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ABSTRACT

We introduce a simple anisotropic modification of the Floater’s shape-preserving parameterization scheme. The
original scheme is formulated as a discrete energy minimization and the modification is performed by introducing an
additional stretching term. Results and example applications to anisotropic regular surface meshing are presented.
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1. INTRODUCTION

Surface meshes are widely used in manufacturing,
medical and scientific applications. Acquired with
shape acquisition techniques, these meshes are often
resampled into more regular representations [1] [2] to
become more amenable for further usage. Creation of
such regular representations is called remeshing, and
it often involves patchwise parameterization of origi-
nal mesh data onto simple planar regions. Recently,
there has been a bout of interest in surface mesh pa-
rameterization algorithms targeting surface texturing
[3] [4], geometry approximation with semi-regular ap-
proximations [5] [6], as well as general mesh parame-
terization techniques [7][8].

In this paper we introduce a modification to a well-
known shape-preserving parameterization scheme of
Michael Floater [9]. We work in a setting useful to
traditional remeshing algorithms that split the origi-
nal surface mesh into topologically simple patches, and
map each patch onto a simple planar region. We there-
fore restrict our attention to the case of a single mesh
region mapped onto a square.

The goal of this paper is to introduce more control
over the sampling of the remeshed model. In particu-
lar, our method creates rarefied sampling according to
a given direction field. Since the parametric region (a
unit square) is fixed, that will incur a denser sampling
in other regions of the surface. We can therefore ad-

Figure 1: The Floater’s original isotropic and our
anisotropic parameterizations of a patch of the
Rockerarm mesh. Top: original mesh and a direc-
tion field; middle: parameterizations; bottom: re-
sulting regular remeshes.



just surface sampling in a desired way. Figure 1 shows
an example of a controlled stretching of the parame-
terization away from a corner of the Rockerarm mesh
patch.

This research originated from the desire to have more
control over parameterization without introduction of
rigid constraints on the parameterization. This can be
useful in applications where the regular mesh density
needs to be adjusted: instead of specifying the regions
where mesh needs to be more dense, we specify the
regions where the regular sampling can be sparser in
a certain direction.

A possible application of our scheme can produce bet-
ter surface approximations by optimizing the direction
field to sparsify regions with low curvature to pull the
sampling of the reconstructed regular meshes towards
the areas with higher curvature. An alternative ap-
proach to this problem was recently presented by [4].

In the following sections we formulate a variant of the
Floater’s scheme in terms of second difference mini-
mization similar to [10]. This allows us to incorporate
anisotropic stretching modification in a natural way by
adding another term to the minimization functional.

2. MESH PARAMETERIZATION

Notation We consider a triangular manifold mesh
M = (V, T ) with the vertex set V and the face set T ,
and a “coordinate” function x : V → R3. When us-
ing a local parameterization on a small neighborhood
of the mesh, we shall reserve ξ = (ξ1, ξ2) for such
parameterization. A typical local parameterization of
the “umbrella” of faces adjacent to a given vertex can
be obtained by flattening such a neighborhood via a
“polar map” as described in [12] [9].

Parameterization bijectively maps a mesh region onto
a planar region. In remeshing applications a regularly
sampled mesh is the goal, and it is therefore typical
that the boundary of a mesh patch is mapped onto the
boundary of a simple plane region (e.g. a square) in a
fixed way. The parameterization scheme is then often
specified by a per-inner-vertex relations: both linear
[9] [1] and non-linear [7] approaches are employed in
practice. When linear equations are used, the bijec-
tivity of the parametric mapping can be ensured by
introducing a convexity condition.

