

SEPTEMBER 1962 brought President John F Kennedy to Houston and the Manned Sparecraft Center. Here he is pictured with Astronaut John Glenn (left), the first American to orbit the Earth. Glennited by Scott Carpenter. Walter Schirra. and Gordon Cooper.

Ten years ago - Glenn got 'go' for Earth orbit

TEN YEARS A(i) this Sunday, February 20, the United States successfully placed its first spacecraft, piloted by Astronaui John Glemn, into Earth orbit.
The flight of Mercury-Atlas 6called Friendship 7-hrough project Mercury to its frution The basic objectives of putting a man into Earth orbit, observing his reactions to the space environ ment, and returning him safely to a point where he could readily bo found, were achieved with the historic (ilenn flight in 1962 Americas first Earth orbital flight was preceded by a Russian orbital flight in April 1961 and two U.S. suborbital missions flown by Alan Shepard in May 1961 and Virgil I. Grissom in July 1961
The Gilenn flight originally was scheduled for January 23, bu: a series of bad weather systems. the discovery of fuel between the spacecrati's structural bulkhead and insulation bulkhead separat ing the fuel and oxidizer tanks.
and the repairs necded to correct the fuel problen caused the delay to February 20.
At 9:47 a.m. on the 20th Friendship i and John Glenn were launched together on their orbital journey and into the pages of American history books.

The mission was not without tense and troublesome moments Early in the flight, Glenn experi enced difficulties with the space craft's yaw reaction jet, which caused an attitude control prob lem. As a result, he spent much more time actually piloting the craft than had been anticipated in the original flight plan.

As the history of the Mercury Program, This New Ocean, points out, "the flexibility of man should demonstrate the way to augment the reliability of the machine. Glenn's skillful handling of the Friendship 7 capsule proved just that.

A mgre serious problem was noted during the time Glenn was (See TEN YEARS Page 4)

Johnston named Acting Director of

Medical Research and Operations

Richard S. Johnston was appointed this week as Acting Direc tor of Medical Research and Operations at MSC. He assumco

the responsibility formerly held by Dr. Charles A. Berry, recently appointed Director of Life Sciences at NASA Headquarters

Johnston had served as Deputy fice, Apollo Spacecraft Program

Director for Biomedical Engineer ing for the Medical Directorate since October 1970. His previous assignments have included being Manager of the Experiment OfOffice; Special Assistant to the Director,and Chief of the Crew Systems Division.

Prior to joining NASA in 1959, Johnston served as a research chemist with the Naval Research Laboratory and with the U.S. Naval Bureau of Aeronautics, where he was responsible for integration of crew equipment into high speed/low altitude aircraft systems.

A native of West Virginia and a University of Maryland graduate, he is married to the former Jean Ambruster. They have two children, Susan, 18, and Richard,

ROUNDUP

Apollo 17 landing site set

A combination mountainous highlands and lowlands valley region of the Moon designated Taurus-Littrow has been selected as the exploration site for the Apollo 17 mission, presently scheduled to carry out the sixth and final U.S. manned Apollo lunar landing in December 1972.
The landing point is about 20° north and 30° east of the center of the Moon as viewed from Earth. The site, named for the Taurus Mountains and for the crater Littrow, both of which lie to the north of the site, was selected for consideration after a thorough search through the large amount of high resolution photography from Apollo 15

Taurus-Littrow is a keystone site in the Apollo Program, having been selected to help fill in the major gaps in the developing model of the Moon as based

EAA announces charter flight
to Cape for Apollo 16 blastoff

The Employees Activities Asso. ciation has announced a charter flight to Cape Kennedy for the Apollo 16 launch.
The trip will include a visit to Disney World and a stay of three days and nights at the Langford Motel in Winter Park.
Reservations are being taken now on a first-come first-served basis. The $\$ 130$ per person charge includes the round trip air fare, ground transportation in Houston and Florida, and motel room Disney World tickets will be available at a discounted rate at the gate.

A deposir of at least $\$ 65$ is re-
quired with each reservation which should be made with Dorothy Rafuse, Building 13 Room 123, or Kay Anderson, Building 2 Room 157A.

Because space is limited, reservations should be kept to two per household.
If the launch is postponed, reservations will hold good for the new launch date, but no refunds can be made after March 15 or after four weeks before launch in the event of a reschedule.

