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Abstract 

NASA is investigating the use of advanced automation to enhance crew productivity for Space 
Station Freedom in numerous areas, including failure management. This paper describes a 
prototype that uses various advanced automation techniques to generate courses of action whose 
intents are to recover from a diagnosed failure, and to do so within the constraints levied by the 
failure and by Freedom's configuration and operating conditions. 
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Introduction 

Artificial Intelligence (AI) has been successfully applied to the fields of failure diagnosis and plan 
generation. This paper addresses the application of AI planning techniques to failure recovery. 
The Recovery expert (Rx) is an existing prototype that generates plans whose intents are to recover 
from diagnosed failures on the Space Station Freedom and to do so within the constraints levied by 
the failure and by other current operating conditions. The Rx uses artificial intelligence techniques 
(such as pattern matching, symbolic reasoning, and goal-directed planning) and statistical 
techniques (multiple criteria decision making) to generate the courses of action. 

Background 

The National Aeronautics and Space Administration (NASA) is in the process of designing and 
implementing a permanently manned space station, Space Station Freedom, to be put into low earth 
orbit. Freedom has a hierarchical, distributed command and control architecture. The highest level 
in the architecture is concerned with global, vehicle-wide issues and includes the people controlling 
Freedom and the software that they use to do their jobs. Our failure management prototype, 
initially described in (Hammen, Baker, Kelly, and Marsh, 1990) and expanded upon in this report, 
demonstrates the applicability of expert system software to provide decision support to Freedom's 
crew in recovering from vehicle failures. 

This prototype is implemented in ART/AdaTN, TAEm Plus, and Ada, and comprises the 
Diagnostic Reasoner (DR), which diagnoses and analyzes the failure, and the Rx, which 
formulates courses of actions to take for recovery (Baker, Hammen, Kelly, and Marsh, 1991). 
This report focuses on the Rx; a companion article (Baker and Marsh, 1991) focuses on the DR. 
The DR and Rx are not completely automated functions: they are decision aids, and the user is 
provided with interaction capabilities throughout the failure management process. 
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The key technologies used in the implementation are model-based reasoning (for the DR) and goal- 
directed planning (for the Rx). The objective of the prototype is to show how we use these 
technologies and how the technologies work together synergistically. By demonstrating the value 
of this approach to failure management we hope to influence how Freedom failure management 
software will eventually be implemented. 

Figure 1 shows an overview of the environment in which the DR and Rx prototypes work. The 
DR receives status and configuration reports that reflect changes in the operational components. In 
the case of a failure, the DR diagnoses the failure and the Rx formulates a set of possible solutions 
to the failure. Once a specific Course of Action has been selected, another prototype not described 
here, the Procedures Interpreter, sends commands that implement the selected Course of Action. 

Failure Management Terminology 

A fault is a "known or hypothesized defect in hardware or software causing error" (MDSSC, 
1989). A fault may manifest itself as a failure, which is "the inability of a system, subsystem, 
component, or part to perform its required function" (MDSSC, 1989). 

DR Overview (Baker and Marsh, 1991) 

When the DR receives reports that indicate a failure it looks for possible causes, or suspects. More 
than one possible cause might be proposed for a given set of symptoms, and more than one 
independent fault might be proposed as a possible cause. The DR projects the effects of the 
possible causes into the future, producing failure modes and effects criticality analyses, or Impact 
Sequences. These provide insight into the severity of future impacts and allow the Rx to recognize 
and mitigate the more severe problems first. The possible causes and their impacts are identified in 
a Suspect List, which is sent to the Rx. 

t 
Procedures 

Status and Configuration Commands 
Reports 

Figure 1. Overview of DR/Rx Process Flow 
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The Rx bases its approach to the problem on supplied diagnoses and corresponding failure modes 
and effects criticality analyses. The Rx selects ways in which to attack the problem and develops 
partial plans that address specific aspects of the problem based on these chosen attacks. These 
partial plans are merged to generate comprehensive plans that address the entire problem. The Rx 
generates multiple plans, good and not so good, for further evaluation by the user. An overview 
of the processing performed by the Rx is presented in figure 2. 

