
The Top 10 Things You Need to Know About Portlets

Martin C. Stoufer
MCStoufer@lbl.gov

Lawrence Berkeley National Lab

Introduction: .. 2
Definitions: ... 2
Requirements:... 3

I. Content ... 4
1.Creating the project ... 4

2. Project layout ... 5

3. Resolving Mbean(s) ... 7

4. Getting attributes .. 9

5. Invoking Operations ... 10

6. Sorting results .. 11

7. Forms and Action Java code.. 13

8. Session variables:... 14

II. Presentation .. 15
1. Images ... 15

2. Deploying to the Portlet Harness... 16

3. Deploying to the IceAxe Portal .. 17
Other topics for discussion: ... 19

Introduction:
As DAQ software grows and matures, so do the number of their published

Mbeans. The DAQ Portlet effort has kept up with this supply and has working sets of
portlets for both DAQ Dispatch and DAQ Config/Control/Monitor.

This talk is intended to be an introductory guide and review of the important
things you need to know in order to make portlets and to make exiting portlets better.

Target audience: All IceCube software developers who have Mbeans in their code
and are looking to create usable portlets and/or improve on the ones they already have.

This is a verbal presentation of the IceCube Portlet Developers Pocketbook.
[URL]

Definitions:
Throughout this guide, you will see mention of the following ideas and names

when used to describe components. A brief description here will make for easier
understanding later on.

IceAxe ≈ Portal
IceAxe is the name of the Portal that is used by the Icecube software

project. It is the all encompassing web based framework that the Portlets are displayed
through. By itself, the Portal is little more than a login context with empty pages behind
it.

3

JSP ≈ Portlet
Even though these are not technically the same, The Icecube Portal

development team has enforced a one-to-one mapping of a JSP (Java Server Page) to
rendered portlet. Some deviation from this is afforded developers when they include
‘snippets’ of portlet code into other portlets.

Requirements:
To get your portlet project off the ground, you will need a functioning and current

BFD Workspace and Mercury System installed. Refer to the References Section at the
end for pointer URLs.

4

I. Content

1.Creating the project
Since the portlet project is Java based, DAQ supplies an Ant target to create and

build them as well. Similar to the ‘createProject’ and ‘createPackage’ targets, these
portlet specific targets will create all the files and directory structure you need to get
going.

 > ant –DPROJECT=foo createPortletProject
 > ant –DPROJECT=foo –DPACKAGE=bar createPortletPackage

Once you have run both of these commands, you will be left with the proper build
and portlet config files as well as the stub directory structure for your JSPs and
corresponding Java files. Any sub structure underneath is up to you to define and
implement. The RPM spec file is pretty empty but at least you have the format and
targets to fill in. Refer to the spec file in daq-display to see how things are done.

When it comes time to start creating you portlet pages, there is a lot of preamble and
DAQ-specific wrapper code that goes into each JSP. So much that an ant target is
provided to allow easy creation of a JSP ready for your code.

> ant –DPROJECT=foo –DPACKAGE=bar –DCLASS=baz createPortletClass
> ant –DPROJECT=foo –DPACKAGE=bar –DCLASS=baz createPortletFormClass

The first will create the boilerplate required to generate your basic JSP; one that doesn’t
accept input and simply displays information from one or more Mbeans. The later,
however, will also create the corresponding java template. You will need to fill in the
handling code to suit your needs. Later on you will see some examples.

After filling things in enough, you can use your favorite VCS to store the initial project.

5

2. Project layout
Lets take a closer look at the files that the ant targets before just created.

a. portlet.xml
Define the portlets to make available when ‘deployed’. This allows you to
have portlets in your projects that don’t show up in a deployment.

b. project.xml
This specialized version includes the new entries in the <tools> element to
enable portlet generation. No edits are needed here.

c. RPM spec file
When filled in properly, this will allow the portlet project to be compiled into
an RPM for installation in a Portal environment. You should refere to an
existing portlet project that has this all filled in. The required edits are few and
obvious.

d. resources/jsp-app/classes/icecube/display/bar/bar.properties
Create bundle key pair associations. Give example of the long way and how
shorthand is so much better. This directory and properties file are created from
the ‘createPortletProject’.
When you start JBoss with only DAQ related Mbeans deployed into it, you
can visit the JMX Console and look at all the bundle resources currently
deployed. From here you can create a bundle-key pair for entry into this file.
More info is given later on showing how this all works. You can also define a
key that will purposefully resolve to multiple Mbeans.