The present launch date is April 16, and the EAA charter will depart Houston April 14 and return April 17.

the southeast edge of Mare Sere-

 nitatis. Mare Serenitatis is one of the largest lunar mascons. Large, steep-sided mountains of lightcolored highlands dominate the terrain and are expected to provide samples older in age and different in composition from those returned from the Mare Imbrium basin on Apollo 14 and 15.
NATURE HELPS

Nature has already helped in the sampling as one of the sample sites is a rock slide which contains debris which has fallen into the valley from high up on a 7000 -foot mountain.
The targeted landing point itself will be on the other prime sampling objective which is the very dark non-mare material filling the valleys between the mountains. On occasion the dark material is found in small troughs on the mountainsides, indicating that it once thinly covered the mountains but has eroded off the steep slopes.

This observation, plus the presence of volcanic-looking cinder cones, first reported by the Apoilo 15 Command Module Pilot Al Worden, indicates to lunar-scientists that the dark material is an explosively produced volcanic ash The apparently low crater density in the area covered by the dark material also leads geologists to believe it to be among the youngest lunar volcanics.
The explosive nature of the volcanism indicates a relatively high content of volatiles or gases, both of which have been exceedingly rare in all lunar samples seen thus far. If the Moon, as the preferred models indicate, has indeed cool (See APOLLO 17, Page4)

Apollo 15 cameras looked eastward for this view of the landing site just selected for Apollo 17. As the 17 spacecraft approaches the target, it will pass between several noteworthy craters - Vitruvius at the upper right corner and Littrow and Littrow A at extreme left-center.

BENEFITS CONTINUE TO ROLL IN

Aerospace research profits Earth

In the last issue of the Roundup, excerpts from a fact sheet which MSC will publish on "Space Benefits" were printed. We continue here with more from that soon-to-be-published pamph-

GREATER SAVINGS

Weather satellites survey the icefields of the Gulf of St. Lawrence with an estimated savings to the U.S. and Canada of 1.7 million dollars each year, by more accurately predicting the opening of shipping on the Great Lakes.
Space observation of weather patterns on a global scale offers the only hope of understanding weather movement, global temperature, and global wind patterns necessary for long-range forecasts.
The National Academy of Sciences-National Research Council has estimated that accurate long-range forecasts would lead to savings of at least $\$ 70$ million annually from flood and storm damage; $\$ 1$ billion a year to the construction industry, $\$ 500$ million a year to fuel and electric power industries, $\$ 500$ million a year to fruit and vegetable producers, and $\$ 450$ million annually to livestock producers.
Although national pride, international good will, and a nation's prestige cannot be measured in dollars, these are real and tangible benefits resulting from the space program.

The Associated Press recently reported that a survey of high school student leaders in the U.S. showed this country's landing on the moon was one of the things of which students were most proud.

In 1960, a worldwide poll showed the majority of the world believing that the dominant force in international affairs would be the Soviet Union.

In 1970, after the Apollo 11 landing on the moon, the same survey indicated the majority of the world's people believed that the U.S. was and would continue to be the most powerful and influential country in world affairs.

STABILIZING FORCE
Former NASA Administrator Thomas O. Paine described space as a major "stabilizing force in world affairs," which he said has given both America and the Soviet Union a unique opportunity to demonstrate before the entire

world their national will, the strength of their institutions, the quality of their people, and the vision of their leaders.
In a hearing before the U.S. Senate's Committee on Aeronautical and Space Sciences, the Siate Department's U. Alexis Johnson cited as examples of internation cooperation fostered by the space program, the Treaty on Outer Space, which, among other things, states that no nation can claim sovereignty to outer space and forbids the stationing of nuclear weapons on celestial bodies or in space.

He also cited an Agreement on the Rescue and return of Astronauts.

More than 50 countries benefit from automatic picture-taking systems on U.S. weather satellites, which allow them to view daily weather patterns over their own terriotry.
Teams of scientists in 39 institutions representing 14 foreign countries have received samples of lunar rock and soil collected by U.S. astronauts. At the same time, the United States and the Soviet Union have exchanged lunar samples and have conducted a series of meetings aimed at developing compatible spacecraft docking equipment so that U.S. and Soviet spacecraft can link up in space in a future joint manned mission.

MORE ECONOMY
Much of the potential use of space as a new resource to benefit man depends, of course, on the

Golfers 'scramble' to open '72 season

The MSC Golf Association 1972 season gets underway February 21, 1972 at 10:30 a.m. with a four-man 'scramble' at Tejas Golf Course near the Houston Intercontinental Airport.

