			EPA	MRID Number 458677-01
Data Requiremo	ent:	EPA DP Barcode	D288775	
		EPA MRID EPA Guideline	458677-01 70-1(Special Study)	
Test material:				Purity: n o t
Common name Atrazine chemical name: IUPAC CAS name 6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine CAS No. 1912-24-9 synonyms EPA PC Code: 80803				
Primary Review Environmental F Secondary Revi Mid-Continent E Environmental P	ver: Thomas M. ate and Effects Di ewer(s): Joseph I cology Division, rotection Agency	Steeger, Ph.D., Senior Bio ivision, ERB 4, U. S. Envir E. Tietge, M.S., Research A National Health and Envi	logist conmental Protection Ager Aquatic Biologist ronmental Effects Researc	Date: April 9, 2003 ncy Date: ch Laboratory (Duluth), U. S.
Environmental F	Stephar ate and Effects D	nie Irene, Ph.D., Senior Ad ivision, ERB 3, U. S. Envir	visor conmental Protection Ager	Date: ncy
Environmental F	Mary J. ate and Effects D	Frankenberry, Senior Stat ivision, ERB 3, U. S. Envis	istician conmental Protection Agen	Date: ncy
EPA PC Code Date Evaluation	080803 Completed: 06/0	01/2003		
CITATION: Sm triazines in S Institute of F of Environr Potchefstroo Number SA-	hith, E., L DuPree South Africa: exp Environmental & I nental Sciences m 2520 (South A -01B	z and K. Solomon. 2003. posure characterization and Human Health, Texas Tech and Development, Potch frica). Sponsor: Syngenta	Field exposure of <i>Xenop</i> l assessment of laryngeal n University, Lubbock, Te nefstroom University for n Crop Protection, Inc., La	<i>bus laevis</i> to atrazine and other and gonadal responses. The xas 79490 (USA) and School CHE, Private Bag X6001, aboratory Study ID ECORISK

EXECUTIVE SUMMARY:

EPA MRID Number 458677-01

This study is the second phase of a project to assess the possible effects of exposure to atrazine and other triazines on African clawed frogs (Xenopus laevis) in their South African native range under field conditions. The objective of this phase of the study was to characterize the exposure of frog populations to atrazine and related triazines in surface waters of both reference (no corn/no atrazine-triazine use) and experimental (corn growing/atrazine-triazine use) ponds from November 2001 through early June 2002. During the second two months of the study, rainfall was roughly double the 10-year average and resulted in all of the earthen ponds overflowing their banks for as long as two months. Based on EFED's analysis of raw residue data, maximum atrazine residues in experimental ponds over the study period ranged from 1.46 to 11.6 ug/L while reference ponds ranged from 0.41 to 1.62 ug/L. However, the atrazine degradate diaminochlorotriazine (DACT) maximum residues ranged from 4.6 to 8.2 ug/L at experimental sites and form 6.8 to 7.4 ug/L at reference sites. Two other atrazine degradates, i.e., desethylated atrazine (DEA) and desisopropyl atrazine (DIA) showed roughly similar maximum residue levels in both experimental and reference sites. Maximum residues of terbuthylazine ranged from 1.8 to 5.3 ug/Lat experimental sites and from 2.4 to 2.8 ug/L at reference sites. According to the report, triazine residues in the reference ponds were likely due to wind effect; the authors speculate that the high rain events during the sampling period likely reduced atrazine levels and that "frogs living in these dams [ponds] were undoubtedly exposed to much higher atrazine and other triazine levels than had been recorded during the present study." Given that atrazine and/or its degradates were present in reference ponds at levels at times equivalent to some experimental pond sites and the authors concede that atrazine exposure prior to the winter floods was likely higher at all sites, it is unclear how the study can differentiate atrazine effects on frogs at reference and experimental sites. The high variability in exposure could potentially confound any attempt to document significant differences in effects.