e. resources/jsp-app/bar/
JSPs go under this directory tree. You may create sub directories under here,
but the mapping must be followed in the src/icecube/display/bar/ directory.
The proper dir tree must also be followed when creating entries in the
portlet.xml file.

f. resources/jsp-app/images/
All images used by all jsps go here. Supported formats are JPG,GIF, and
PNG.

g. src/icecube/display/bar/
Java action code goes under this tree in same layout as in resources/jsp-
app/bar/

6

Example portlet.xml entries:
When the project is initially created, you will have an portlet.xml file without any

entries. Here are two examples. One that just displays info and the latter for when your
portlet uses one or more <form> elements in it:
<portlet>
 <description>EventBuilder Monitor Summary</description>
 <portlet-name>EventBuilderMonitorSummary</portlet-name>
 <display-name>EventBuilder Monitor Summary</display-name>

 <portlet-class>gov.lbl.henpcg.stormlet.JspRenderer</portlet-class>

 <supports>
 <mime-type>text/html</mime-type>
 </supports>

 <portlet-info>
 <title>EventBuilder Monitor Summary</title>
 </portlet-info>

 <portlet-preferences>
 <preference>
 <name>base-dir</name>
 <value>/WEB-INF/bar/EventBuilder/monitor</value>
 </preference>
 <preference>
 <name>view-jsp</name>
 <value>EventBuilderMonitorSummary.jsp</value>
 </preference>
 </portlet-preferences>
 </portlet>

<portlet>
 <description xml:lang="EN">DAQControl System Configuration Create</description>
 <portlet-name>DAQControlSystemConfigureCreate</portlet-name>
 <display-name>DAQControl System Configuration Create</display-name>

 <portlet-class>gov.lbl.henpcg.stormlet.JspFormRenderer</portlet-class>

 <supports>
 <mime-type>text/html</mime-type>
 </supports>

 <portlet-info>
 <title>DAQ Control System Configuration Create</title>
 </portlet-info>

 <portlet-preferences>
 <preference>
 <name>base-dir</name>
 <value>/WEB-INF/bar/DAQControl/systemConfigure</value>
 </preference>
 <preference>
 <name>view-jsp</name>
 <value>DAQControl_SystemConfigureCreate.jsp</value>
 </preference>
 <preference>
 <name>form-handler</name>
<value>icecube.display.DAQ.DAQControl.systemConfigure.DAQControlSystemConfigureCreate
</value>
 </preference>
 </portlet-preferences>
 </portlet>

7

3. Resolving Mbean(s)
In order to find out what beans are deployed and waiting for you to build portlets

from, you need to have JBoss running and have DAQ-PROD deployed therein.
Instructions for doing so are referenced at the end. Once you have everything running,
you can point your web browser at the local address:

http://localhost:8080/jmx-console

This will bring up the JMX Console page. Not very interesting, but you will see
an endless list of mbean resource strings that this node knows about. By clicking on one,
you will see the Mbean display page that will show all the attributes and operations the
mbean provides. You are advised to become comfortable with this console, as it will be
an integral part of development and debugging of your portlets

By using the bundle key pairs, we can then leverage some portlet tags developed
by DAQ to make the resolving of Mbeans across an SP*S cluster easier.

Lets start by looking at a few example entries from a portlet.xml file that are used
here:

daq.eventbuilder.attributeConfiguration=
iceCube.daq:acme-aspect=configure,
id=0,name=eventBuilderAttributes,type=eventBuilder

daq.stringprocessor.attributeConfigurations=
iceCube.daq:acmeaspect=configure,
name=stringProcessorAttributes,type=stringProcessor,*

Due to layout constraints, each of these entries should always be on one line.

On the left is the key that you think up and on the right is the resource bundle that
is listed on the JMX Console. The dot notation for the key is purely artifical and only
servers as some sort of hierarchy for humans to understand.

One major difference between these two bundle key pairs are the trailing “,*” and
the missing “id=0” keys for the stringprocessor resource. Whenever you leave out one or
more items from the resource, you must use the “,*” wildcard at the end. This will cause
JBoss to resolve as many Mbeans that match this sub-query as possible.

