
- -2008 03 31 LAFS DI Meeting 1

Daemon Infrastructure:
An Overview of Technical Design

Andrey Petrov

- -2008 03 31 LAFS DI Meeting 2

Functions of a Daemon Server
• Dynamic deployment of daemons as plain Java

objects
• Lifecycle management

– Automatic and manual
• Configuration management

– During startup and at runtime
• Monitoring, restarting, providing notifications
• Logging
• DAQ-specific functions (not discussed today)

- -2008 03 31 LAFS DI Meeting 3

J2EE Application Server

- -2008 03 31 LAFS DI Meeting 4

Examples of J2EE Services
• Servlet container
• Enterprise Java Beans container
• Transactions
• Mail
• Messaging
• Security
• Object Persistence
• Deployment

- -2008 03 31 LAFS DI Meeting 5

Standard J2EE Containers
• Servlet Container (Tomcat, Jetty):

– Implements different kind of lifecycle
– Servlets can't be used standalone

• Enterprise Java Beans (EJB) Container:
– The concept of EJB is complex, not well

suited for daemons
– EJB can't create internal threads (?)

• Both:
– Rudimentary configuration management

- -2008 03 31 LAFS DI Meeting 6

Application Server Organization
• Sun specifies which services must be

implemented by a compliant server, provides
abstract API.

• Many J2EE implementers choose modular
design, in which individual services can be
deployed, undeployed, and reconfigured,
according to the users' needs.

• Services resemble daemons.

- -2008 03 31 LAFS DI Meeting 7

Standard Services vs. Daemons

- -2008 03 31 LAFS DI Meeting 8

Service Mgmt. Frameworks
• Java Management Extension (JMX)

– Developed by Sun; JMX API is part of Java SE
– Used by Java VM for internal diagnostics
– Used in Red Hat JBoss AS

• Open Service Gateway Initiative (OSGi)
– Used in Eclipse IDE, Apache Geronimo AS,

IBM WebSphere AS (?)
• GBeans

– Used in OpenWeb JOnAS
– Superseded by JMX (?)

- -2008 03 31 LAFS DI Meeting 9

Java Management Extension (JMX)

- -2008 03 31 LAFS DI Meeting 10

Functions of JMX
• Registers user's objects (called MBeans)

– Defines 4 standard types of MBeans
• Acquires an object's description, including its

management interface
• Allows clients—local and remote—to address

objects by name and call their management
interfaces

• [Not part of the framework] General-purpose
management clients are readily available;
examples will follow...

- -2008 03 31 LAFS DI Meeting 11

- -2008 03 31 LAFS DI Meeting 12

- -2008 03 31 LAFS DI Meeting 13

- -2008 03 31 LAFS DI Meeting 14

- -2008 03 31 LAFS DI Meeting 15

- -2008 03 31 LAFS DI Meeting 16

Not implemented in JMX
• Dynamic deployment of user's objects
• Classpath segregation (and all related business

of hierarchical class loading)
• Standard agent services: Timer MBean,

Monitoring MBean, etc.

- -2008 03 31 LAFS DI Meeting 17

JBoss Application Server

- -2008 03 31 LAFS DI Meeting 18

JBoss Microcontainer
• A foundation of JBoss Application Server—loads

and manages all its services
• Includes a comprehensive set of deployers

(from plain file system, from an archives, from
a remote URL (?))

• Implements hierarchical classloading
• Large number of additional services (most of

them will have to be disabled)
• Compliant to JMX specification—can load

arbitrary Mbeans as a new service

- -2008 03 31 LAFS DI Meeting 19

Back to daemons...

- -2008 03 31 LAFS DI Meeting 20

My Proposal
• Organize daemons as Dynamic MBeans.
• Develop an AbstractDaemon, which shall be

extended by all concrete daemons.
• Use annotations to describe management

interface and store daemon's metainformation.
• Not to use any vendor-specific API, only JMX

from Java SE.
• Provisionally, use JBoss AS 5 as an MBean

server; remove unneeded services.
• Set up custom deployment procedure

connected to the building system in place.

- -2008 03 31 LAFS DI Meeting 21

Things To Worry About
• MBean unloading: misbehaving or badly

designed daemon can make hot undeployment
impossible.

• JBoss performance and reliability?
• JBoss 5 doesn't officially support Java 6,

however there is a workaround.
• Version transition at JBoss: should stay away of

creating code dependencies.

