UNIVERSITY OF CAMBRIDGE
 department of genetics

Whittingehame lodge

44 STOREY'S WAY
CAMBRIDGE
Tel. 55822
27 th Hay 1950
My dear Lederberg,
Thank you for your letter and for your strains, which arrived in excellent conditions. Since when I wrote you, the small capacity of my laboratory has been entirely absorbed by the ney strains, th that I have nothing to add concerning mapping work. However, I am giving in an ap endix data concernigg $\$ 8 \mathbf{3} 6$ crosses. I forgot to tell you in my last letter, concerning mapping work, that I maped so e time ago an azide-resistant mutant, which was localized between V_{1} and TL. A chloromycetin-resistant mutant showed axzowx roughly in the same region(but in the latter case, selection was by successive subculturings and more than one locus or step may be involved). While chloromycetin resistance work is being continued (selection by successive transfers shows a nearlt perfectly continuous increase of resistance!) I have discontinued azide-resistance, because it seemed to me that there is too little a gap between sensitiveness and resistance. Chlo_ romycetin resistance was so far aseless for selection of recombinants according to your streptomycin-azide method.

Re \mathbb{W} lll3 strain, I had little experience with it, since crossings to Kl2 always yielded very few or no prototrophs. I have never tes ied then with sugars, so that I could not tell 就 about the much more than that. I dropped work with w 1113 because I found so little antigenic difference between it and K-12. If you are interested in a confirmation, I shall repeat these crosses, which appeared to me to give some, although scanty,results.

The new strains have been rather deceptive. Finding now narked antigenic difference between fext interfertile strains known at that tine , we set up a patient search of fertile sirains among coli-strains finown to be antigenically different. Eventually, two were found (marked by Kauffmanm O-antigens 3 and 5) that seemed to consistently miriads of prototrophs, when crossed nt high titres. On dilution, a smaller number of"prodttrophs" apyeared, but these colonies, which I should call phseufoprototrophs", were always small, not gretere than ma in dianeter, and grew sbyly and bady, or not at all, on transplantation to fresh mininal mediun.
iarking with sugars has confirmed suspects, that no/recombination is probably taking place among them. At present, two two lable for each of the two strains 3 and 5 ; pseudoprototrophs are formed in the cross within coli 3 jnot mexrewxwnithin coli 5 ; and in three out of the four possible crosses between 3 and 5 ,with these straiss. What these pmowoprototrophs are, - if recombination vill be entirely exc uded, I could not say ; I heve been thinting:
 to prevent the possibility of formation of heterokarions having a minimum of stablityq. Association with perheps partial back mutation peens then the only al ernative. I hope to be able to decide soon between extraceliular or intracellula syntrophisp: Controls of the strains are setisfactory, of course.

Although deceptive from the recombinational point of view, at least so far, these "crosses" have been found exciting from the antigenic point of view. For instance, five ouff ${ }^{\circ}$ six pselfoprototrophs better then the others were found to have and keep after six successive platingsmon conplete - the antigenic reactivity of both parental strains. Decision between recombination, cytolas ic inheritance, or extracellular transiormation partly depends on the decision about the nature of these "prototrophs". I hope you will not mind receiving information of a research which is still at such an early stage. It will help me to know if you have any experience of s:ch pseudoprototrophs. I have an impression that some of the snaller krwe prototronhs in Kl2 crosses moy be of the same type.

I found an early nitrogen mustard resistant mutant in which is ineapable of crossing, to be non-motile. Tnfortunately, decisions on motility are not the easiest, in coli, and flagella staining not very satisfectory.

Yours sincerely
Knif Camall'.
a) Cross w $705 \times 1 / 236$

Of 408 prototrophsmt, 162 from plates supplemented with tryptohane; none was Tr-. Expectations calc.on basis of order:M-MlyT-Gal- $\mathrm{L}_{a} \mathrm{c}-\mathrm{V}_{1}$,
b) Cross W 705 x W 677

I II III
Of 108 prototrophs, all Gal- ; $24 \mathrm{Mal+} 14 \mathrm{Xyl}+$.
c) Cross w $677 \times \mathrm{w} 836$

No. of prototrophs
Lac V_{1} Gal no addition with B_{1} coo.

+	s	+
+	s	-
-	s	-
-	r	-
-	s	+
-	r	+
+	r	+
+	r	-

25	8	I
52	25	$I I$
70	69	III
31	79	$I V$
6	1	$I, I I, I I I$
1	0	$I, I I, I V$
0	0	$I, I I I, I V$
1	0	$I I, I I I, I V$

陛保
182 of which 18 are $\mathrm{B}_{1}+$

Coo. regions given assuming order : Tier $B_{1}-\mathrm{MlyTr}-\mathrm{Gal}-\mathrm{Lac}-\mathrm{V}_{\mathrm{I}}-\mathrm{LT}$ Other possible order : $B_{1} G a l M 1 y T L a c V_{1} L T$, then strong $g^{2} /$ negative interferesce between Gal-M1yTr and MlyTr-Lac. Data available for Hal and MI show linkage, not complete, with Gal.

The major difficulty encountered in assuming the same order, i, e, M-Gal-Lac-V -LT for all the three strains is in the comparison of frequancies of c.o. for the same regions in different crosses. For instance, $M-G a l$ is greatly exaggerdted in one sitistance and depressed in the other. Also, there always is negative interference between $B_{7}-M$ and M-Lac in any cross where such regions are mariced. It coula be explained by double c.o. within the imversion loop.

Double c.o. in the inversion loop could also explain partial linkage of $\mathrm{Mal}, \mathrm{Gal}, \mathrm{MtI}, \mathrm{XyI}$ etc.

