BaBar's Discovery of the $D_{sJ}^*(2317)^+$ and Confirmation of the $D_{sJ}(2457)^+$

David C.Williams University of California, Santa Cruz

for the BaBar Collaboration

Joint Experimental-Theoretical Seminar Fermi National Accelerator Laboratory July 11, 2003

Outline:

- Introduction
- D^{*}_{sJ}(2317)⁺
- D_{sJ}(2457)⁺
- Theoretical Implications
- Conclusion

TM & © Nelvana

Heavy Meson Spectroscopy Theory

Potential model

Then and Now

Status before and after $D_{sJ}^{*}(2317)^{+}$ and $D_{sJ}(2457)^{+}$

S. Godfrey and R. Kokoski, Phys.Rev. D43 (1991) 1679.

S. Godfrey and N. Isgur, Phys.Rev. D32 (1985) 189.

M. Di Pierro and E. Eichten, Phys.Rev. D64 (2001) 114004.

BaBar and the $D_{sJ}^{*}(2317)^{+}$ and $D_{sJ}^{-}(2457)^{+}$

The PEP-II Collider

Record peak luminosity: 6.582×10^{33} cm⁻² sec⁻¹

Other records:

- ✦ Best shift: I 38.4 pb⁻¹
- ✦ Best 24 hours: 395.1 pb⁻¹
- ✦ Best 7 days: 2115 fb⁻¹
- ✦ Best month: 7.395 fb⁻¹

Design values:

- + Luminosity: 3×10^{33}
- ◆ Day: I35 pb⁻¹

✤ Month: 3.3 fb⁻¹

United Kingdom

Brunel University Queen Mary, U. London Imperial College, London Royal Holloway U. London Rutherford Appleton Lab. U. Birmingham U. Bristol U. Edinburgh U. Liverpool U. Manchester

Russia

Budker Institute, Novosibirsk

China

Inst. of High Energy Physics, Beijing

Italy

Lab. Nazionali di Frascati dell' INFN INFN and U. Bari INFN and U. Ferrara INFN and U. Genova INFN and U. Genova INFN and U. Perugia INFN and U. Milano INFN and U. Napoli INFN and U. Napoli INFN and U. Padova INFN and U. Pavia INFN and U. Pisa INFN and U. Pisa INFN and U. Torino INFN and U. Trieste

The BaBar Collaboration

10 countries77 Institutions~580 Physicists

Canada

McGill U.

U.Victoria

France

LAPP, Annecy

LAL, Orsay

Ecole Polytechnique

DAPNIA, CEN-Saclay

LPHNE and U. Paris VI–VII

U. Montreal

U. British Columbia

TM & O Nelvana

50% Outside U.S.A.

Norway U. Bergen

Germany

Ruhr U. Bochum Tech. U. Dresden U. Rostock Heidelberg

The Netherlands

NIKHEF, Amsterdam

USA

Caltech Colorado State Florida A&M Harvard Iowa State U. LBNL LLNL MIT Mount Holyoke College Ohio State U. Prairie View A&M U. Princeton U. SLAC Stanford U. SUNY Albany U.C. Irvine U.C. Los Angeles U.C. San Diego U.C. Santa Barbara U.C. Santa Cruz U. Cincinnati U. Colorado U. Iowa U. Louisville U. Maryland U. Massachusetts U. Mississippi U. Notre Dame U. Oregon U. Pennsylvania U. South Carolina U.Tennessee U. Texas Austin U.Texas Dallas U.Wisconsin (3&4) Vanderbilt U. Yale U.

BaBar and the $D_{sJ}^{*}(2317)^{+}$ and $D_{sJ}(2457)^{+}$

July 11, 2003

The BaBar Detector

Charm at B Factories

Charm cross section: $\sigma(e^+e^- \rightarrow c\overline{c}) \approx 1.3 \text{ nb}$

- + For 91 fb⁻¹, this corresponds to \sim 120 million charm pairs
- Or roughly 1.2 million $D^0 \to K^- \pi^+$ decays

Compare to these dedicated experiments:

- ♦ E791: 25,400 D* tagged
- ✦ Focus: I20,000 D* tagged

I. E791 Collaboration, Phys.Rev.Lett. 83 (1999) 32.

2. Focus Collaboration, Phys.Lett. B485 (2000) 62.

Event Selection

Goal is to identify the D_s decay

 $D_s^+ \to K^+ K^- \pi^+$

along with any number of π^0 and γ

- ✦ Kaon identification
- Vertex fit (χ^2 prob > 1%)
- Consistent with production at the interaction region
- $E_{\gamma} > 100 \text{ MeV}$
- + π^0 reconstructed at either vertex
- $p^*(K^+K^-\pi^+\pi^0) > 2.5 \text{ GeV}$

D^{*}_SJ(2317)⁺

$K^+ K^- \pi^0$ Mass Spectrum

Clear D^+ and D_s^+ signals in 91 fb⁻¹ of data

Small background from

BaBar and the $D_{sJ}^{*}(2317)^{+}$ and $D_{sJ}(2457)^{+}$

$D_{SJ}^{*}(2317)^{+}$

D_s Background Suppression

Select pseudo two-body decay modes

$$\left|m(K^+K^-) - m(\phi)\right| < 10 \text{ MeV}$$

$$\left| m(K^{-}\pi^{+}) - m(\overline{K}^{*0}) \right| < 50 \text{ MeV}$$

eve

D^{*}_SJ(2317)⁺

D_s Background Suppression

Helicity angle requirement

 $D_{SJ}^{*}(2317)^{+}$

D_s Signal and Sidebands

Approximately 80,000 candidates above background

Adding a $\pi^{\scriptscriptstyle 0}$

A bit of a surprise

Peak clearly associated with D_s

Check π⁰ Association

Relax π^0 vertex fit

Signal clearly associated with π^{0}

D^{*}_SJ(2317)⁺

Additional Refinements

Constrain D_s energy

$$E_{D_s^+} = \sqrt{\vec{p}^{\,2} + m_{D_s^+}}$$

Remove any π^0 that shares a γ with any other π^0

July 11, 2003

D^{*}_{SJ}(2317)⁺

Monte Carlo Check

Monte Carlo includes all known (and expected) states

Example of Reflection

Remove or select $D_s^*(2112)^+ \rightarrow D_s^+ \gamma$

D^{*}_SJ(2317)⁺

Reflection Test

Check charged particle species assignment

(misidentification) D^+ D^{o} 1.8 1.8 $m(K^- \pi^+ \pi^0)$ $m(K^{-}\pi^{+}\pi^{+})$ D^* D^* 2.25 2.25 $m(K^{-}\pi^{+}\pi^{+}\pi^{0})$ $m(K^{+} \pi^{+} \pi^{-} \pi^{0})$

BaBar and the $D_{sJ}^{*}(2317)^{+}$ and $D_{sJ}(2457)^{+}$

July 11, 2003

Another Reflection Test

Select D^+

 $1.859 < m(K^+K^-\pi^+) < 1.877$

Observe:

$$D^*(2010)^+ \to D^+ \pi^0$$

BaBar and the $D_{sJ}^*(2317)^+$ and $D_{sJ}(2457)^+$

p^* Dependence

 $D_{SJ}^{*}(2317)^{+}$

Fit to Mass

Signal Gaussian on top of a polynomial

 $m = 2316.8 \pm 0.4 \,\mathrm{MeV}$

 $\sigma = 8.6 \pm 0.4 \; {\rm MeV}$

(statistical errors only)

Conservative systematic uncertainty on mean ~3 MeV

Experimental Width

Comparison with GEANT4 Monte Carlo

- ✦ Generated (intrinsic) widths = 0
- ✦ Monte Carlo resolution a little optimistic

	Mass Resolu		
Decay	Data	Monte Carlo	Ratio
$D_s^*(2112)^+ \to D_s^+ \pi^0$	6.6 ± 0.1	5.7 ± 0.1	1.16
$D_{sJ}^*(2317)^+ \to D_s^+ \pi^0$	9.0 ± 0.4	7.7 ± 0.2	1.17

Conclusion: intrinsic width is small ($\Gamma < 10 \text{ MeV}$) in data

D^{*}_{SJ}(2317)⁺

Decay Angle

Distribution is flat, consistent with either:

- ✦ Spin zero
- Unaligned production

BaBar and the $D_{sJ}^*(2317)^+$ and $D_{sJ}(2457)^+$

D^{*}_{SJ}(2317)⁺

A Second D_s Mode

Add a $\pi^{\rm 0}\!\!$, select on various pseudo two-body decay modes (ϕ,K^*,ρ)

July 11, 2003

D^{*}_SJ(2317)⁺

A Second D_s Mode: $m(D_s \pi)$

Requirements:

Fit Results:

$$m = 2317.6 \pm 1.3 \text{ MeV}$$

 $\sigma = 8.8 \pm 1.1 \text{ MeV}$

Other Decay Modes

Additional requirements:

- $p_{\pi^0} > 300$ MeV
- + No γ belonging to a π^0

No signal at m = 2.32 GeV

Small peak in $m(D_s\pi^0\gamma)$?