This is the first of three scheduled fun tournaments of the new season. Course and dates of the others will be announced later.

More than 100 MSC golfers have signed up for 1972, according to Dave Dyer, membership chairman. Of this number 28 are new members.
The first medal play tournament is set for March 4 at Ex ecutive Country Club off Wayside in Houston. This event counts in the annual membership point standing and will be divided into flights - championship, first, second, third and 'new members.
Other events are scheduled at Sharpstown (May), Panorama (August), Tejas (Sep), Westwood (Oct-tentative), Inwood Forrest (Oct), Atascocita (Novtenative). Exact dates of these and other events will be announced later.
cost of transporring man and his machines into space.
In 1958 the first U.S. satellite, Explorer I, cost more than $\$ 100$,000 a pound to place in orbit. When we use the largest present launch vehicles, the cost now is less than $\$ 1,000$ a pound. But we can do much better than that.
The United States has developed more than 20 different launch vehicles for manned and unmanned space programs. Each has required development cost, special support equipment, separate production facilities, and specially trained ground personnel, all for one launch in which the vehiclesuccessful or not-is destroyed.
As a result of our experience with manned and unmanned programs, space technology has advanced to the point where it is possible to return entire space vehicles from orbit and use them again.
NASA and industry teams have begun design and development work on a new generation launch vehicle and spacecraft called the Space Shuttle, which will not be discarded after a single flight but will be flown many times during its ten-year lifetime.
This versatile vehicle, which combines the features of both airplane and rocket, will be designed to carry men and supplies and unmanned spacecraft into orbit. It will be piloted like a commercial airliner and will land on conventional type runways, avoiding the cost of recovery at sea.

The Shuttle should reduce space flight costs to about one-tenth of their present level.

The reduction of operating costs is only part of the savings to be realized. The major part of total space program costs, about 80%, is reflected in the efforts required to develop and test payloads. The Space Shuttle, revolutionizing our whole approach to placing payloads in space, will provide such important economic dividends as:

- Drastic reduction of payload development costs;
- Less risk of failure in placing payloads in orbit; and
- A capability for rountine, eco nomical operations in space. Economies are also anticipated in the use of the Space Shuttle as a "test bed" for instrument de velopment. Spacecraft found in operable or erratic upon deployment could be returned to the launch site for further work before final placement in orbit. Thus, the operation of the Shuttle should virtually eliminate the risk of total failure in spacecraft operations.

The benefits fact sheet will be concluded in the next issue of the Roundup. Topics covered will include Earth Applications, Pollu tion Control, and the Unlimited Potential of Space.

IN REHEARSAL-Alan Glines (r.) checks a point in the script for "Sunday in
New York" with director Kathy Payne, as fellow actor Toby Mattox looks on

From Flight Controller to Thespian

Alan Glines of the Flight Control Division will put the world of computer consoles and engineering lingo behind him tempo rarily as he steps onstage tonight in the Country Playhouse produc tion of "Sunday in New York."
This is not Alan's first venture into the theatrical sphere. Origi nally from Independence, Kansas, Alan was graduated from the Uni versity of Kansas at Lawrence with a degree in electrical engineering. Whenever he had free time, he took drama courses and lent his talents-onstage and back-stages-to a number of college productions.

He has appeared locally in other shows at the Country Playhouse
and at the Theatre Suburbia, Clear Creek Country Theatre, and Pasadena Little Theatre.

Alan joined MSC in 1966. When he isn't working here or rehearsing for a dramatic production, he enjoys tennis, basketball, softball, volleyball, wine-tasting, and skiing-not necessarily in that order.
"Sunday in New York" will run February 18, 19, 25, 26 and 27 and March 2 through 5. It is the stury of a girl who designs a development program to change the configuration of her life.
If you want to know what that means, call $467-4497$ to reserve your tickets.

ON THE MOON WITH APOLLO 16

A Guidebook to the Descartes Region

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION April 1972

MOON GUIDE--"On the Moon with Apollo 16, A Guidebook to the Descartes Region" is available from the Superintendent of Documents, Government Printing Office, Washington. D.C. 20402. The price is $\$ 1$. Dr. Gene Simmons Professor of Geoohysics at the Massachusetts Institute of Technology and , authored the publication.