The Rx selects attacks on the problem based on the soundness of the diagnoses. When a diagnosis 
is sound the Rx attempts to develop prirnary plans that directly attack the root of the problem. 
When the diagnosis is equivocal the Rx attempts to generate primary plans whose intents are to 
collect information that could refine future diagnoses. For preliminary diagnoses the best response 
might be to do nothing. The Rx may also generate secondary plans that mitigate potential 
downstream impacts of the failure, dowing adequate time to realize the primary plans. 

I 

For each attack that is selected the Rx attempts to build partial Courses of Action. Initially, a top- 
level goal is generated based on the problem and the selected attack. This goal triggers the goal- 
directed planning process, which generates a tree-like structure of goals and activities. An activity 
specifies how to use a pre-defined procedure to achieve the goal of the activity. The procedures 
have prerequisites that lead to sub-goals, extending the tree. Partial Courses of Action are 

Suspect 
List * Direct Attack 

Impact Mitigation Build Initial Goal 
Value Assessment 
investigative 
Wait and see 

Select generic goal: 
pattern matching 

Build problem specific goal: 

Manage Courses of Action 
Approved I 
Course of 

Action 
* Build unified courses of action: 

plan merging 

Evaluate courses of action: 
decision theory 

instantiation of genericgoal 

Build goal/activity tree: 
goal-based planning 

Generate courses of action: 
tree-traversal 

Figure 2. Overview of Rx Process Flow 
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extracted from this tree using tree traversal techniques. Follow-up actions that eliminate un- 
desirable side effects of the activities can be added, again using goal-directed planning techniques. 

Each partial Course of Action addresses only a part of the problem. The final action that must be 
taken before a recovery plan can be designated as complete is to merge partial Courses of Action, 
creating comprehensive Courses of Action that address the root of the problem, mitigate the side 
effects of the problem, and do so within the constraints levied by the problem. 

Paper Overview 

The above summary of what the Rx does provides little indication of how it does it. We intend in 
this paper to describe how the Rx interacts with external agents and how it produces Courses of 
Action in response to diagnosed faults. Since the DR and Rx are intended to reason about a 
dynamic system, we begin with a description of the mechanism used for representing and 
reasoning about relative time. In the following sections we describe the interactions of the Rx and 
external agents in terms of the data that are exchanged between the Rx and those agents, and we 
describe the means by which the Rx forms Courses of Action in terms of the processes used to 
build and evaluate the Courses of Action. 

Relative Time Represent at ion 

The DR and Rx reason about a dynamic system where the state of the system changes with time. 
Timing and temporal relationships between detected events, projected future events, and planned 
activities are important to the functioning of the software. The problem here is not how to express 
the specific, absolute time at which detected events have occurred but how to express the relative 
timing between events: this is a matter of timing rather than time. We express relative time on a 
logarithmic scale of seconds. We chunk the time into discrete intervals by truncating to an integral 
value because this enables reasoning about time qualitatively and because this represents the limits 
of our accuracy. We terrninate the scale at 0 since very small time intervals are not within the scope 
of the DR or Rx. This time scale is depicted in figure 3. An example of the use this scale is the 
time interval between an event and an expected impact of the event. If the time interval is 0 the 
impact is expected to be felt within ten seconds, and if it is 2 the impact should be felt in 100 to 
1000 seconds. In discussions of our knowledge representation any reference to timing is made to 
this scale. 

time scale 0 1 2 3 4 5 

seconds 1 10 100 1,000 10,000 100,000 1,000,000 
I I 

1 minute 1 hour 1 day 1 week 

Figure 3. Relative Time Scale 
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ally Visible Data 

In this section we describe those types of data that the Rx exchanges with external agents: the 
Component Model, which describes the status and structure of Freedom’s components; the 
Suspect Lists, which contain the diagnoses generated by the DR and cause the Rx to take action; 
the Procedure Metadata, which describe the actions that can be taken; and the Courses of Action 
that describe the actions to be taken. 