Formally, the goal of parameterization is to find a
parametric function U : V → R2, such that it maps
the boundary vertices of the mesh M onto the bound-
ary of a simple planar region (we shall use a unit square
in this paper), while the inner vertices are mapped in-
side the square with the condition that the correspond-
ing piecewise linear map based on U and T is injec-
tive (there are no flipped triangles in the parametric

region). See [13] for more details. Technicalities aside,
a sufficient condition for having a bijection between
the planar square and the original mesh is that the
parameteric function U = (U1, U2) satisfies a convex
relation at every inner vertex of the mesh, so that for
every inner vertex v̄ and every vertex v in its one-ring
ω(v̄) there exist real weights αv̄v such that

αv̄v > 0 (positivity)∑
v∈ω(v̄)

αv̄v = 1 (affineness)

and ∑
v∈ω(v̄)

αv̄vU(v) = U(v̄).

Such parameterization is called a convex combination
map [13].

Hence, one approach to parameterization will be to
specify a collection of weights satisfying the above con-
dition, and then find the parameterization inside the
mesh region by solving the resulting linear system. As
we shall see below, the affiness condition is easy to
ensure by restricting ourselves to a certain class of
schemes, while the positivity condition is harder to
achieve.

2.1 Second differences
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Figure 2: (a) A typical ∆[2]-stencil from [10]; (b) a
typical ∆[2]-stencil used in the Floater’s scheme; (c)
one-ring indexing for Floater’s scheme.

Consider a real function f : V → R (think of f = U1

or f = U2). Given an assignment of the local neigh-
borhood parameterizations we treat f as samples of
a function from R2 to R. More precisely, let Ω be a
neighborhood submesh where the local parameteriza-
tion ξ is established. The parameterization ξ is thus
defined on the vertex set VΩ of Ω (e.g. VΩ = ω(v̄) ∪ v̄
for some vertex v̄).

Given a triple of vertices v1, v2, v3 ∈ VΩ we define the
first divided difference D

[1]

{v1,v2,v3}f of f on the D[1]-

stencil {v1, v2, v3} as the slope of the linear interpolant
passing through these three sample values; thus

D
[1]

{v1,v2,v3}f = V −1∆f,



where ∆f = [f2 − f1, f3 − f1]
T and the matrix V is

given as

V =

[
ξ1
2 − ξ1

1 ξ2
2 − ξ2

1

ξ1
3 − ξ1

1 ξ2
3 − ξ2

1

]
,

where ξi
k := ξi(vk).

Given two D[1]-stencils that share a pair of vertices it is
easy to see that the difference between the correspond-
ing first divided differences is always orthogonal to the
line connecting the two common points. Thus, a scalar
quantity measuring closeness of first derivatives of a
sampled function can be introduced as a projection of
the above difference onto the corresponding normal di-
rection. More precisely, let {v1, v2, v3} and {v2, v3, v4}
be the D[1]-stencils under consideration. We define the
unit vector orthogonal to the edge (ξ(v2), ξ(v3)) as

n23 = [(ξ2
3 − ξ2

2)/ ‖ξ3 − ξ2‖ , (ξ1
2 − ξ1

3)/ ‖ξ3 − ξ2‖].

The second difference ∆
[2]

(v1,v2,v3,v4)f is then defined
via

∆
[2]

(v1,v2,v3,v4)f = n23 · (D[1]

{v1,v2,v3}f −D
[1]

{v2,v3,v4}f) =

c1f(v1) + c2f(v2) + c3f(v3) + c4f(v4),

where

c1 =
‖ξ(v2)− ξ(v3)‖

S123
, c2 = −‖ξ(v2)− ξ(v3)‖S314

S123 S432
,

c3 = −‖ξ(v2)− ξ(v3)‖S241

S123 S432
, c4 =

‖ξ(v2)− ξ(v3)‖
S432

,

and the signed areas Sijk are given as

Sijk := det

1 ξ1(vi) ξ2(vi)
1 ξ1(vj) ξ2(vj)
1 ξ1(vk) ξ2(vk)

 .

Put simply the second difference characterizes the
change of slope across an edge shared by two trian-
gles.