The objective of this study was to examine the effects of atrazine on *X. laevis* in its native habitat (South Africa). Initially the study was intended to test whether morphological and biochemical differences existed between clawed frogs in atrazine-exposed (experimental) versus non-exposed (reference) ponds. The criteria for differentiating reference and experimental sites included production of corn and use of atrazine in the vicinity, plus the presence of *X. laevis* in a pond. Based on an initial survey of the sampling area, five experimental (atrazine exposure) and three reference (no atrazine exposure) sites were selected (458677-09). However, subsequent sampling during later phases of the study revealed that the reference sites all contained measurable residues of atrazine, its degradates, and terbutyhylazine (triazine herbicide not registered for use in the USA) that were, in some cases, higher than sites considered representative of atrazine exposure

EPA MRID Number 458677-01

I. MATERIALS AND METHODS

<u>GUIDELINE FOLLOWED:</u> <u>COMPLIANCE</u>:

Nonguideline Study Not conducted under full GLP; however, most practices as defined by 40 CFR Part 160, August 19, 1989 were established for this study, including but not limited to:

- Written, authorized protocol
- Written, authorized Standard Operating Procedures for all key procedures.
- Organization and Personnel were sufficient in terms of number, education, training and experience.
- Facilities were of suitable size and construction
- Equipment used was of appropriate design and adequate capacity.
- Test material identity, strength, purity and composition were characterized.
- Independent QA Inspections were conducted.
- Final report was written
- Raw data, documentation, records, protocols, and final report were archived.

A. MATERIALS:

<u>1. Test Material</u>	Atrazine
Description:	Not reported
Lot No./Batch No. :	Not reported
Purity: Stability of Compound	Not reported
Under Test Co	onditions: Not reported
Storage conditions of	
test chemicals:	Not reported

2. Test organism:

Species: African clawed frog (Xenopus laevis)

Age at test initiation: Adults Weight at study initiation: (mean and range) not reported Length at study initiation: (mean and range) not reported

Source: Adult *X. laevis* were field collected in two areas (3 non-corn growing areas and 5 corn growing areas) in the vicinity of Potchefstrooom, South Africa, using traps baited with liver and meat scraps.

EPA MRID Number 458677-01

B. STUDY DESIGN:

Objective: 1. To characterize the exposure of populations of *Xenopus laevis* larvae, metamorphs and adults to atrazine and related triazines in surface water in reference (no corn production or atrazine/triazine use) and exposed habitats in the proximity of corn production and atrazine/triazine use in the Potchestroom region of South Africa.

1. Experimental Conditions

A total of 8 sampling sites in two adjacent regions (5 in Viljoenskroon corn growing region = E; 3 in non-corn growing Potchefstroom region = C) in South Africa. Experimental site selection based on proximity of corn, previous and/or planned use of atrazine and terbuthylazine, and presence of *Xenopus*. Reference sites based on absence of corn production, absence of triazine and terbuthylazine in the water, and presence of *Xenopus*.

Biweekly water/sediment samples collected from early November 2001 to early June 2002. Within 5 hours of collection water samples kept at 4°C and transported to testing lab within 24 hours of collection. Water temperature, conductivity, dissolved oxygen and pH were recorded at reference points on each sampling site.

Pesticide and metabolite determinations in water conducted at Department of Microbiology of the School of Environmental Sciences and Development at the Potchefstroom University. Quality control conducted at CSIR (Pretoria, South Africa) and SGS (Midrand, South Africa).

Climatological conditions characterized in terms of air temperature and rainfall.

Agricultural practices in each of the study site catchment areas characterized as to crop, stage of crop development, *e.g.*, just planted, in flower *etc.*, and pesticides applied..

Compounds of interest included atrazine, its metabolites desethylated atrazine (DEA), desisopropyl atrazine (DIA), diaminochlorotriazine (DACT), and terbuthylazine plus simazine and acetochlor.

Non-corn growing sites had secchi disc readings ranging from 6.5 to 32 cm; pH ranged from 5.1 to 8.8; some of the control ponds were subject to drying (semi-permanent).

Corn-growing sites had pond surface areas ranging from 2,400 m² to 68,000 m²; pH ranged from 7.2 - 10.8 and secchi disc readings ranging from 6.5 to 207 cm.