The Component Model 

The Component Model, which is at the heart of processing for the DR, also plays a significant role 
for the Rx. The Component Model incorporates dynamic structural and status information as well 
as other information that is not used by the Rx. The structural information describes the physical 
and functional relationships between components. Figure 4 illustrates two of the several types of 
inter-component relationships expressed in the Component Model. The status information 
describes the components’ modes of operation, their health, and key operational values related to 
their behavior. Figure 5 illustrates some of the dynamic status information that is collected for a 
component instance. The Rx uses the structural and status information to tailor the Courses of 
Action it generates to Freedom’s configuration and operating conditions. For example, the Rx 
would reject a Course of Action that involves the use of a specific component that had previously 
‘ailed. 

(a) Locality Relationships 

Node 1 Aft 

contains 

location 
Processor8 

location 
contains High Data Rate <- Node 1 Aft Rack 1 .-> Standard Data 

FrameMUX2 
/ocation&on t a i n s l o c a  tion 

Cold Plate 15 Cold Plate 16 

(b) Functional Connectivity Relationships 

core data forward Standard Data TDRSS Baseband ____j 
Signa1 Processor Processor 8 s r e  data return 

combined forward 

Transceiver/ 
Modem 8 

Video Baseband 
Signal Processor 2 

TDRSS High Data 
Rate Frame MUX 2 

Figure 4. Component Model Structural Information 
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I Cold Plate 15 I 

Oil degraded high 

I I 

Figure 5. Component Model Status Information 

The Component Model describes the components, the functions they provide, and where they are 
located. The components, functions, and locations are all described hierarchically, beginning with 
abstract object types that expand into more and more precise object types, and terminating in 
specific instances of object types. Each object class typically has many individual instantiations. 
This representation also encompasses information about characteristics of the components; we used 
inheritance techniques to reduce the amount of explicitly specified information. 

Suspect List 

A Suspect List identifies a set of related observed (off-nominal) behavior attribute values and those 
components whose off-nominal performance could result in those observations. Figure 6 shows 
the structure of a Suspect List. 

UNKNOWN BEHAVIOR MEASURES: 

SUSPECTS: 
Components suspected as the cause of the failure 

Value indicating likelihood that this suspicion caused the failure, 
given that the data supporting this suspicion are believable 

LIKELIHOOD: 

BEL1 EVABILITY: 
Value indicating believability of the data supporting this suspicion 

IMPACT SEQUENCE: 
Sequence of impacts that could result if this suspicion is true 

IMPACT SEVERITY: 
Value indicating the overall severity of the impact sequence 

Figure 6. Suspect List Structure 
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A Suspect List is associated with a specific failure. The DR might find that more than one possible 
cause explains the same failure, in which case each explanation is reported as a separate diagnosis, 
or Suspect Group, in the same Suspect List. The DR might find that several independent 
component faults are required to explain the failure, in which case all the independent faults will be 
identified as a possible cause in a single Suspect Group. 

A Suspect List also can identify key unknown behavior measures: operational behavior measures 
whose values are not available directly. The assessment of some behavior measures will require 
special resources (such as asking an astronaut to execute a procedure to collect data) or will induce 
inter-system interactions (such as taking a component offline to perform diagnostics). When the 
DR encounters one of these unknown measures along one of its diagnostic causal pathways it will 
post the measure in the Suspect List as an unknown measure whose assessment should help refine 
the diagnosis. 

The DR adds likelihood and believability values and an Impact Sequence and its severity to each 
Suspect Group. Likelihood is an estimate of the probability that the Suspect Group caused the 
failure: for example, a component that fails frequently is more likely to be the cause than one that 
fails rarely. Believability indicates how reliable the data are that are used to determine the Suspect 
Group as the cause of failure: for example, some sensors are known to fail frequently or give 
unreliable readings. An Impact Sequence expresses the cascade of effects that might result from a 
given diagnosis. Each impact in the sequence is tagged with timing and severity information, and 
is an instance of a generic impact type. This allows the Rx to reason about the Impact Sequence 
generically and specifically, and allows the Rx to address the most acute or most severe impacts 
first. Figure 7 illustrates a portion of an Impact Sequence. 