BaBar and the $D_{sJ}^{*}(2317)^{+}$ and $D_{sJ}(2457)^{+}$

D^{*}_SJ(2317)⁺

Confirmation from CLEO and BELLE

Confirmation from BELLE

From B decays

$$m = 2319.8 \pm 2.1 \text{ MeV}/c^2$$

 $\mathcal{B}r = 8.5^{+2.1}_{-1.9} \text{ (stat)} \pm 2.6 \text{ (syst)}$

Brand new preliminary results from Belle, to be presented at EPS 2003 Courtesy of Yoshi Sakai

BELLE Preliminary, I24 million B-pairs $B \rightarrow DD_{s,I}^*(2317)^+$

Search For $D_s \pi \pi$ Decay

No signals observed

2.5

2.6

2.7

2.8

Mass of D $_{s}^{+}\pi^{+}\pi^{-}$ Cand. [GeV/c ²]

0<u>-</u> 2.2

2.3

2.4

Ż

2.9

Summary

A large (~2000 events), narrow signal has been discovered by BaBar in the inclusively produced $D_s \pi^0$ spectrum at a mass:¹

 $m=2316.8\pm0.4~{\rm MeV}$

- The measured width is consistent with detector resolution ($\Gamma < 10 \text{ MeV}$).
- The decay violates isospin, but may occur strongly through η/π mixing (which explains the narrow width and rarity of radiative decay).
- Assuming parity conservation in decay, we must have:

 $P = (-1)^J \qquad J^P = \{0^+, 1^-, 2^+, ...\}$

Given the low mass, the assignment $J^P = 0^+$ is most reasonable.

- Confirmed by CLEO in continuum² and by Belle in both continuum and in B decays.³
- Observed only in decay to $D_s \pi^0$.

- I. BaBar, Phys.Rev.Lett. 90 (2003) 242001
- 2. CLEO, submitted to PRD, hep-ex/0305100
- 3. Belle, CIPANP 2003, FPCP 2003

July 11, 2003

 $D_{SJ}(2457)^+$

Bump or Reflection?

Gaussian fit:

$$m = 2458 \pm 4 \text{ MeV}/c^2$$

 $\sigma = 13 \pm 6 \text{ MeV}/c^2$

All candidates

(preliminary, statistical error only)

$D_{SJ}(2457)^+$

Kinematics of $D_s \pi^0 \gamma$

Cross bands from two different decays:

 $D_s^*(2112)^+ \to D_s \gamma$ $D_{sJ}^*(2317)^+ \to D_s \pi^0$

 $D_{SJ}(2457)^+$

Delta Mass

Introduce mass differences:

$$\Delta m(D_s^+ \gamma) \equiv (K^+ K^- \pi^+ \gamma) - m(K^+ K^- \pi^+)$$
$$\Delta m(D_s^{+*} \pi^0) \equiv (K^+ K^- \pi^+ \gamma \pi^0) - m(K^+ K^- \pi^+ \gamma)$$

$D_{SJ}(2457)^+$

Sideband Subtraction

Fit results (preliminary, statistical errors only):

 $\Delta m(D_s^{+*}\pi^0) = 344.6 \pm 1.2 \text{ MeV}/c^2$ $\sigma = 5.5 \pm 1.4 \text{ MeV}/c^2$ $N = 140 \pm 22$

$D_{SJ}(2457)^+$

Two Possible Decay Modes

Difficult to distinguish due to a (not quite) kinematic accident

July 11, 2003

 $D_{SJ}(2457)^+$

Nine Tiles

Number of events in each tile

A	B	C
239	304	202
D	E	F
345	472	26 I
G	H	І
281	344	236

Excess in $E = 160 \pm 25$

(Assuming backgrounds distributed linearly in mass, statistical error only)