II. <u>**RESULTS</u> and <u>DISCUSSION**</u>: [All results discussed in this section and the next are those reported by the study authors. Although supplemental data are typically used in a qualitative manner only, EFED verified spreadsheet data and ran basic statistical analyses on the major study parameters. See attached appendix. If results differed in any substantive way, the difference was reported in the text below.]</u>

Rainfall during November and December of sampling period were more than double (~ 150 to 200 mm) the long term average of approximately 100 mm precipitation. Air temperature over the study period were relatively consistent with 10-year minimums and maximums. High rainfall in November and December resulted in the majority of the area being planted in corn late in the season. Although corn is typically planted in November, the high rains delayed planting until the first week of January. Because of the heavy rains, all ponds overflowed their embankments until early January.

EPA MRID Number 458677-01

The following insecticides were used in the study's catchment areas: terbufos (79.2 to 460 g/ha), cypermethrin (6.6 g/100 m row), monocrotophos (1.5 L/ha). Herbicides included acetochlor, atrazine, terbuthylazine, S-metolaclhor, simazine, cyanazine and dimthenomid.

No herbicides were detected in any of the sediment samples analyzed. The level of detection for water samples ranged from 0.5 to 1.0 μ g/L. The report records values of <0.6 μ g/L as 0.25 μ g/L.

Table 1 presents maximum residues of atrazine and its degradates DACT, DEA and DIA; while maximum atrazine residues were roughly an order of magnitude higher at experimental sites, reference sites had detectable residues of atrazine. Maximum residues of DACT, DEA and DIA were similar in both reference and experimental sites. Both DEA and DACT had peak residues in reference ponds that were generally higher than all of the experimental pond sites except E8. The highest residues of DACT in reference ponds occurred in early December, early to mid-February and mid- to late May; a relatively similar pattern occurred in experimental ponds. Additionally, terbuthylazine in reference pond C6 tended to remained relatively constant at around 1 μ g/L until March when it spiked to over 2 μ g/L; only experimental ponds E1, E6 and E8 had monthly terbuthylazine residues higher than reference pond C6. While the high rain events in November and December may have explained potential triazine contamination of reference sites, the spikes in February and May suggest that triazine contamination of reference sites was recurrent and may not have been associated with unusual weather. According to the report though, triazine residues in the reference ponds were likely due to wind effect and the authors speculate that the high rain events during the sampling period likely reduced atrazine levels and that "frogs living in these dams were undoubtedly exposed to much higher atrazine and other triazine levels than had been recorded during the present study.

Reference ponds contained soft water (total hardness range 18 - 25 mg/L as CaCO3) while experimental ponds all contained moderately hard water (total hardness range: 182 - 200 mg/L). Lead residues ranged form 0.08 to 0.09 mg/L in reference ponds while it was nondetectable in experimental sites. Reference pond also seemed to be an outlier in terms of the amount of siltation; while all other ponds (reference and experimental) had silica levels ranging from 4.3 - 8.7 mg/L, reference pond C6 contained 49.2 mg/L. Additionally, pond C6 had the highest chromium (100.5 mg/Kg) and titanium (0.6 mg/L) residues

Residue	Reference Sites (C1, C3, and C6) µg/L	Experimental Sites (E1, E3, E4, E6, and E8) µg/L
Atrazine	0.41 - 1.62	1.46 - 11.6
DACT	6.83 - 7.38	4.59 - 8.16
DEA	0.38 - 2.21	0.57 - 1.9
DIA	0.45 - 1.34	0.69 - 0.93
Terbuthylazine	2.39 - 2.79	1.82 - 5.30
Simizine	0.25 - 0.25	0.25 - 3.10
Acetochlor	0.25 - 0.25	0.25 - 1.0

Table 1.	Maximum	residues of	of atrazine,	diaminochlor	otriazine (D	DACT),	desethylated	atrazine	(DEA),
desisoprop	oyl atrazine	(DIA), terl	buthylazine,	simazine and	acetochlor d	detected in	n surface wate	er collecte	d from
reference	sites (no cor	n grown) a	nd experim	ental sites (cor	n grown) fro	om Noven	nber 2001 to N	March 200)2.

E. STUDY DEFICIENCIES:

Atrazine, its degradates and terbuthylazine are present in reference sites. Study failed to provide data on other pesticides.