In [10] second differences where used in the construc-
tion of multiresolution subdivision filters on irregular
mesh hierarchies, and the D[1]-stencils were coming
from triangles of the mesh. In the following section
we show how the Floater’s shape-preserving scheme
can be constructed using second differences.

2.2 Floater’s parameterization scheme

We follow Floater [9] and consider one ring neighbor-
hood of a particular inner vertex of a triangular mesh.
Let v̄ be the center vertex of the one ring, and ω(v̄) =
{v0, . . . , vn−1} be the set of its neighbors indexed con-
sistently in a counter-clockwise order (see Figure 2).
Floater considers a vertex vk ∈ ω(v̄) and finds an index

l = l(k) such that the ray
−−−−−−→
ξ(vk)ξ(v̄) intersects the seg-

ment conv{ξ(vl), ξ(vl+1)} (all indices in one ring are

treated modulo vertex valence n). This ensures that
ξ(v̄) lies inside the triangle conv{ξ(vl), ξ(vl+1), ξ(vk)}.
(See Figure 2(b)). At this point, we look at the second
difference

g[2](v̄, vk) := ∆
[2]

(v̄,vl(k),vl(k)+1,vk)f =

c
v̄,vk
v̄ f(v̄) + cv̄,vk

vk
f(vk) + cv̄,vk

vl
f(vl) + cv̄,vk

vl+1f(vl+1),

and notice that three coefficients c
v̄,vk
vk , c

v̄,vk
vl , c

v̄,vk
vl+1 have

the same sign while c
v̄,vk
v̄ is of the opposite sign. With

a bit more precision we claim the following is true:

cv̄,vk
vk

c
v̄,vk
v̄ < 0, cv̄,vk

vl
c

v̄,vk
v̄ ≤ 0, cv̄,vk

vl+1c
v̄,vk
v̄ ≤ 0. (1)

Note: One of the D[1] stencils participating in g[2]

is no longer aligned with a triangle from T .

In order to obtain a linear predictor Pv̄ for the func-
tion value at the center vertex v̄ given the neighboring
values we minimize the following functional which is
quadratic in f(v̄) (we label it J iso for being isotropic):

J iso
v̄ (f) =

n−1∑
k=0

(g[2](v̄, vk))2.

The desired value of the function at the center vertex
is then given as

Pv̄f = argminf(v̄)J
iso
v̄ (f).

One can easily check that the corresponding parame-
terization scheme is identical to the scheme of Floater
[9]. Indeed, for the optimal value of f(v̄) we have∑

k

c
v̄,vk
v̄ (c

v̄,vk
v̄ f(v̄) + cv̄,vk

vk
f(vk)+

cv̄,vk
vl(k)

f(vl(k)) + cv̄,vk
vl(k)+1

f(vl(k)+1) = 0,

Using the fact that the coefficients of the second dif-
ference operator always sum up to zero, we obtain the
following linear relation

(
∑

s

Aiso
s )f(v̄) =

∑
s

Aiso
s f(vs),

where the coefficients Aiso
s are given by

Aiso
s = −cv̄,vs

v̄ cv̄,vs
vs

−
∑

k:s∈{l(k),l(k)+1}

c
v̄,vk
v̄ cv̄,vk

vs
.

Note that Aiso
s are guaranteed to be positive because

of (1).

Thus, introducing αiso
s = Aiso

s /
∑

s Aiso
s we get the

center vertex function value as a convex combination
of surrounding values:

f(v̄) =
∑

s

αiso
s f(vs).



2.3 General formulation

The Floater parameterization scheme described above
considers a collection of local functionals that charac-
terize certain function properties (such as smoothness)
and minimize these quantities in the least squares
sense. In the following section we consider a differ-
ent (enlarged) set of such local functionals, and it will
pay off to derive the result of such minimization prob-
lem in the general case. For a similar discussion, see
[11].