Now that we have the bundle keys ready, we can now put code into JSPs that will
give us access to one or more beans. The following tags do just that:

<jmxext:resolveMBean
 bundle="icecube.display.bar.bar"
 beanKey="daq.eventbuilder.attributeConfiguration"
 mbean="configMbean"
 server="mbeanConfigServer"/>

<jmxext:resolveMBeans
 bundle="icecube.display.bar.bar"
 beanKey="daq.stringprocessor.attributeConfigurations"
 comparator="icecube.display.DAQ.IdComparator"
 mbeans="mbeans"
 servers="mbeanServers"/>

8

The first tag is pretty straight forward. Let’s break it down argument by argument:
 i. bundle

This is the java classpath that points to your “bar.properties” file starting from
the resource/jsp-app/classes directory. Consider this to be a static string for all
your resolveMBean(s) tags. Unless you have multiple properties files in the
same project. Doing so will work, but maintenance and further development by
others may prove too confusing.

 ii. beanKey
This is the literal key from bundle-key pair found in the bundle above and
should be unique to each resolveMBean(s) call on a page. Both the bundle and
the beanKey are crucial in locating the Mbeans you want to work with.

 iii. mbean
Whenthe backend code resolves a Mbean that matches the bundle and beankey,
it stores a reference to the mbean into the argument. In this case, ‘configMbean’
is now a variable name you may call later on in the JSP. The argument could be
any string you want, but must be unique as you may be resolving multiple
single mbeans in a page.

 iv. server
In the distributed environment of DAQ and JBoss, there are multiple servers
running all providing a subset of Mbeans you may want to use. When an mbean
is resolved, we also need to keep track of what server has it. This way when we
go to interact with the mbean, we can explicitly tell which server to contact.
This saves a lot of time and resources in the long run. Like mbean argument,
the reference to the server is stored in the ‘mbeanConfigServer’.

Notice that the second tag is “pluralized”. This will cause all the code behind the
scenes to resolve ALL mbeans that match the bundle and beanKey combination. Similar
to its single mbean resolve call, the mbeans now stores a list of all mbeans found and a
hash of servers in mbeanServers keyed by the items in the mbeans list. Therefore, this
multiple mbean query would resolve to the following example resource keys:
daq.stringprocessor.attributeConfigurations=iceCube.daq:acmeaspect=configure,id=0,
name=stringProcessorAttributes,type=stringProcessor

daq.stringprocessor.attributeConfigurations=iceCube.daq:acmeaspect=configure,id=1,
name=stringProcessorAttributes,type=stringProcessor

daq.stringprocessor.attributeConfigurations=iceCube.daq:acmeaspect=configure,id=2,
name=stringProcessorAttributes,type=stringProcessor

We will discuss later on how to iterate over this list and hash.

The optional comparator argument is used when you want to order the list of
returned mbeans with respect to some aspect of the bundle key. This should only be used
when you are working with multiple mbeans and is discussed later.

9

4. Getting attributes
So now we have access to an mbean and its server, in order to get access to one

of its attributes, we can use the ‘getAttribute’ tag. The format is easy to use.

<jmx:getAttribute mbean="${configMbean}"
 server="${mbeanConfigServer}"
 attribute="ConfigurationId"
 id="configId"/>

Notice how the mbean and server arguments are now used as inputs. The
‘attribute’ is an attribute in the Mbean and the ‘id’ argument holds the name of the
variable which holds the value of the attribute. It is up the developer to understand what
type of value it is and code appropriately.

If you are starting from square one, you will need to click on a few mbean
resource listings on the JMX Console to see what attributes and operations a specific
Mbean has.

To iterate over the list and hash of mbeans and servers, the ‘forEach’ tag does this
quite easily.

<c:forEach items=”${mbeans}” var=”mbean”>
 <jmx:getAttribute mbean="${mbean}"
 server="${mbeanServers[mbean]}"
 attribute="ComponentId"
 id="spid"/>
 <!—Do something with the ${spid} variable here --!>
</c:forEach>

Again, the ‘id’ argument stores the attribute into ‘spid’. Inside the ‘forEach’ block, you
may do anything you want with this variable.