F. <u>REVIEWER'S COMMENTS</u>:

This study is the second phase of a project to assess the possible effects of exposure to atrazine and other triazines on African clawed frogs (Xenopus laevis) in their South African native range under field conditions. The objective of this phase of the study was to characterize the exposure of frog populations to atrazine and related triazines in surface waters of both reference (no corn/no atrazine-triazine use) and experimental (corn growing/atrazine-triazine use) ponds from November 2001 through early June 2002. During the second two months of the study, rainfall was roughly double the 10-year average and resulted in all of the earthen ponds overflowing their banks for as long as two months. Based on EFED's analysis of raw residue data, maximum atrazine residues in experimental ponds over the study period ranged from 1.46 to 11.6 ug/L while reference ponds ranged from 0.41 to 1.62 ug/L. However, the atrazine degradate diaminochlorotriazine (DACT) maximum residues ranged from 4.6 to 8.2 ug/L at experimental sites and form 6.8 to 7.4 ug/L at reference sites. Two other atrazine degradates, i.e., desethylated atrazine (DEA) and desisopropyl atrazine (DIA) showed roughly similar maximum residue levels in both experimental and reference sites. Maximum residues of terbuthylazine ranged from 1.8 to 5.3 ug/Lat experimental sites and from 2.4 to 2.8 ug/L at reference sites. According to the report, triazine residues in the reference ponds were likely due to wind effect; the authors speculate that the high rain events during the sampling period likely reduced atrazine levels and that "frogs living in these dams [ponds] were undoubtedly exposed to much higher atrazine and other triazine levels than had been recorded during the present study." Given that atrazine and/or its degradates were present in reference ponds at levels at times equivalent to some experimental pond sites and the authors concede that atrazine exposure prior to the winter floods was likely higher at all sites, it is unclear how the study can differentiate atrazine effects on frogs at reference and experimental sites. The high variability in exposure could potentially confound any attempt to document significant differences in effects.

G. CONCLUSIONS:

This study is the second phase of a project to assess the possible effects of exposure to atrazine and other triazines on African clawed frogs (Xenopus laevis) in their South African native range under field conditions. The objective of this phase of the study was to characterize the exposure of frog populations to atrazine and related triazines in surface waters of both reference (no corn/no atrazine-triazine use) and experimental (corn growing/atrazine-triazine use) ponds from November 2001 through early June 2002. During the second two months of the study, rainfall was roughly double the 10-year average and resulted in all of the earthen ponds overflowing their banks for as long as two months. Based on EFED's analysis of raw residue data, maximum atrazine residues in experimental ponds over the study period ranged from 1.46 to 11.6 ug/L while reference ponds ranged from 0.41 to 1.62 ug/L. However, the atrazine degradate diaminochlorotriazine (DACT) maximum residues ranged from 4.6 to 8.2 ug/L at experimental sites and form 6.8 to 7.4 ug/L at reference sites. Two other atrazine degradates, i.e., desethylated atrazine (DEA) and desisopropyl atrazine (DIA) showed roughly similar maximum residue levels in both experimental and reference sites. Maximum residues of terbuthylazine ranged from 1.8 to 5.3 ug/Lat experimental sites and from 2.4 to 2.8 ug/L at reference sites. According to the report, triazine residues in the reference ponds were likely due to wind effect; the authors speculate that the high rain events during the sampling period likely reduced atrazine levels and that "frogs living in these dams [ponds] were undoubtedly exposed to much higher atrazine and other triazine levels than had been recorded during the present study." Given that atrazine and/or its degradates were present in reference ponds at levels at times equivalent to some experimental pond sites and the authors concede that atrazine exposure prior to the winter floods was likely higher at all sites, it is unclear how the study can differentiate atrazine effects on frogs at reference and experimental sites. The high variability in exposure could potentially confound any attempt to document significant differences in effects.