Let M(v̄) be a collection of stencils each of which in-
cludes a fixed vertex v̄. Each stencil τ from M(v̄)
is provided with a set of coefficients defining a linear
functional Lτ via Lτf :=

∑
v∈τ λτ,vf(v). We assume

that all Lτ ’s used in our constructions annihilate con-
stants, so that ∑

v∈τ

λτ,v = 0. (2)

We also assume that these stencils cover the one-ring
of the vertex v̄, that is⋃

τ∈M(v̄)

τ = ω(v̄) ∪ {v̄}.

In order to find the function value at the center ver-
tex, we form Jv̄(f) :=

∑
τ∈M(v̄)(Lτf)2 and minimize

it with respect to the function value at the “center”
vertex f(v̄).

Differentiating Jv̄ with respect to f(v̄), it is easy to
see that the resulting scheme should have the following
form:

∑
τ∈M(v̄)

λτ,v̄f(v̄) +
∑

v∈τ\{v̄}

λτ,vf(v)

 λτ,v̄ = 0.

Rearranging the terms and using (2) we obtain:

(
∑

v∈ω(v̄)

Av)f(v̄) =
∑

v∈ω(v̄)

Avf(v),

where

Av := −
∑

τ∈M(v̄):τ3v

λτ,vλτ,v̄. (3)

It is immediately clear that the affineness condition
always holds for the schemes constructed in this way.
On the other hand a sufficient condition for the scheme
to have positive coefficients is that every contributing
stencil has its coefficients for non-center vertices to be
of the opposite sign to its coefficient for the center
vertex. This condition holds for the Floater’s scheme
construction in the previous section.

Example A simple example of a parameterization
scheme can be obtained by considering the set of func-
tionals

{∆if := f(vi)− f(v̄) : i = 0, . . . , n− 1}.

Then the corresponding stencils are τi := {v̄, vi} and
the coefficients λ are given as

λτi,v̄ = −1, λτi,vi = 1.

Hence, Av = 1 and the resulting parameterization
scheme is a simple regular umbrella:

nf(v̄) =

n−1∑
i=0

f(vi).

3. ANISOTROPIC MODIFICATION

In this section we introduce a modification to the orig-
inal Floater’s scheme that can produce anisotropic pa-
rameterization stretched in a direction given by a di-
rection field on the surface. We shall use a direction
field specified as a vector on each face of the mesh.
The direction fields can be specified by user or created
automatically. In our implementation user specifies a
desired rough direction field, which is then smoothed
using a procedure similar to the approach presented in
[14].

3.1 A simple scheme

The direction field is given by a vector represented
in the local coordinate system of each triangle of the
mesh. It turns out that the fact that the vector field
is directed will not matter for the derivation of the
anisotropic scheme. Formally, after the local neigh-
borhood parameterization ξ is fixed, we have an as-
signment of direction vectors to triangles h : T → R
that samples a vector field H = Hi∂/∂ξi. The
anisotropic scheme will stretch both parametric func-
tions U j , j = 1, 2 in the direction of H. To achieve that
effect we add an extra term representing (HU j)2 into
the minimization of J(U j). As the result the deriva-
tive in the direction of H will get smaller, introducing
a stretch along the given direction field. Note that
the “negated” vector field −H will result in the same
stretch, and thus the directionality of H does not mat-
ter at the parameterization stage (it does matter in the
vector smoothing step that produces H, see [14]).

The discrete implementation of the above approach is
straightforward: we replace the partial derivatives by
the first divided difference operator and add the sum
of squares of the resulting quantities to the isotropic
functional. This yields an anisotropic functional Janis

Janis
v̄,β (f(v̄)) =

n−1∑
k=0

(
[g[2](v̄, vk)]2 + β[f[1],h(v̄, vk, vk+1)]

2) ,



Figure 3: Clamped anisotropic (left) and non-clamped anisotropic (right) schemes for the Mannequin model.
Values of β are 100(top), 400(middle), 1600(bottom). It is easy to see the non-convexity for the non-clamped
scheme (extreme parametric distortions on the back of the head and hence denser mesh in the face region).
The positivity correction of the clamped scheme guarantees the bijective mapping.