ROUNDUP

The Roundup is an official publication of the National Aeronautics and Space Administration Manned Spacecraft Center, Houston, Texas, and is published every other Friday by the Public Affairs Office for MSC employees.
Editor: Sydni Shollenberger
Photographer: A. "Pat" Patnesky

Roundup Swap-Shop

(Deadline for Swap-Shop classified ads is Thursday of the week preceding Roundup publication date. Ads are limited to code and home telephone number. Send ads, typed or legibly written, to Roundup Editor, AP3)
Irving bickpack parachute, 28-foot dia-
meter. saft:ty handgrip. Chappee. 932.2120 Reningtull 552 BDL Speedmaster 22 auto
 cond, w covers x clamps Sammuce 488.0406

 4.thladte ca.lug; ta: 12 speed!. xin cndn

 $\begin{array}{llll} \\ \text { Husquava na } \\ \text { Henstom } & \text { Yanser } & \text { 223. } 20 .\end{array}$

\qquad
1624
Schwimn 5 speed boys bike orange
Srate.: Xin condn. S39 Cheathare. 877-1201.
71 Honda 100 . Scrambler. 800 miles. x in
71 Honda 100. Scrambler. 800 miles. XIn
cndn. S295 firm Wade. 333.3300 .
65 onetin Chevy truck, utility bed, 327
8. Frazter. $485 \cdot 3389$
xIn cndr. 5 . 000 miles O Loughlin. 877.1189
L4 VW Camber w radio recentliy tuned
good transportatum. S500 Ragan. 481.0408

Jimmy Warren
 Memorial Bowling League BOWLING STANDINGS

Ball Busters
Chokers
$321 / 2$

Bit Pickers
Hert
Team
$12 \times 65^{\prime}$ mobile home, furnished. 2 BR ,
cent air. no equity. Flanagan. 932.3155 . cent air. no equity. Flanagan. 932.3155.
66 Fairlane 500 station wagon. fully equip ped. low mileage, very good cndn, $\$ 800$ Mallary. 482 -7081.
Trave! trailer. 29 , :ike new. sleeps 8
self-contained. stove, eye level oven, reffl self-contained, stove, eye level oven, reffl
gerator. abundant storage space, other \times and gerator. abundant
Schwartz, 477.7334.
Schwartz, 477.7334.
TO VW sedan, S 1400 . McClure, 481.4660. bi 2 Vercury Comet sta. wagon. 101 hp ,
SIX aut six. auto transm, chrome luggage rack
radio. runs \& looks grod. new tres. $\$ 295$, Dunaway 479-7292.

```
483-3872. Chopper. 450cc $90C. Grubbs
```

69 Doctos Coronet 440. 2.door vinyl hard
top, air conc, racio new ba:tery, $\$ 1600$ or
it wheel camper, xin endn. sleeps 8
double dinette. sink. stove, ise box, 13 -gal
water tank. Collins, $481-2995$.
Co Che:rolet. V8, XIn work car. ultra
dependable. S150 or make cffer. Christen
sen. 488.5619
New, 25" girts bike. tratn ng wheels in
clucted S25. Mieszkuc, $333-4669$.
cluded. S25. Mieszkuc, $333-4669$.
69 Chevy Vova. 350 cu in.. 255 hp. 350
turbo. 2 or, air. custom interior, radio, new
68 Pontiac LeMans, 2 dr HTP. 350 c.I. V-8.
265 hp . 3 spd fir shift w consol. H.D. sus
pension, bucket seats, rado all vinyl in
terior. exceptionally clean, S 1200 . McGregor
$488-2775$.
488.2775
59 Triumph TR-3 S475 Koontz. 438-5721 af
63 Rambler classic 6 stat on wagon, w/
working $A \cdot C$ and radio, good work or fishing
car. S100 DeAtkine. 482-1949.

1. 63 Corvair body. all class, no running
gear or engine. Haul it cff free. Kaigler
377-4731.