EPA MRID Number 458677-01

		AN	OVA FOR CHEMIC	CAL RESIDU	ES ACROSS	SAMPLING ARI	EAS		51
Obs	SITE	RESIDUE	TREAT	_TYPE_	_FREQ_	MEAN	STD	MIN	MAX
1	El	ATRA	CORN GROW	0	24	3.07583	1.82021	0.05	6.78
2	E1	DACT	CORN GROW	0	24	0.94542	1.64876	0.05	5.20
3	E1	DEA	CORN GROW	0	24	0.68417	0.46684	0.05	1.66
4	E1	DIA	CORN GROW	0	24	0.39042	0.24017	0.05	0.93
5	E1	TERB	CORN GROW	0	24	2.84875	1.46945	0.05	5.30
6	E3	ATRA	CORN GROW	0	24	0.79667	0.32979	0.14	1.46
7	E3	DACT	CORN GROW	0	24	1.07333	1.81710	0.05	5.96
8	E3	DEA	CORN GROW	0	24	0.30375	0.16691	0.05	0.64
9	E3	DIA	CORN GROW	0	24	0.25375	0.19147	0.05	0.81
10	E3	TERB	CORN GROW	0	24	0.87667	0.79778	0.05	3.31
11	E4	ATRA	CORN GROW	0	24	0.56333	0.43697	0.15	1.96
12	E4	DACT	CORN GROW	0	24	1.04875	1.51311	0.05	4.59
13	E4	DEA	CORN GROW	0	24	0.19333	0.11698	0.05	0.57
14	E4	DIA	CORN GROW	0	24	0.23333	0.18647	0.05	0.69
15	E4	TERB	CORN GROW	0	24	0.56250	0.60623	0.05	1.82
16	ЕG	ATRA	CORN GROW	0	24	2.19500	1.39259	0.05	4.46
17	ЕG	DACT	CORN GROW	0	24	1.46625	2.01606	0.05	6.40
18	ЕG	DEA	CORN GROW	0	24	0.51542	0.46881	0.05	1.90
19	ЕG	DIA	CORN GROW	0	24	0.27875	0.22601	0.05	0.86
20	ЕG	TERB	CORN GROW	0	24	1.77917	1.17789	0.05	4.43
21	E8	ATRA	CORN GROW	0	24	3.33875	2.58250	0.05	11.60
22	E8	DACT	CORN GROW	0	24	1.40375	2.34236	0.05	8.16
23	E8	DEA	CORN GROW	0	24	0.45875	0.37055	0.05	1.25
24	E8	DIA	CORN GROW	0	24	0.40208	0.23805	0.05	0.88
25	E8	TERB	CORN GROW	0	24	1.61542	1.12659	0.05	3.48
26	R1	ATRA	REFERENCE	0	24	0.24542	0.10496	0.05	0.41
27	R1	DACT	REFERENCE	0	24	1.01792	1.67744	0.05	6.88
28	R1	DEA	REFERENCE	0	24	0.12958	0.12743	0.05	0.60
29	R1	DIA	REFERENCE	0	24	0.19958	0.11845	0.05	0.47
30	R1	TERB	REFERENCE	0	24	0.32333	0.64632	0.05	2.11
31	R3	ATRA	REFERENCE	0	24	0.18042	0.15502	0.05	0.57
32	R3	DACT	REFERENCE	0	24	1.39167	1.90289	0.05	7.38
33	R3	DEA	REFERENCE	0	24	0.26333	0.56395	0.05	2.21
34	R3	DIA	REFERENCE	0	24	0.24000	0.27233	0.05	1.34
35	R3	TERB	REFERENCE	0	24	0.55708	0.88616	0.05	2.79
36	R6	ATRA	REFERENCE	0	24	0.24083	0.16981	0.05	0.69
37	R6	DACT	REFERENCE	0	24	1.17708	1.69010	0.05	6.82
38	R6	DEA	REFERENCE	0	24	0.10000	0.08038	0.05	0.38
39	R6	DIA	REFERENCE	0	24	0.16542	0.09385	0.05	0.45
40	R6	TERB	REFERENCE	0	24	1.08042	0.50886	0.48	2.67

EPA MRID Number 458677-01

53

	AVERAGE CHE	MICAL RESID	UES IN CORI	N-GROWING	AND REFEREN	CE SITES IN	I SOUTH AFRI	CA 52
Obs	TREAT	RESIDUE	_TYPE_	_FREQ_	MEAN	STD	MIN	MAX
1	CORN GROW	ATRA	0	5	1.99392	1.27471	0.56333	3.33875
2	CORN GROW	DACT	0	5	1.18750	0.23203	0.94542	1.46625
3	CORN GROW	DEA	0	5	0.43108	0.19018	0.19333	0.68417
4	CORN GROW	DIA	0	5	0.31167	0.07898	0.23333	0.40208
5	CORN GROW	TERB	0	5	1.53650	0.89039	0.56250	2.84875
6	REFERENCE	ATRA	0	3	0.22222	0.03628	0.18042	0.24542
7	REFERENCE	DACT	0	3	1.19556	0.18756	1.01792	1.39167
8	REFERENCE	DEA	0	3	0.16431	0.08703	0.10000	0.26333
9	REFERENCE	DIA	0	3	0.20167	0.03734	0.16542	0.24000
10	REFERENCE	TERB	0	3	0.65361	0.38766	0.32333	1.08042