where the first part of the sum is copied from the
isotropic case and the quantities in the second term
are defined for a general vertex triple t = {v0, v1, v2}
and an associated direction vector ht via

f[1],h(v0, v1, v2) = h({v0, v1, v2}) ·D[1]

{v0,v1,v2}f =

d0f(v0) + d1f(v1) + d2f(v2),

where

d0 =
1

S012

[
(ξ2(v1)− ξ2(v2))h

1
t + (ξ1(v2)− ξ1(v1))h

2
t

]
,

d1 =
1

S012

[
(ξ2(v2)− ξ2(v0))h

1
t + (ξ1(v0)− ξ1(v2))h

2
t

]
,

d2 =
1

S012

[
(ξ2(v0)− ξ2(v1))h

1
t + (ξ1(v1)− ξ1(v0))h

2
t

]
.

We can then repeat the derivation of the previous sec-
tion to obtain

(
∑

s

Aanis
s )f(v̄) =

∑
s

Aanis
s f(vs),

with Aanis
s derived from (3).

So far we took no special care to insure the positiv-
ity of the coefficents Aanis

s , hence there is no guaran-
tee that the resulting linear system is well-defined. It
is clear however that given a bounded direction field,

Janis
v̄,β will produce a convex combination map scheme

for small values of β. As we explain in the next sec-
tion, clamping the value of β to the maximum allowed
by positivity condition, turns out to produce a very
practical anisotropic parameterization scheme.

Figure 4: Left: the signs of the coefficients for f[1],h

operator. Right: The signs of the contributions to
Astretch

s coefficients for the given distribution of di-
rection vectors.

3.2 Positivity

In this section we discuss possible approaches to mak-
ing the scheme monotone. First, we look at the stencil
for directed derivatives. The main issue is the signs of
the coefficients. Let τ = {v̄, v1, v2} be a stencil of
three vertices. Then it will contribute monotonely to



Figure 5: Square anisotropic parameterization for β = 0, 800, 6400, 25600. The direction field is on the left,
followed by the meshes mapped onto parametric plane.

the scheme centered at v̄ if the direction h splits the

angle ̂ξ(v1)ξ(v̄)ξ(v2). Formally, a vector h = (h1, h2)

splits an angle ξ̂ηζ if h⊥ · (ξ − η) and h⊥ · (ζ − η) are
of opposite signs (we use h⊥ = (h2,−h1)). Note that
within a triangle, only one of the angles is split by
a given direction vector (this angle is denoted with a
filled circle in Figure 4). The coefficient of f[1],h for
the split corner is opposite to the sign of the other two
coefficients (this can be seen visually by varying the
function values one-by-one, since f[1],h gives a slope of
the function in the given direction).

One conservative way to ensure the positivity of the
scheme is to make sure that a triangle’s anisotropic
term only contributes to Janis

v̄,β for the vertex v̄ whose
corner is split by the direction given on that triangle.
This is easy to implement, however our experiments
show that the resulting scheme does not produce suf-
ficient stretching even for large values of β.

We therefore adapt a less conservative and somewhat
simpler approach that is mentioned in the previous
section. Namely, for every inner vertex v̄ we clamp
the value of β to be less than the precomputed value
βmax that ensures the positivity of the scheme at this
particular vertex v̄. We can find such βmax(v̄) by not-
ing that the coefficients Aanis

s are combinations of the
isotropic Floater’s coefficients and the “stretching” co-
efficients (we can do so by splitting the stencils of (3)
into two groups). Hence, we obtain

Aanis
s = Aiso

s + βAstretch
s ,

where some of Astretch
s can be negative. We then find

βmax(v̄) = min
s

Aiso
s

−min(0, Astretch
s )

,

(note that we get∞ value if all the coefficients Astretch
s

are positive with a meaning that there is no restriction
on β(v̄).