70 Barracuda. 2-dr hardtop. A / C. power AM/FM stereo radio. 15,000 miles, 50,000 mile warranty. barely broken in, ${ }^{\text {average retail. Poindexter. } 877-2023 \text {. }}$ 71 Pontiac Firebird, power. A/C. drives like a dream. 21,000 miles $\$ 3300$. Poin dexter 877.2023
61 Valiant. 2-door hardtop, automatlc passed inspection in January. S150. Shollen berger. 488-5372.
70 VW bus. 7.
70 VW bus, 7 -passenger, air conditioning, 7235 . Sampsel, CL 450 red S800. Ardoin. 877-4960.
68 Cougar. vinyl top bucket seats, auto Air. R:H, 2 new tires. 72 plates. blue
S1575. Girala $921-7212$, S1575. Girala. 921-7212.
Tent camper, Nimrod Americana, 1965 W ine box and sink. sleeps 6; extras McBride. 534-2066 (Dickinson) McBride, 534-2066 (Dickinson). sell. Roach. $783-4015$ or 771.5841 after 6 pm 70 Ford, $t / 1 / 2$ on pickup. 20.000 miles. Mav rick camoer shell. like new. must sel Roach, $783-4015$ or $771-5841$ after 6 p.m. 67 Mercury Montclair, 4-dr.. air, powe steering \& disc brakes. AM-FM, good tires
household articles
Old fashion school desk. \$10, cast iro lace sides. wood top \& seat. Samouce
488.0406 .
Baby crib, good cndn good mattress, $\$ 20$ hristensen, $488-5619$.
Hottoint
S65. Higdon, 482-7029. Extra sturdy mesh playpen with detachabl sun canopy \& pad. S10: deluxe Welch baby buggy. little used. S10: wooder playpen
55 Wade $649-0554$ 55. Wade. 649-0554

GE. electric baby feeding dish. S4: wood en outdoor baby swing sea: and chains. S2
Detecto deluxe baby scales. heavy duty, xln condn. $\$ 7$. Wade. $649-0554$.
Child's large wonder horse, $\$ 10$; colonial Child's large wonder horse, $\$ 10$; col
rocker. maple. $\$ 15$. Wade, 649.3554 . Kitchen set, table. 4 chalrs. good endn S20. Mieszkuc, 333-4669.
Frame for rol-away bed. assorted Vene tian blinds. sheer curtains, large ban
roll window shade. Gorman, $521-9805$. roll window shade. Gorman, 521-9805.
Coppertone 14 cu . ft . Frigidaire Imperia refrigerator, bottom freezer, $\$ 200$; avocado vinyl sofa, 550 . Talbert. 643 -9206. Unusual antique ladies roll top desk. $\$ 250$.
Fuller 488-3985 Fuller, 488-3985 Kenmore bronze gas dryer, approx. 2-years old. xIn working cndn, S75. Schisser, 488 -
3797 after 5 p.m. Kenmore was
White, 488 - 1024
Daystrom breakfast room set, $40^{\prime \prime}$ round wood-grained formica top table plus two 10 leaves. 6 chairs, \$40. Chimenti, 333-3997. Early American oak chair and sofa k
removable cushions, $\$ 95$ for both. DeAtkine 482-1949. $482-19$
\$40. Brown, 488-0754

$\begin{aligned} & 14^{\prime} \times 16^{\prime} \\ & 481.2318 \text { green shas }\end{aligned}$
 (14.2318 after 5:30 p.m. Sloo. Paietz,

 Modern pedestal $42^{\prime \prime}$ round table w/four black leather, pedestal, swivel chairs, $\$ 125$.Paletz 481.2318 after $5: 30$.

Wanna see an Old-time movie

NASA Night at the Alabama Theatre this Monday, February 21, will feature Charlie Chaplin in "Modern Times." Tickets, regularly $\$ 2$ each, will sell for $\$ 1.50$ to MSC adults and $\$ 1$ to students, but a minimum of 50 tickets must be sold for the offer to be good. Ticket reservations may be made through Joanne Sanchez at extension 4303.

Solid oak library table. recently refinish-
ed, makes good desk. \$30. Kirkland ed, makes good desk. \$30. Kirkland. 932-4101. cabinet. Keyser, 946 -4059.

SOUND EOUIPMENT
Sears Medalist AM/FM multiplex stereo
radio table model wood cabinet. separate radio, table mode. wood cabinet,
speaker, $\$ 30$. Grayburn, 472-4051 Modern Zenith stereo with six speakers S200. Paletz. 481-2318 after 5:30 p. musical instruments Saxophone. Eckhart. alto w/case. $\$ 100$
Proctor. $333-3842$ after 5 p.m. cameras Telephoto and wide angle lenses: 135 mm
$\mathrm{f} 2.8 \mathrm{w} /$ case, $\$ 35: 28 \mathrm{~mm} \mathrm{f} / 2.8$ Soligor, al 12.8 whe case, $S 33: 28 \mathrm{~mm} \mathrm{f} / 2.8$ Soligor, al
most new. S45. Both lenses are automatic W/Pentax-type screw in threads. Erickson 488-19c1.