NONPARAMETRIC COMPARISON OF CHEMICAL RESIDUES ACROSS SAMPLING SITES

----- RESIDUE=ATRA -----

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable UG Classified by Variable SITE

		Sum of	Expected	Std Dev	Mean
SITE	N	Scores	Under HO	Under HO	Score
ââââââââ	âââââââ	laaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	ââââââââââââââ	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	ââââââââââââ
E1	24	3463.00	2316.0	254.513858	144.291667
E3	24	2665.00	2316.0	254.513858	111.041667
E4	24	2085.00	2316.0	254.513858	86.875000
Eб	24	3345.00	2316.0	254.513858	139.375000
E8	24	3504.00	2316.0	254.513858	146.000000
R1	24	1313.50	2316.0	254.513858	54.729167
R3	24	934.00	2316.0	254.513858	38.916667
R6	24	1218.50	2316.0	254.513858	50.770833

Average scores were used for ties.

Kruskal-Wallis Test

Chi-Square	109.1485
DF	7
Pr > Chi-Square	<.0001

Median Scores (Number of Points Above Median) for Variable UG Classified by Variable SITE

		Sum of	Expected	Std Dev	Mean
SITE	N	Scores	Under HO	Under HO	Score
âââââââ	àâââââââââ	ââââââââââââââââ	a a a a a a a a a a a a a a a a a a a	àâââââââââââââ	âââââââââââ
E1	24	21.0	12.0	2.297278	0.875000
E3	24	19.0	12.0	2.297278	0.791667
E4	24	9.0	12.0	2.297278	0.375000
Еб	24	22.0	12.0	2.297278	0.916667
E8	24	21.0	12.0	2.297278	0.875000
R1	24	0.0	12.0	2.297278	0.00000
R3	24	1.0	12.0	2.297278	0.041667
R6	2.4	3.0	12.0	2,297278	0.125000

Average scores were used for ties.

Chi-Square	110.4219
DF	7
Pr > Chi-Square	<.0001

EPA MRID Number 458677-01

55

NONPARAMETRIC COMPARISON OF CHEMICAL RESIDUES ACROSS SAMPLING SITES

----- RESIDUE=DACT -----

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable UG Classified by Variable SITE

		Sum of	Expected	Std Dev	Mean
SITE	N	Scores	Under HO	Under HO	Score
âââââââ	lâââââââââ	a a a a a a a a a a a a a a a a a a a	àââââââââââââââ	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	ââââââââââââ
E1	24	2130.00	2316.0	243.756869	88.75000
E3	24	2220.00	2316.0	243.756869	92.50000
E4	24	2202.00	2316.0	243.756869	91.75000
Eб	24	2449.50	2316.0	243.756869	102.06250
E8	24	2430.00	2316.0	243.756869	101.25000
R1	24	2238.00	2316.0	243.756869	93.25000
R3	24	2473.50	2316.0	243.756869	103.06250
R6	24	2385.00	2316.0	243.756869	99.37500

Average scores were used for ties.

Kruskal-Wallis Test

Chi-Square	1.8154
DF	7
Pr > Chi-Square	0.9693

Median Scores (Number of Points Above Median) for Variable UG Classified by Variable SITE

		Sum of	Expected	Std Dev	Mean
SITE	N	Scores	Under HO	Under HO	Score
ââââââââââ	âââââââââââ	àâââââââââââ	âââââââââââââââ	âââââââââââââââ	âââââââââ
E1	24	11.0	12.0	2.297278	0.458333
E3	24	11.0	12.0	2.297278	0.458333
E4	24	12.0	12.0	2.297278	0.500000
E6	24	12.0	12.0	2.297278	0.500000
E8	24	14.0	12.0	2.297278	0.583333
R1	24	11.0	12.0	2.297278	0.458333
R3	24	13.0	12.0	2.297278	0.541667
R6	24	12.0	12.0	2.297278	0.500000

Average scores were used for ties.