10

5. Invoking Operations
Simply extracting attributes from an Mbean is too restrictive when it comes to

developing interactive portlets. We can also invoke operations on the Mbean that will
change the internal state of the bean and/or return information to the portlet. Again, by
viewing the mbean through the JMX Console, you can see the operations supported.
Some take arguments, some do not. All are designed to return some value to inform the
calling context (in our case the portlet) of the operation status. In most cases the return
value will be something to be used in the portlet.

The single mbean invoke should look quite familiar by now.

<jmx:invoke mbean="${configMbean}"
 server="${configMbeanServer}"
 method="fetchConfigurationIdList"
 id="varConfigList"/>

When you want to invoke the same operation across a set of all Mbeans (and you know
that each mbean provides the operation), you can use the same ‘forEach’ tag to iterate
over each mbean.

<c:forEach items=”${mbeans}” var=”mbean”>
 <jmx:invoke mbean="${mbean}"
 server="${attributeConfigMbeanServers[mbean]}"
 method="fetchInitialStateTransition"
 id="transition">
 <jmx:setParameter type="int">
 ${cfgid}
 </jmx:setParameter>
 </jmx:invoke>
</c:forEach>

We also show here the format when the operation requires arguments. We need
to declare the type of the required parameter . The backend code does the casting for you
if possible. There is a serious restriction here in that the order of parameters you pass in
must be in the same order as they are listed in the Mbean display from the JMX Console.

11

6. Sorting results
Since Mbean discovery by the Jboss servers occurs in an indeterminate order (wrt

when things are deployed and announced), it is impossible to enforce any type of order to
things when mbeans are resolved in a JSP. DAQ has added some backing code that
allows for a resulting list (from an invoke call) to be put into some type of order. The
motivation for this feature is when you want to iterate over a set of Mbeans in some
logical and repeatable manner.

Recall the comparator argument in step 3. This points to a user defined class located in

/src/icecube/display/bar

named IdComparator.java

The guts are as such:

public class IdComparator
 implements Comparator
{
 public IdComparator() {}

 public final int compare(Object o1, Object o2)
 {
 ObjectName obj1 = (ObjectName) o1;
 ObjectName obj2 = (ObjectName) o2;

 int id1 = Integer.parseInt(obj1.getKeyProperty("id"));
 int id2 = Integer.parseInt(obj2.getKeyProperty("id"));

 if (id1 > id2) {
 return 1;
 } else if (id1 == id2) {
 return 0;
 } else {
 return -1;
 }
 }

 public final boolean equals(Object o1, Object o2)
 {
 ObjectName obj1 = (ObjectName) o1;
 ObjectName obj2 = (ObjectName) o2;

 int id1 = Integer.parseInt(obj1.getKeyProperty("id"));
 int id2 = Integer.parseInt(obj2.getKeyProperty("id"));

 return id1 == id2;
 }
}

12

Therefore the resolveMBeans call in step 3 will always return a list of mbeans
order wrt their ‘id’ field. Since the ‘id’ field is really the distinguishing key of a bundle-
key pair, re-use of this one class will get you quite far. If you want to compare bundle
keys against some other key, you need to implement the ‘compare’ and ‘equals’ class
appropriately.

This is not needed when you are doing a ‘getAttribute’ or ‘invoke’ against a
specific Mbean. The mbean developer should of coded things as to return a sorted list for
you.

13

7. Forms and Action Java code
In the use case where you want to update information in a Mbean, the JSP needs

to include a <form> context in which to display/accept new information to send to the
Mbean via an invoke call. As discussed in step 2, the java code should go in the analogue
location [Show tree again] for its calling JSP file.

In the DAQServers.jsp file:

<form action="<portlet:actionURL/>" method="post">
 <button type="SUBMIT"
 name="resetMD"
 value="Pressed"
 class="portlet-form-button">
 Reset MultiCast Detector
 </button>

</form>

In the corresponding java class:

public class DAQServers
 implements JspFormHandler {

 public DAQServers() {
 }

 public void handleForm(FormParameters request)
 throws JmxExtException,
 ReflectionException,
 InstanceNotFoundException,
 MBeanException,
 AttributeNotFoundException,
 InvalidAttributeValueException {
 if (null != request.getParameter("resetMD")) {
 //Insert your code here
 }
}

What goes into the java file is really dependent on what needs to be done and
processed. This topic is discussed more thoroughly in the IceCube Developers Guide.