Equipment Malfunction 
(Cold Plate 15, Flow Rate Low) 

Im aired Operations 
(Rack d3001ing 8, Temperature High) 

Reduced Resource Supply 
(Rack Cooling 8, Temperature High) 

+ 
+ 

I 
Timing = 0 

Resource derutilization 

Fluid Overheating Equipment Overheating 
(Cooling Fluid 8, Temperature High) (Frame MUX 2, Temperature High) 

1 Equipment Overheating 
(SDP 8, Temperature High) 1 + 

Figure 7. Impact Sequence Segment 
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The Rx is able to build a Course of Action because extensive information about the pre-defined 
procedures is incorporated into its knowledge base. The Procedure Metadata describe how, why 
and under what constraints and conditions a procedure is used. These data are used to generate 
and evaluate a Course of Action. Examples of the Procedure Metadata are presented in table 1. 

Table 1. Procedure Metadata 

Much of the Procedure Metadata is related to the goals associated with the procedure. A goal 
describes some aspect of the world state, such as the status of the health of a component. The 
entry conditions define what conditions must be true before a procedure is performed. The 
prerequisites define what conditions need to be made true before a procedure can be started. The 
exit conditions define what should be true when the procedure is complete (in other words, the 
goal of the procedure). The post-requisites define what needs to be done after completing the 
procedure. The motives of the procedures define what conditions would be true to lead one to 
believe that this procedure is one that applies. Schedulability is an a priori estimate of how long it 
will take before the procedure can start executing, while timing is an estimate of how long it will 
take to execute the procedure once it has started. 

Course of Action 

A Course of Action identifies the activities to be performed, temporal relationships between the 
activities, and entry conditions that should be true prior to performing the activities. These entry 
conditions provide a check against run-away operations: the execution of the Course of Action will 
be stopped if the entry conditions to an action are not met. Table 2 portrays a Course of Action for 
an equipment malfunction of a cold plate. 

Table 2. A Sample Course Of Action 
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The Rx is responsible for building and recommending Courses of Action that, when executed, 
should result in recovery from the problem diagnosed by the DR. The Rx uses the pre-defined 
crew procedures as the elements from which it builds a Course of Action. A Course of Action 
includes actions that realize the recovery but also could include intermediate actions that mitigate the 
more acute consequences of the problem, providing adequate time to realize the recovery itself. A 
Course of Action should address the entire problem and should do this within the constraints levied 
by the problem. A future goal is to feed user-selected Courses of Action to the existing Procedures 
Interpreter prototype, which would drive simulations of various Freedom systems. This will 
provide a closed loop operation between the failure management and the systems prototypes, 
making the entire prototype operation more realistic. 

The Rx performs four basic operations in its generation of a Course of Action, as depicted in figure 
2: it selects attacks on the problem, it generates goals that address the problem in concert with the 
chosen attack, it builds Courses of Action that achieve these goals, and it manages and merges 
Courses of Action, resulting in user-approved comprehensive Courses of Action that address the 
entire problem. In the remainder of this section, we discuss the operations performed by the Rx to 
build the Courses of Action. 

Selecting an Attack 

Several options are available for dispositioning the diagnosis reported by the DR. The Rx must 
detennine how to attack the problem based on the conditions in place at the time the failure occurs. 
The types of attacks that can be devised are direct attack, information gathering (value assessment 
and investigative), impact mitigation, wait and see, and ask for assistance. 

Types of Attacks 

The DR unequivocally and unerringly identifies some failures; in these cases, the problem can be 
addressed directly. For example, a known failed cold plate could be replaced by a crew member. 
In fact, a direct attack is the only approach that develops a Course of Action that solves the root 
cause of the problem. Even if other steps are taken to defer critical conditions from developing, 
eventually a direct attack on the problem must be taken to prevent manifestations of the problem 
from recurring again in the future. 

Additional information could help the DR to refine diagnoses that are in doubt. The DR may 
indicate (in the Suspect List) that it needs to know the value of a behavior measure whose value is 
currently unknown; in these cases, the Rx will attempt to build a value assessment Course of 
Action whose intent is to determine the behavior measure's value. For example, a cold plate's 
flow rate may not be directly available but needs to be assessed, or a crew member may be asked to 
observe whether a specific component is exhibiting behavior that is observable by a person but not 
measurable by a sensor, such as whether a component is vibrating. Another approach must be 
taken when there are no unknown values that could obscure the cause of the problem; in these 
cases, there may be an existing diagnostic procedure that could help refine the diagnosis, and the 
Rx will use such a procedure to form the basis of an investigative Course of Action. For example, 
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a procedure that reconfigures the way that communications components are connected could be 
used as a basis for determining whether a given component is functioning properly. 

