
theoretic method for global mesh optimization via nodal 
movement. Two main techniques, using direct derivation of 
mesh optimization model using primitives and multi-pole 
components are proposed. Both methods are based on a new 
correspondence between the structure of Finite Element 
stiffness matrix and the structure of the graph-theoretic M-
matrix We use also an original coarsening technique, 
realizing the algebraic multigrid principles. Our generic 
approach shows its applicability to mesh optimization 
problems on complex mono-element and hybrid meshes. 
Easy implementation of different optimization models 
permits us to tune optimization metrics and optimization 
function, forming the advantage of the new method. 
However, the method requires rigorous testing and theoretical 
proof for the isomorphism of the FE stiffness matrix and the 
M-matrix structures. 
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ADDENDUM: DEFINITIONS FROM GRAPH 
THEORY 

A graph G(V,E) is a pair of sets V and E, together with a 
relation which associates two elements of V with each 
element of E. V is called the vertex set and its elements are 
called vertices. E is called the edge set and its elements are 
called edges. The two vertices, associated with an edge are 
called endpoints. Two vertices of G are said to be adjacent if 
they the endpoints of the same edge G.  

Sub-graph of a graph G is a graph obtained from G by 
deleting edges from the edge set. Sub-graph has an edge set 
which is subset of the edge set G. 

Cycle of a graph G is a closed route inside the G. 

Graph tree is connected sub-graph of graph G without cycles. 

Tree branches are the edges of a graph G, included in a tree. 

Tree chords are the graph edges, not included in a tree. 

The incidence matrix of a graph gives the (0,1)-matrix which 
has a row for each vertex v and column for each edge e, and 
(v,e)=1 if vertex v is incident upon edge e. 

The adjacency matrix of a graph is a matrix with rows and 
columns labeled by graph vertices, with a 1 or 0 in position 
(vi,vj) according to whether vi, and vj are adjacent or not. 
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