Evaluation of Sorbent Injection for Mercury Control

Public Service of New Hampshire

The Northeast Utilities System

DOE/NETL Mercury Control Technology Conference

December 12, 2007

DOE Cooperative Agreement DE-FC26-06NT42780 DOE/NETL Project Manager: Andrew O'Palko

Test Participants

- DOE/ NETL Andrew O'Palko
- Public Service Of New Hampshire (PSNH)
 Merrimack Station (MK2)
- ADA-ES
- Reaction Engineering

 CFD modeling
 Co-Benefits analysis
- O'Brien & Gere

Merrimack Unit 2

MK2: 335 MW

Coal: Long Term Test Blend - Eastern Bit and Venezuelan Blend ~50/50 split 1.0 – 1.3% sulfur (1.2% S is targeted)

Cyclone Boiler SCR Cold Side ESP

Merrimack Unit 2 Layout

Merrimack Unit 2

Project Goals

- Evaluate the capability of SO₃ tolerant sorbents to achieve 50 to 90% mercury removal
- Evaluate the effect of co-benefits from SO₃ mitigation on mercury control, and the balance of plant benefits from lowered flue gas temperatures of increased plant efficiency and overall reduced emissions
- Evaluate the impact of sorbent injection on ash disposal
- Support the education and transfer of information and results to local and state interests groups

Budget/Milestone Schedule Summary

Milestones	Target Date	Status
1. Design, Procure and Install Equipment	October 2006	October 2006
2. Complete Baseline Tests	November 2006	October 2006
3. Complete Parametric Tests	February 2007	February 2007
4. Complete Long Term Testing	November 2007	February 2008
5. Submit Final Report	Within 90 days of completion of project	

Baseline Results

- Hg varies (range was 5 to 10 µg/m³ from Aug 06 through Jan 07)
- Low native removal across the ESP
 - Based on CEM, STM
 - Low Hg levels in ash analysis (10 ppb)
- OH within 20% of Baseline CEM and STM results
- On and off site analysis of STM traps correlate well with inlet CEM
- Outlet CEM reads 0.5 2 ug/ m³ higher than inlet, when manually corrected – trend together
- >85% Oxidation of Mercury

Baseline Results

Co-Benefit Results

	SO ₃ Measurements (ppm)		
Test Condition	Breen	Manual Measurements	
Baseline	10–20	15–20	
MgO Injection	5–12		
Trona Injection	7–10	7–10	

Tested Sorbents

MgO

Trona

MgO previously tested on site

Trona selected per REI recommendation

December 2006 Parametric Testing

PAC Injection between ESPs, No SO₃ Mitigation, Normal APH Outlet Temp – 330-350°F

February 2007 Parametric Testing

PAC Injection between ESPs, MgO SO₃ Mitigation, CEA Temp Change

Parametric Test Results

Why Continue Testing Both MgO and Trona

- Trona better performer for aiding Hg removal
- MgO Benefit
 - Can be recycled back to the furnace
 - No land fill issues
- Trona
 - Cannot be recycled back to the furnace
 - Na% can prevent beneficial uses (concrete additive)

Balance of Plant Test Results

Long Term Testing at Merrimack Unit 2

- Long Term Test Sequence
 - LT Test : Scheduled Start June 2007, Delayed until November 2007
 - Trona Injection: 400 500lb/hr
 - Option 1: On-site milling
 - PAC Injection: 5lb/MMacf
 - Brominated PAC Norit DARCO Hg-LH
 - Commercial equipment installation complete June 25
 - Equipment testing June 25 27
 - First PAC shipment June 27
 - O'Brien&Gere Trona injection equipment complete June 27
 - Transition from trailer injection to silo injection July 2007

Long Term Schedule at Merrimack Unit 2

Long Term Schedule

- Three challenges prior to start of long term testing June 2007
 - Planned LT test evolutions affected by the commitment of DOE to fund the project
 - Opacity problems
 - Ash utilization
- Long Term Test
 - Started November 2007
 - Completion currently scheduled in February 2008
- Final Report issued May 2008

Preliminary Long Term Results at MK2

Economics

Mercury Removal Rate	70%*
Brominated PAC Injection rate for above removal	6 lb/MMacf (400 lbs/hr)
Native Mercury Removal	0 – 10%
Stack Flow	790 kscfm
20 Year Levelized Cost	\$ 3.7M **
20 Year Levelized \$/lb Mercury Removed	\$ 59K **

* Includes native removal from long term test blend of coal.

** Includes ash disposal fees and trona costs.

Capital Cost Estimate:\$10.66/kW O&M Cost Estimate: 1.62 mills/KW-hr

Questions/Discussion

Tom Campbell ADA-ES (303) 339-8864 tomc@adaes.com

Andrew O'Palko DOE NETL (304) 285-4715 andrew.opalko@netl.doe.gov Paul Raichle PSNH Merrimack Station (603) 224-4081 x182 raichpr@NU.com