The Rx is also concerned with assuring that the actions taken are sensible in light of the foreseeable 
impacts. When severe or acute downstream impacts could occur, the Rx will develop plans that 
mitigate these downstream impacts so that the desired action can be sensibly performed. For 
example, it may take a long time to replace a failed cold plate but moderate impacts such as damage 
to equipment cooled by the cold plate could Occur in a short time and severe impacts such as the 
loss of a node sometime later. The Rx will develop plans (for example, equipment recon- 
figuration) to ensure that these impacts do not occur during the time needed to realize the recovery. 

It might be imprudent for the Rx to begin generating plans when a preliminary Suspect List is 
reported by the DR: the costs of probably doing the wrong thing and of wasting valuable computer 
time to derive this unneeded Course of Action outweigh the benefits of possibly doing the right 
thing. In these cases, the Rx will do nothing, taking a wait and see attitude until the DR has 
observed some predicted near-term downstream impacts and revised its diagnoses. 

Finally, the Rx will request operator intervention if it cannot find an adequate response. Since the 
DR and Rx are being implemented as decision support tools, the capability for the operators to 
interact with the processing is available at all decision-making points in the processing. 

Approach 

Selecting an attack involves evaluating the diagnosis according to a number of criteria and then 
weighing the alternatives based on these potentially conflicting evaluations. The criteria include 

* 
* 

* 

* 

the unequivocalness of the diagnosis; 
the immediacy and severity of the downstream impacts; 
the need for assessing an unknown behavior measure value; 
the cost of developing a Course of Action; and 
the surety of the diagnosis, based on 
- 
- 

a statistical estimate of the likelihood of failure in the diagnosed failure mode(s) and 
the believability of the reports that led to the diagnosis. 

Techniques from decision theory (Markland, 1983; North, 1977) are designed to handle the 
quantitative nature of the evaluations that need to be made and some of these techniques explicitly 
handle making decisions under uncertainty. We use decision analysis techniques to determine the 
expected utility of an attack. Those attacks whose utility exceeds some preset value are released for 
Course of Action generation. 

This thresholding allows an indeterminate number of attacks to be made. The intent of selecting an 
attack is not to select the single very best attack but to select the most appropriate attacks. Each of 
the possible attacks can yield partial Courses of Action that address a specific aspect of the 
problem. To form a comprehensive Course of Action that addresses the entire problem some of 
these partial Courses of Action would then have to be merged (see the section "Managing Courses 
of Action"). Thus there often is not a best attack; the best approach instead is to make several 
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separate attacks on the problem in a coordinated manner. Another aspect of managing Courses of 
Action is to select the best Course of Action; such a selection is best made when a reasonable 
number of options are available, and when the process of selecting attacks works well a reasonable 
number of options are generated for further evaluation. 

Generating Goals 

The Rx develops goals that address the failure in concert with the chosen attack. These initial goals 
trigger the goal-directed planner to build a partial Course of A c ~ o n  that achieves the goal. Several 
goals may have to be created and expressed as partial Courses of Action that are then merged to 
create a comprehensive Course of Action that addresses the entire problem. 

Generic workarounds to impacts are used to generate goals for direct attacks and impact mitigation 
attacks. (The fault is always represented as the initial impact in the Impact Sequence, so a direct 
attack can be viewed as a special case of impact mitigation.) Selected impacts in the DR-generated 
Impact Sequence are matched with generic workarounds to generate goals concerning the exit 
conditions of procedures. For example, the Rx could address a reduction in cooling capacity to a 
rack as a special case of a resource supply reduction. A generic workaround for a resource supply 
reduction is to decrease resource utilization. Applying this generic goal to the specific problem 
results in the specific goal of reducing the cooling load at the affected rack. After the goals are 
generated, the Course of Action builder will look for procedures whose exit conditions meet the 
goals. Sample goal generation data are presented in table 3. 