 $D_{SJ}(2457)^+$

Nine Tile Fits

BaBar and the $D_{sJ}^*(2317)^+$ and $D_{sJ}(2457)^+$

D_SJ(2457)⁺

Nine Tile Sideband Subtraction

$D_{SJ}(2457)^+$

Helicity Angle Study Signal and Sideband Difference and Fit 20 Assume $D_s^*(2112)^+ \pi^0$ decay 20 10 -1., -0.60 20 0 Divide data into ϑ_h bins -0.6,-0.2 20 10 0 20 0 20 $-0.2, 0.2)_{\Pi}$ 10 $D_s^*(2112)^+$ ϑ_h 0 0 20 (0.2, 0.6)20 10 الل 0 20 0 20 (0.6, 1.0)10 0 0 0.2 0.4 0.2 $\Delta m(D^{*+}(2112)\pi^{0})$ BaBar and the $D_{sJ}^*(2317)^+$ and $D_{sJ}(2457)^+$ July 11, 2003

0.4

 $D_{SJ}(2457)^+$

Helicity Study

Comparison to various spin-parity hypotheses (assuming parity conservation)

- ← $J^P = I^+$ and 2^- distributions depend on production helicity
- ✦ Data is least consistent with 0⁻

$D_{SJ}(2457)^+$

Observation from CLEO

Submitted to PRD (hep-ex/0305100)

Corrected fit results:

$$\Delta m = 351.2 \pm 1.7 \text{ (stat)} \pm 1.0 \text{ (syst) MeV/}c^2$$

 $N = 41 \pm 12$

Little peaking background

$D_{SJ}(2457)^+$

Confirmation From Belle

Preliminary 78 fb⁻¹

 $\star D_s \rightarrow \phi \pi^+$ mode only

Fit results:

$$m = 2457.8 \pm 1.4 \text{ MeV}/c^2$$

 $N = 79 \pm 14$

Qualitative agreement with BaBar

 $D_{SJ}(2457)^+$

Confirmation From Belle

From B decays

 $m = 2459.2 \pm 1.6 \text{ MeV}/c^2$ $\mathcal{B}r = 17.8^{+4.5}_{-3.9} \text{ (stat)} \pm 5.3 \text{ (syst)}$

BELLE Preliminary, 124 million B-pairs $B \rightarrow DD_{sJ}(2457)^+$

$D_{SJ}(2457)^+$

New Decay Mode From Belle

Evidence for $D_{sJ}(2457)^+ \rightarrow D_s \gamma$ from both B decays and continuum (preliminary)

$$\frac{\mathcal{B}r[D_{sJ}(2457)^+ \to D_s^+\gamma]}{\mathcal{B}r[D_{sJ}(2457)^+ \to D_s^*(2112)^+\pi^0]} = 0.38 \pm 0.11 \text{ (stat)} \pm 0.04 \text{ (syst)}$$

Consistent with either $J = I^+$ or I^-

BaBar and the $D_{sJ}^{*}(2317)^{+}$ and $D_{sJ}(2457)^{+}$

July 11, 2003

$D_{SJ}(2457)^+$

Comparison of Experiments

D_SJ(2457)+

Experimental Summary

First evidence for structure in $D_s \pi^0 \gamma$ mass spectrum apparent in BaBar data.

 "However, the complexity of the overlapping kinematics ... requires more detailed study ... to arrive at a definitive conclusion."

Observation of $D_{sJ}(2457)^+$ (" $D_{sJ}(2463)^+$ ") reported by CLEO.²

Confirmed by Belle, including $D_s \gamma$ decay mode.³

Preliminary BaBar analysis:⁴

 $m = 2456.5 \pm 1.4 \text{ MeV}/c^2$ $\sigma = 5.5 \pm 1.4 \text{ MeV}/c^2$

- Width is consistent with resolution
- Some disagreement with CLEO to be understood

A spin analysis is consistent with $J^P = I^+$.

The Belle observation of the $D_s\gamma$ decay mode rule out all J besides J=1.