Then the new “clamped anisotropic” scheme is ob-
tained from

Jca
v̄,β(f) := J iso

v̄ (f) + min(β, βmax(v̄))Jstretch
v̄ (f),

where Jstretch
v̄ (f) =

∑n−1
k=0 (f[1],h(v̄, vk, vk+1))

2.

Figure 6: Focusing the sampling onto a high curva-
ture geometric feature for a Molecule mesh patch.
Top: direction field on the original surface. Mid-
dle: isotropic remesh. Bottom: anisotropic remesh
using the given direction field for β = 400.

3.3 Results

We demonstrate the performance of the schemes de-
scribed above on a number of examples. The param-
eterizations produced with our scheme are visualized
in a number of ways: as the mapping of a regular
texture using produced parametric functions, as the
resampling of the original surface, and as the picture
of the original mesh in the parametric (U1, U2)-plane.

Figure 3 compares the performance of the clamped
scheme that guarantees the convexity condition, with
that of the non-clamped scheme of Section 3.1. It
is clear that for the same value of parameter β the
clamped scheme will have less stretching than the non-
clamped one. Thus similar parameterization shift (and
change in regular sampling frequency) is achieved at
different values of β for the considered two schemes.
It is also clear that the non-clamped scheme results in
some non-injective parameterizations (note the trian-
gles mapped outside of the unit square in the right
column bottom row). Note that the effects of the
clamped scheme is milder, which results in a sparser
mesh on the mannequin face (thus its features are less
resolved). For the non-clamped scheme high values of



β result in extreme rarefication of the back portion of
head, thus a denser mesh with better resolved features
appears in the face region.

Figure 5 illustrates the effect of the anisotropic stretch-
ing in the parametric plane. The parametric function
becomes “flatter” in the given directions, which re-
sults in bringing the points closer in the parametric
domain. Thus, we see a close packing of squeezed tri-
angles in a certain region of the triangulation. The
role of the convexity condition is therefore to keep the
triangles from flipping and riding on top of other tri-
angles. Note that the case β = 0 is the original Floater
scheme which preserves planar triangulations, so that
the leftmost mesh is the original one.

Figure 6 uses the direction field to focus the sampling
onto a high curvature feature of the Molecule model.
The direction field vectors point away from the fea-
ture and are null on the feature itself. This results in
allowing more samples to be placed onto the feature
resulting in a better approximation.

Figure 7 shows a simple way to introduce a wiggle
pattern for the parameterization lines. Two stretching
regions push the samples of the remeshed model away
from them.

Figure 7: Clamped anisotropic scheme for the
Knee model: the first row shows the original mesh
and the direction field, the second row shows the
parameterization and regular remesh for β = 0,
the third row for β = 1000, and the fourth row for
β = 10000.

Performance note The introduced schemes pro-
duce a linear system of equations that is solved with
a biconjugate gradient method. Since the mesh sizes
are small (tens of thousands of vertices maximum) all
the computations take a matter of seconds.

4. CONCLUSIONS

We have introduced a simple anisotropic modifica-
tion of the Floater’s shape-preserving parameteriza-
tion scheme that allows flattening of parameteric map-
ping along a given direction field. The future work
includes development of algorithms for constructing
direction fields that allow better approximation of ge-
ometric features as well as construction of uncondi-
tionally positive schemes. Another interesting ques-
tion is whether one can improve the scheme perfor-
mance via selective local mesh refinement. Currently
there are no estimates on the shift in the parameter-
ization in relation to the changes in the anisotropic
parameter β. Finding such relation is important for
applying our scheme to automated parameterization
adjustment. Extension of our approach to 3D param-
eterization is also a possibility.

In order to be applicable to meshes of arbitrary topol-
ogy, our method needs to be combined with a global
layout generation procedure such as described in [5]:
the parameterization of simple regions is an inherent
part of such a procedure, and a globally specified di-
rection field will affect the distribution of patch bound-
aries in a natural way.
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