Table 3. Goal Generation Information for Impact Mitigation 

Impaired  operation^ 

Each impact type can have several alternative workaround types. It is not necessarily the case, 
however, that each workaround type will be available for a given instance of an impact. For 
example, if there is a reduced resource supply of cooling, a workaround to that impact type is “Use 
Alternate Capability”. In the general case of cooling, an alternate capability might be to turn on a 
fan when the air conditioner is not working to full capacity. In the case of a cold plate, however, 
there is no such alternate capability: a cold plate is the only source of cooling available. The Rx 
must determine the applicability of the workarounds to the situation being examined. 

Goals are expressed symbolically (for example, Backup Equipment Status In-Use) in the goal 
generation data. Once a workaround is determined, the Rx creates a specific instance of a goal 
(such as Cold Plate 16 Status In-Use, where Cold Plate 16 is the backup unit to the cold plate 
exhibiting off-nominal behavior). 
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While a procedure's exit conditions are useful for finding a procedure with an applicable outcome, 
a procedure's motives are useful for finding a procedure that can be used when a given set of 
observations are true. The Rx builds goals for data collection and diagnostic attacks that cause the 
goal-directed planner to select procedures whose motives are to collect the required data items, to 
narrow down the number of suspect groups, or to verify an uncertain diagnosis. 

Building Courses of Action 

The Rx uses goal-directed planning (Chapman, 1987; Wilkins, 1989) to build a goal-activity 
directed graph. This graph does not explicitly specify the Courses of Action; these are extracted 
from the graph using graph traversal techniques. 

Goal-directed planning matches goals with goal operators to build a plan. For the Rx, the goal 
operators are the pre-defined procedures. Unless a goal is already satisfied (the Rx checks for this 
in the Component Model) the Rx searches through the Procedure Metadata to find the procedure(s) 
that might accomplish the goal. Procedures can have prerequisites; when they do, this generates 
additional goals that need to be met, and the Rx once again searches the Procedure Metadata to find 
procedures that might accomplish these goals. A procedure can have more than one prerequisite, 
and these can be conjunctive, possibly requiring several procedures to accomplish them, or 
disjunctive, possibly creating alternate approaches to accomplishing them. The goal generation- 
goal accomplishment process iterates, resulting in the goal-activity graph, a tree-like structure of 
goals and activities, with the activities specifying how the operators are to be invoked. The graph 
building process obeys the constraints imposed by the failure and its impacts as well as constraints 
imposed by other operational conditions (such as configuration). Figure 8 shows a portion of a 
goal-activity graph built in response to an equipment failure of Cold Plate 15. 

Even in our simplistic test application we found that an activity can simultaneously accomplish 
several goals. The basic goal-directed planning techniques outlined above would generate a 
separate activity for each goal. It would be foolish, and possibly erroneous, to perforrn the 
underlying procedure once for each goal. Instead, we devised techniques to identify such 
homologue activities-these are activities that have the same underlying procedure with the same 
parameters, which, when executed, will accomplish the goals of all of the homologue activities. 
Similarly, goals can have homologues, and we also devised techniques to identify such homologue 
goals; for example, multiple procedures might have the same prerequisite. Homologue activities or 
goals are not just identical but represent one single activity or goal (in comparison, identical twins 
are identical but are two separate individuals), so it is only necessary to process one of the 
homologues. A side effect of this is that the goal-activity graph is a graph rather than a tree. 

The goal-activity graph does not directly specify a Course of Action. Graph traversal techniques 
must be used to extract the viable Courses of Action from the graph. The graph terminates in 
activities with no prerequisites, activities with unsatisfiable prerequisites, and goals that are already 
satisfied, and the Courses of Action for these are trivial. We extract the Courses of Action that 
achieve the top-level goal by building from the trivial Courses of Action at the bottom of the graph 
and working up to the top-level goal. The Courses of Action specify the activities to be performed 
and the temporal relationships between them. The procedures identified by the activities, when 
executed, should achieve the specific goal that the Course of Action addresses. 
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Impact Sequence Element impact ~ o ~ k a r o u n d  
Equipment Damage: Cold Plate 15 Equipment Damage: Entity 