- I. BaBar, Phys.Rev.Lett. 90 (2003) 242001
- 2. CLEO, submitted to PRD, hep-ex/0305100
- 3. Belle, CIPANP 2003, FPCP 2003
- 4. BaBar, PIC 2003

July 11,2003

Possible Explanations

Lots of theoretical activity (24 preprints so far)

Possible explanations:

- ◆ The D^{*}_{sJ}(2317)⁺ and D_{sJ}(2457)⁺ are the missing L=1 D_s mesons and that the models need adjustment
- Either the $D_{sJ}^{*}(2317)^{+}$ or $D_{sJ}(2457)^{+}$ is something else entirely (four-quark state)

Pre-Prints

Spin-Orbit and Tensor Forces in Heavy-quark Light-quark Mesons: Implications of the New Ds state at 2.32 GeV	R.N. Cahn, J.D. Jackson	hep-ph/0305012	May I
Implications of a DK Molecule at 2.32 GeV	T. Barnes, F.E. Close, H.J. Lipkin	hep-ph/0305025	May 2
Observed D_s(2317) and tentative D(2030) as the charmed cousins of the light scalar nonet	E.v. Beveren, G. Rupp	hep-ph/0305035	May 5
B Decays as Spectroscope for Charmed Four-quark States	H-Y. Cheng, W-S. Hou	hep-ph/0305038	May 5
Chiral Multiplets of Heavy-Light Mesons	W.A. Bardeen, E.J. Eichten, C.T. Hill	hep-ph/0305049	May 5
Description of the \$D^*_s(2320)\$ resonance as the \$D\pi\$ atom	A.P. Szczepaniak	hep-ph/0305060	May 6
Hybrid configuration content of heavy S-wave mesons	T. Burch, D. Toussaint	hep-lat/0305008	May 8
Using Radiative Transitions to Test the 1^3P_0(c\bar{s}) Nature of the D_{sJ}^*(2317)^+ State	S. Godfrey	hep-ph/0305122	May 12
Understanding \$D_{sJ}(2317)\$	P. Colangelo, F. De Fazio	hep-ph/0305140	May 13
The DsJ(2317): what can the Lattice say? The DsJ(2317): what can the Lattice say?	G.S. Bali	hep-ph/0305209	May 19
BABAR resonance as a new window of hadron physics	K. Terasaki	hep-ph/0305213	May 20
Continuum bound states K-long, D_{1}(2420), D_{s1}(2536) and their partners K-short, D_{1}(2400), D*_{s1}(2463)	E. v.Beveren, G. Rupp	hep-ph/0306051	June 5
Explaining the Ds(2317)	E. v.Beveren, G. Rupp	hep-ph/0306155	June 17
QCD Inequalities and the \$D_s(2320)\$	S. Nussinov	hep-ph/0306187	June 20
New Predictions for Multiquark Hadron Masses	H. Lipkin	hep-ph/0306204	June 22
Charmed and Charmed-Strange Mesons in Kaluza-Klein Picture	A.A. Arkhipov	hep-ph/0306237	June 24
Understanding the \$D^+_{sJ}(2317)\$ and \$D^+_{sJ}(2460)\$ with Sum Rules in HQET	Y-B. Dai, C-S. Huang, C. Liu, S-L. Zhu	hep-ph/0306274	June 27
The spectrum of D_s mesons from lattice QCD	A. Dougall, R.D. Kenway, C.M. Maynard, C. McNeile	hep-lat/0307001	July I
Comment on the new \$D_s^{(*)+} \pi^0\$ resonances	T.E. Browder, S. Pakvasa, A.A. Petrov	hep-ph/0307054	July 4
On the mass of the Ds(0+,1+) system	A. Deandrea, G. Nardulli, A.D. Polosa	hep-ph/0307069	July 4
Search of \$D^{*}_{sJ}\$ mesons in \$B\$ meson decays	C-H. Chen, H-n Li	hep-ph/0307075	July 5
The masses of $D_{sj}^{\infty} = 0$ and $D_{sj}^{\infty} = 0$ in the MIT bag model	M. Sadzikowski	hep-ph/0307084	July 7
Chiral Doubling of Heavy-Light Hadrons: BaBar 2317 MeV and CLEO 2463 MeV Discoveries	M.A. Nowak, M. Rho, I. Zahed	hep-ph/0307102	July 8
Understanding the nature of \$D_s(2317)\$ and \$D_s^*(2460)\$ through nonleptonic B Decays	A. Datta, P.J. O'donnell	hep-ph/0307106	July 8

Modifying the Potential Model

R. Cahn and J.D. Jackson¹

Before observation of $D_{sJ}(2457)^+$

- ✦ Generic potential model
- ✦ Sol. B = preferred fit
- ✦ Sol.A = alternate fit
- Fit does not include non-charm mesons