14

8. Session variables:
As your portlets become more complex and exercise multiple Mbeans, it will

become evident that you will need some manner in which to share bits of information
across portlets. This is where the session attribute comes into play.

This is the boilerplate JSP to add to your portlet page:

<%@ taglib prefix="renderer"
uri="http://henpcg.lbl.gov/taglibs/JspRenderer" %>
<renderer:actionException var="actionException"/>
...

<renderer:applicationSessionAttr
 name="daq.stringproc.selectedStringProcId"
 var="id"/>
...
<form action="<portlet:actionURL/>" method="post">
 <select name="selectStringProcId" size='1'>
 <c:forEach var="mbean" items="${mbeans}">
 <jmx:getAttribute mbean="${mbean}"
 server="${mbeanServers[mbean]}"
 attribute="ComponentId"
 id="spid"/>
 <option value="${spid}">${spid}</option>
 </c:forEach>
 </select>
 <button type="SUBMIT"
 name="submitStringProcId"
 value="Pressed"
 class="portlet-form-button">
 Select StringProc
 </button>
</form>

In the corresponding java file, more boilerplate:

public void handleForm(FormParameters request)
 {
 if (null != request.getParameter("submitStringProcId")) {
 request.addApplicationSessionAttr(
 "daq.stringproc.selectedStringProcId",
 request.getParameter("selectStringProcId")
);
 }
 }

15

II. Presentation

1. Images
Text and tables sometimes just can’t get across what is needed. Adding images

helps with the visual cues and helps improve the overall look and feel of the portlet. It
makes it more inviting and intuitive to users.

All images go in the images directory as mentioned in step 2. To reference the
image in a jsp:

<c:set var="image" value="/images/red_x.gif"/>
<img src='<c:out
value="<%=renderRequest.getContextPath()%>"/>${image}'>

This is nasty to look at, but this boilerplate works and will work every place.

16

2. Deploying to the Portlet Harness
Now that you have a working portlet or a partial one in need of some debugging,

we can now deploy the portlet into the Portlet Harness. The harness is a purely DAQ
invention and designed to display and operator portlets in the smallest and simplest
environment possible. Only one portlet can be displayed at a time, but all the form,
session attribute, and images will work the same as if it was deployed into IceAxe.

With a running jboss locally, you can deploy your portlet project.

 > ant deploy.plt-app

So where is this Portlet Harness exactly? Due to its small size and simplicity, it is
actually built into your portlet project before it is deployed into JBoss. In order to view
the harness, just point your web browser at the local address:

http://localhost:8080/foo-display

You will see a listing for all your portlets on the left and a description frame on the right.
By clicking on one of your portlets, it will render (hopefully) in the right frame. If you
see you made a mistake or are getting errors, you can fix things in the project and then
redeploy the portlet with the same deploy ant target. JBoss is smart enough to undeploy
the old version before the new one deploys. If you want to remove the portlet project (and
the portlet harness as well):

> ant undeploy.plt-app

17

3. Deploying to the IceAxe Portal
Once you are confident that your portlet project is stable and functional, you can

prepare it to be deployed into IceAxe. This time you must have JBoss running, and both
DAQ-PROD and IceAxe deployed before continuing.

 > ant portlets # Will build just the WAR file
 > ant deploy.portlets # Will build and deploy into IceAxe
 > ant undeploy.portlets *

* The last is highly dangerous as the portlets are undeployed from a running and
deployed Portal context. The worst thing is that you will crash all or part of the Portal.
This is bad sportsmanship if others are using the Portal to develop/debug their own code.
It is easier to simply redeploy a new version.

11. Building the portlets into an RPM.
You need a .spec file. Use the template spec file or copy one in from an existing

DAQ portlet project. Edit to suit your needs. CAUTION: This spec file and the existing
ant command will only build portlet projects into an rpm designed for use with IceAxe.

 ant build.portlet.rpm

18

III. References

BFD

Mercury Platform

The Icecube Software Developers Guide

19

Other topics for discussion:
a. Proper layout of JSPs to allow for better compile and code readability.
b. Merging in other display project. The portlet project layout makes this easy.
c. Using the Icecube Stylesheet. Minimal rework to existing portlets.