16 SDW Ouachita Jon boat, 18 hp Evin

 rude. big wheel trailer. S450. Fancher. 877 1851.Luxurious 16^{\prime} speedboat, 120 hp outboard Luxurious 16 speedboat,
engine, trailer. equipment. including proengine, trailer. equipment, including pro-
fessional ski-tow bar, 1971 model in mint cndn, S3595. Bland, $333-4580$.
71 tri-hull 17 fishing and skiing boat $\mathrm{w} /$ canopy, controls, equipment. Bland, 333-4580,
59 Richardson cruiser. 35 -ft... new twin 185 hp engine. marine air conditoning, radio
telephone. $110-\mathrm{V} / \mathrm{AC}$ generator sgooo finan cing available, Nassau Bay Marina. Fedder sen, $333-3411$ after 5 p.m.
 make offer. Westover. 944-2497.
15 ft . Ouachita cane with paddle, like new, S125. Green. 331-3001.
Air boat, Mud Hen type Corvair engine ${ }^{16}$. Ouachita boat. xin endn. $\$ 1550$. Moser 877-3048 or 488-6764.
motor. $\$ 150$. Kirkland, $932-4101$.
REAL ESTATE \& RENTALS Two acres. Roy Acres, corner lot, well and septic tank. Frazier, 485-3389, $224-9379$
11.13 wooded acres on $\mathrm{FM} 830,1 / 2$ mile from Lake Conroe and about 2 mi . from Panorama Golf Course. Morris. 482-7775. Tiki Island waterfront lot w/boatslip. 60% of equity. Morris, 482-7775.
Buy your own hunting acreage and let your investment work for you while you hurt $\mathbf{S 1 0 0 0}$. Burton 481-0780.
Clear Lake City, Oakbrook, \quad 3-2-2, al
electric built-ins, lot on cul-de-sac. fenced: near schools, shopping rec center. Shollenberger. 488-5372
Female beagle, AKET
lines. Welch, 649-260
Breeding seasons for your filly or mare now available to thoroughbred stailion. Fee 575. For bookings, call Johnson, 643.4758 AKC registered Lhasa Apso puppies champion blood lines, beautiful coats. Pric ed to move, $\$ 125$. Lewallen, $333-2566$.
Quarterhorse, 5 years, saddle and bride 5225. Green. 331-3001.

WANTED
Like-new dining room suite. Bouillion, 482

7642. Guita

Guitar instructions for 11 -year old who
has had 2 years of lessons. Brenton, 483-
has had 2 years of lessons. Brenton. 483 .
2205.
Used Strollee baby stroller, fairly good
Used Strollee baby
cndn. Hawkins, 932 -3845
Metal lathe, $36^{\prime \prime}$ between centers. Perkins, 473 . 10 p.m.
Io join or form carpool from vicinity Broaldg. 2, hours 8:30 a.m. .5:00 Freeway
to son, 643 -4758,
Hide-a-bed, good cndn. Green, 331-3001. 1966 Mustang shop manual. Embrey, 946 7283.

Blood Drive Set

The Blood Services of Houston mobile unit will pay a visit to MSC on Thursday and Friday February 24-25. The bloodmobile will be in the Building 8 (Dis pensary) parking lot and will be open from 8:00 a.m. to 3:00 p.m
Employees have donated blood generously in past drives. There is always a need for blood, so won't you give the "gift of life?"

Call Lester Wynn, x6124, or Barbara Freeman, x3583, for an appointment.

EGRESS TRAINING IS FOR THE BIRDS, TOO-Apollo 16 command module pilot Ken Mattingly, perched in a Billy Pugh net suspended from a Coast Guard helicopter, appears to be in a race with a sea gull. The picture was taken Charles Duke also took part in the training. The gull was an uninvited visitor to the egress activity. Apollo 16 is scheduled for liftoff on April 16

Apollo 18

(Continued From Page 1)
ed from the outside in, these youngest lunar volcanics should be derived from the greatest depths and may give the first good samples of the deep lunar interior.

WILL USE ROVER

The astronauts will use the Lunar Rover Vehicle to transport them to prospective important locations determined prior to the mission and to other points they might select during their exploration. Contingency walking traverses also will be planned to accomplish as many of the scientific objectives as possible.