=> Replace Equipment 
via goal Entity-Health-Nominal 

Status: Health-Failed Status: Health-(not Nominal) 

Goal 
Cold Plate 15-Health-Nominal 

$achieved by 

Replace Cold Plate: Cold Plate 15 
Activity 

prerequisite 4 
Goal 

Cold Plate 15-Fluid level-Empty 
and { Cold Plate 15- Mode-Off 

Cold Plate 15-Mode-Off Cold Plate 15-Fluid level-Empty 
a c h i e v e d m v e d  by 

Activity Activity 
Emergency- 
Valve Off Cold Plate: 

Valve Off Cold Plate: Drain Cold Plate: Cold Plate 15 
Cold Plate 15 

Cold Plate 15 

e o n  

Goal 
Cold Plate 15-Mode-Off 

Figure 8. Portion of a Goal-Activity Graph 

Developing a plan in a reasonable amount of time requires the judicious use of search and 
reasoning capabilities. The Rx uses procedure schedulability, timing, likelihood of success, and 
undesirability estimates to label some search paths as fruitless. The user can redirect the Rx to 
investigate these terminated paths. 

Managing Courses of Action 

The Rx can build multiple Courses of Action in response to a single problem. For example, the 
desired action should be achieved by a replacement Course of Action, but several impact mitigation 
Courses of Action will be required for this desired action to have a successful outcome. These 
multiple Courses of Action must be merged and ordered to form a comprehensive Course of Action 
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that addresses the entire problem rather than a portion of the problem. The attempt is to build 
Courses of Action that solve the root problem within the constraints levied by the failure. 

The Rx attempts to develop several alternate means of addressing the problem. These alternate 
Courses of Action must be evaluated prior to execution. This final evaluation is performed using 
techniques from decision theory by a separately contracted prototype, the Technique for Rapid 
Impact Analysis and Goals Evaluation (TRIAGE) (Krupp and Burke, 1991). We have coordinated 
efforts with the TRIAGE implementors to allow for the integration of these functions. 

Conclusions 

The design of the Rx has been completed and an initial demonstration is available. Based on 
experience with this prototyping effort, including the Rx as well as earlier efforts from which it 
evolved, we have learned lessons in technology transition, software reuse, and prototype software 
life cycles. These lessons are discussed in (Baker, Hammen, Kelly, and Marsh, 1991). 

This prototyping effort is not yet complete. The first step that we took in implementing an 
integrated prototype was to develop the DR and Rx as separate standalone applications. During 
this phase, we took care to express shared knowledge using the same structure. This phase has 
been completed, and initial demonstrations of the standalone DR and Rx are available. Our next 
step is to integrate the DR and Rx (over a network if necessary) to function cooperatively. 
Interfaces between the applications have already been defined; this step of integration merely 
implements these interfaces. 

An important area of technical concern when implementing expert systems in a constantly changing 
environment has to do with coordinating past and current conclusions drawn by the software with 
the ongoing changes. Failures and their effects occur over a span of time. Consequently, the DR 
might identify suspects without complete knowledge of the problem, but it can update these 
diagnoses as additional information becomes available. The Rx might generate preliminary 
Courses of Action that can be overridden by Courses of Action generated in response to more 
accurate diagnoses. This association between current and past reports confronts most perpetually 
executing real-time monitoring systems, a class of programs to which the DR and RX belong. The 
Rx does not yet take advantage of the correlations between the current and previously generated 
Suspect Lists; we plan to make the Rx utilize this information. We also plan to implement reuse of 
previously derived Courses of Action by extending the existing homologue detection capability. 

The concepts underlying the DR and Rx have applicability beyond Space Station Freedom, the 
target environment for the initial prototypes. With this extensibility in mind, we separated the 
descriptions of the objects (such as procedures and components) from the generic capabilities of 
representing and reasoning about the objects. By formalizing this separation and by creating tools 
to develop and manage the application-specific objects we can create a failure management shell 
that could be applied to many domains that are hierarchical and are operated through pre-defined 
procedures. 
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