	Exp.		Theory	
	Ref. $[a,b,c]$	Sol. A	Sol. B	Ref. $[d]$
D mesons				
$M(2^+)(\text{GeV})$	2.459	[2.459]	[2.459]	2.460
$M(1^+)(\text{GeV})$	2.400	2.400	2.385	2.490
$M(1^+)(\text{GeV})$	2.422	[2.422]	[2.422]	2.417
$M(0^+)(\text{GeV})$	2.290	[2.290]	[2.290]	2.377
$\lambda ~({ m MeV})$		39	54	-11
au (MeV)		11	9	11
D_s mesons				
$M(2^+)(\text{GeV})$	2.572	[2.572]	[2.572]	2.581
$M(1^+)(\text{GeV})$		2.480	2.408	2.605
$M(1^+)(\text{GeV})$	2.536	[2.536]	[2.536]	2.535
$M(0^+)(\text{GeV})$	2.317	[2.317]	[2.317]	2.487
$\lambda \ ({\rm MeV})$		43	115	-7
$\tau ~({\rm MeV})$		20	9	11

a. Particle Data Group

b. This analysis

c. ICHEP 2002, BELLE-CONF-0235

d. M. DiPierro and E. Eichten Phys. Rev. D64, 114004 (2001)

I. hep-ex/0305012

More on Meson Interpretation

Lattice calculations:

+ May¹ or may not² have trouble coping with low mass D_s scalar

Chiral symmetry models:³

- ◆ Correctly predicts approximately equal D^{*}_{sJ}(2317)⁺/D_{sJ}(2457)⁺ and D⁺_s/D^{*}_s(2112)⁺ mass splittings
- Correctly predicted $D_{sJ}(2457)^+$ radiative decay along with branching fraction

Heavy-quark effective theory (HQET):⁴

• Roughly consistent with measured $D_{sJ}^*(2317)^+$ and $D_{sJ}(2457)^+$ masses

Unitarised meson model:⁵

• D-K coupling explains $D_{sJ}^*(2317)^+$ and $D_{sJ}(2457)^+$

- 2. A. Dougall, R.D. Kenway, C.M. Maynard, C. McNeile, hep-lat/0307001.
- 3. W.A. Bardeen, E.J. Eichten, C.T. Hill, hep-ph./03050491
- 4. Y-B. Dai, C-S. Huang, C. Liu, S-L. Zhu, hep-ph/0306274.
- 5. E. v.Beveren, G. Rupp, hep-ph/0305035.

BaBar and the $D_{sJ}^{*}(2317)^{+}$ and $D_{sJ}(2457)^{+}$

I. G.S. Bali, hep-ph/0305209

Charm Mesons

Observed states and transitions

Four-Quark States

In 1981 Lipkin and Isgur predicted a D-K molecule of mass ~2360 MeV¹

If the $D_{sJ}^{*}(2317)^{+}$ is a molecule, then:²

- The ordinary D_s meson have not yet been found
- Expect a large variety of new states of isospin 0 and 1

Perhaps the $D_{sJ}^*(2317)^+$ and $D_{sJ}(2457)^+$ are mixtures of ordinary mesons and fourquark states³

- 1. H. Lipkin and N. Isgur, Phys.Lett. B99 (1981) 151.
- 2. T. Barnes, F. Close, H. Lipkin, hep-ph/0305025,
- H-Y. Cheng and W-S. Hou, hep-ph/0305038,
- A.P. Szczepaniak, hep-ph/0305060,
- K.Terasaki, hep-ph/0305213,
- H. Lipkin, hep-ph/0306204.
- S. Nussinov, hep-ph/0306187.
- 3. T. Browder, S. Pakvasa, A. Petrov, hep-ph/0307054.

July 11, 2003

Conclusion

Conclusions

You can find unexpected things if you are clever enough to look

We expect to include many more details of the $D_{sJ}^*(2317)^+$ and $D_{sJ}(2457)^+$ in a future, detailed publication

We have witnessed a revitalization of heavy-light meson spectroscopy theory and experiment:

- We will work with Belle, CLEO, and CDF II (and D0 II?) to understand these new states and to resolve any experimental differences
- We are also looking forward to more theoretical explanations and are prepared to test them