The astronauts will deploy an advanced Apollo Lunar Surface Experiments Package (ALSEP), containing a heat flow experiment similar to that deploved on Apollo 14 as well as four new experiments. In addition, two new surface traverse experiments, not powered by ALSEP Central Station, will be deployed. These new experiments represent second generation scientific approaches to difficult lunar problems.

Three of the six new experiments represent new or improved geophysical techniques of exploring the hidden subsurface properties of the Moon. These experiments are (1) Traverse Gravimeter, (2) Seismic Profiling, and (3) Surface Electrical Properties.

The Traverse Gravimeter will measure variations in subsurface structure and furnish data on such problems as whether the mountains have deep roots or are merely deposits on a uniform subsurface.

The Seismic Profiling and Surface Electrical Properties Investigations will measure the physical properties of the lunar interior down about a kilometer and will
indicate subsurface electrical and mechanical properties, the extent of subsurface lavering and the degree of energy scattering at the landing site. Underground water, should it exist, also will be detectable.

NEW ALSEP

A new ALSEP experiment, the Tidal Gravimeter, to study both the response of the moon to the earth's tidal pull and its res. ponse to gravity waves, should they exist in space, will be a fundamental contribution to astrophysics.
Two other new experiments also will be part of the ALSEP. A mass spectrometer will measure the constituents of the lunar at mosphere - the findings of which may be correlated with the mass spectrometers carried previously in lunar orbit; a lunar ejecta and meteorites experiment will determine the frequency and energy of the small meteorites and their ejecta which constantly impact and modify the Moon.

Three new experiments are added to the Apollo 17 orbital science payload. These replace the geochemical investigations and the mass spectrometer. Three new experiments are under development and production to replace the mass spectrometer, Alpha, x-ray and gamma experiments as well as the subsatellite carried on Apollo 15 and planned for Apollo 16.

The first of these, a Lunar Sounder, is a pulsed radar sounder and has the potential for i dentifying electrical properties and layering of the lunar crust overflown by the spacecraft.

The Lunar Sounder will provide the opportunity to study detailed physical properties of the Moon up to depths of one and a half kilometers and if it exists, to aid in the location of subsurface water.

THERMAL MAP
The second, the infrared Scanning Radiometer will provide, for the first time, a high resol ution thermal map of portions of the Moon.

Thirdly, a Far Ultraviolet Spectrometer will measure the compositional and density variations of the lunar atmosphere. Since this experiment has the capability of measuring these vari ations as a function of atmosphere height, it will greatly extend the knowledge of the lunar atmosphere that was gained through the use of the original mass spectrometers on Apollo 15 and 16 .
The SIM (Scientific Instrument Module) camera system flown successfully on Apollo 15, and planned for flight on Apollo 16, also will be carried on Apollo

Ten years ago Glenn got 'go'
 (Continued From Page 1)

busy coping with the attitude con trol difficulty. Telemetry signals received at Cape Canaveral seemed ic indicate that the spacecraft heatshield and compressed landing bag had loosened.

The critical test of whether these signals were correct would come during the fiers moments of reenty into Earth's atmosphere

This New Ocean recalls that Glenn, during this reentry period "experienced his worst emotional stress of the flight. 'I thought the retropack had jettisoned and saw chunks coming off and flying by the window, he later said. He feared that the chunks were pieces of his ablation protection, that the heatshield might be disintegrating. but he knew there was nothing to gain from stopping work.

After passing the peak G re gion, Glenn's spacecratt suddenly began vibrating to such a degret that he was unable to control the capsule manually. And to add to
17. This system contains the 24° Panoramic Camera, a 3" Mapping Camera and a Laser Altimeter. The Apollo 17 ground track will permit some new areas of the Moon to be investigated and photographed. In addition where Apollo 17 overflies area covered ,by previous missions, the difference in sun angle will provide the photo-geologists with photographs of lunar features at new illuminations. This will greatly aid them in their scientific investigations.

Apollo 17 will be commanded by Navy Capt. Eugene A. Cernan with Navy Cmdr. Ronald E. Evans, command module pilot, and Dr. Harrison B. Schmitt, civilian scientist-astronaut, lunar module pilot.
the tension of reentry, the fue gave out betore drogue deplos. ment, causing the vibation th intensify.

Just as (ilenn was about io deploy the drogue manually. it deployed automatically. Prom that point, in Clenn's words. "every. thing was in good shape

In ceremonies at the white House honoring John (ilenn and his historic mission, President John IF. Kennedy said, "We have a long way to go in this spate race. But this is the new ocean. and I beliese the United States must sail on it and be in a position second to none
Glem and his wife now live in Columbus, Ohio. He is on the board of directors of two national corporations and is an advisor to the Governor of Ohio. Certainly his memories will be very vivic this Sunday, on the tenth anniversary of the flight of Fricndship

Pioneer F launch set February 27

The February 27 launch of Pioneer F on a two year journey past Jupiter remains on schedule.

Pioneer arrived at Cape Ken nedy Ianuary 15 Checkout and launch preparations for the Atlas Centaur launch vehicle and its payload are p:ocecding
If successful, the spacecraft will become the first to fly be yond the orbit of Mars. It also will be the first to investigate interstellar space, hopefully re turning data on conditions bil. lions of miles from Earth as a bonus to its primary mission of exploring Jupiter

U. S. Manned Space Flight Log.

Mission	Pilot(s)	Date	$\begin{gathered} \text { Elapesed } \\ \text { Hr mine: } \\ \text { rosec } \end{gathered}$	Total U.S manned hours hr min seec
Mercury-Redstone 3	Shepard	May 5, 1961	0): 15:22	(i): 15:22
Mercury-Redstone 4	Grissom	July 21, 1961	00:15:37	(0):30:59
Mercury-Atlas 6	Glenn	Feh 20, 1962	(04:55:23	05:26:22
Mercury-Atlas 7	Carpenter	May ? + , 1962	04:56:05	10:22:27
Mercury-Atlas 8	Schirra	Oct. 3, 1962	(1)9:13:11	19:35:38
Mercury-Atlas 9	Cooper	May 15 and 16. 1963	34:19:49	53:55:27
Total-Project Me	rcury		53:55:27	
Gemini-Titan III	Grissom, Young	Mar. 23. 1965	04:53:00	63:41:27
Gemini-Titan IV	McDivit, White	June 3 to 7, 1965	97:56:11	259:33:49
Gemini-Titan V	Cooper, Conrad	Aug. 21 to 29, 1965	190:55:14	641:24:17
Gemini-Titan VII	Borman, Lovell	Dec. 4, to 18, 1965	330:35:31	1302:35:19
Gemini-Titan VI-A	Schirra, Stafford	Dec. 15 and 16, 1965	25:51:24	1354:18:07
Gemini-Titan VIII	Armstrong, Scott	Mar. 16, 1966	10:41:26	1375:40:59
Gemini-Titan IX-A	Stafford, Cernan	June 3 to 6, 1966	72:21:00	1520:22:59
Gemini-Titan X	Young, Collins	July 18 to 21, 1966	70:46:39	1661:56:17
Gemini-Titan XI	Conrad, Gordon	Sept. 12 to 15, 1966	71:17:08	1804:30:33
Gemini-Titan XII	L-ovell, Aldrin	Nov. 11 to 15, 1966	94:34:31	1993:39:35
Total-Gemini Pro	gram		1939: + : 08	
Apollo-Saturn 7	Schirra, Eisele, Cunningham	Oct. 11 to 22, 1968	260:09:03	2774:06:4.4
Apollo-Saturn 8	Borman, Lovell, Anders	Dec. 21 to 27, 1968	1+7:00:42	3215:08:50
Apollo-Saturn 9	McDivitt, Scott, Schweickart	Mar. 3 to 13,1969	241:00:54	3938:11:32
Apollo-Saturn 10	Stafford, Young, Cernan	May 18 to 26, 1969	192:03:23	4514:21:41
Apollo-Saturn 11	Armstrong, Collins, Aldrin	July 16 to 24, 1969	195:18:35	5100:17:26
Apollo-Saturn 12	Conrad, Gordon, Bean	Nov. 14 to 24, 1969	2.44:36:25	5834:06:41
Apollo-Saturn 13	Lovell, Swigert, Haise	April 11 to 17, 1970	142:54:41	6262:50:44
Apollo-Saturn 14	Shepard, Roosa, Mitchell	Jan. 31 to Feb. 9.1971	216:01:57	6910:56:35
Apollo-Saturn 15	Scott, Worden, Irwin	Jul. 26 to Aug. 7, 1971	295:11:53	7796:32:14
Apollo-Saturn 16	Young, Mattingly, Duke			
Apollo-Saturn 17 Cernan, Evans, Schmitt				
Total-Apollo Program through (Apollo 15)			5802:52:39	