Chi-Square	1.3264
DF	7
Pr > Chi-Square	0.9877

EPA MRID Number 458677-01

57

NONPARAMETRIC COMPARISON OF CHEMICAL RESIDUES ACROSS SAMPLING SITES

----- RESIDUE=DEA -----

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable UG Classified by Variable SITE

		Sum of	Expected	Std Dev	Mean
SITE	N	Scores	Under HO	Under HO	Score
âââââââ	lâââââââââ	àââââââââââââââââââ	âââââââââââââââââââââââââââââââââââââââ	àââââââââââââââ	ââââââââââââ
E1	24	3596.50	2316.0	251.896139	149.854167
E3	24	2741.00	2316.0	251.896139	114.208333
E4	24	2145.00	2316.0	251.896139	89.375000
Еб	24	2974.00	2316.0	251.896139	123.916667
E8	24	2979.00	2316.0	251.896139	124.125000
R1	24	1435.50	2316.0	251.896139	59.812500
R3	24	1449.00	2316.0	251.896139	60.375000
R6	24	1208.00	2316.0	251.896139	50.333333

Average scores were used for ties.

Kruskal-Wallis Test

Chi-Square	75.5240
DF	7
Pr > Chi-Square	<.0001

Median Scores (Number of Points Above Median) for Variable UG Classified by Variable SITE

		Sum of	Expected	Std Dev	Mean
SITE	Ν	Scores	Under HO	Under HO	Score
ââââââââââ	âââââââ	âââââââââââââââââ	âââââââââââââââ	âââââââââââââââ	âââââââââ
E1	24	23.000000	12.0	2.277249	0.958333
E3	24	17.166667	12.0	2.277249	0.715278
E4	24	11.166667	12.0	2.277249	0.465278
E6	24	17.166667	12.0	2.277249	0.715278
E8	24	17.166667	12.0	2.277249	0.715278
R1	24	4.333333	12.0	2.277249	0.180556
R3	24	3.000000	12.0	2.277249	0.125000
R6	24	3.000000	12.0	2.277249	0.125000

Average scores were used for ties.

Chi-Square	71.2969
DF	7
Pr > Chi-Square	<.0001

EPA MRID Number 458677-01

59

NONPARAMETRIC COMPARISON OF CHEMICAL RESIDUES ACROSS SAMPLING SITES

----- RESIDUE=DIA -----

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable UG Classified by Variable SITE

		Sum of	Expected	Std Dev	Mean
SITE	N	Scores	Under HO	Under HO	Score
âââââââ	ââââââââ	âââââââââââââââââââââââââââââââââââââââ	àââââââââââââââ	àââââââââââââââ	ââââââââââââ
E1	24	3075.50	2316.0	254.029783	128.145833
E3	24	2274.50	2316.0	254.029783	94.770833
E4	24	2097.50	2316.0	254.029783	87.395833
Еб	24	2326.50	2316.0	254.029783	96.937500
E8	24	3114.50	2316.0	254.029783	129.770833
R1	24	1983.00	2316.0	254.029783	82.625000
R3	24	1967.00	2316.0	254.029783	81.958333
R6	24	1689.50	2316.0	254.029783	70.395833

Average scores were used for ties.

Kruskal-Wallis Test

Chi-Square	25.6164
DF	7
Pr > Chi-Square	0.0006

The NPAR1WAY Procedure

Median Scores (Number of Points Above Median) for Variable UG Classified by Variable SITE

		Sum of	Expected	Std Dev	Mean
SITE	N	Scores	Under HO	Under HO	Score
ââââââââ	âââââââ	lâââââââââââââââââ	âââââââââââââââ	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	âââââââââââ
E1	24	18.00	12.0	2.261098	0.750000
E3	24	11.50	12.0	2.261098	0.479167
E4	24	10.50	12.0	2.261098	0.437500
E6	24	11.50	12.0	2.261098	0.479167
E8	24	18.00	12.0	2.261098	0.750000
R1	24	10.50	12.0	2.261098	0.437500
R3	24	9.50	12.0	2.261098	0.395833
R6	24	6.50	12.0	2.261098	0.270833

Average scores were used for ties.

Chi	L – S	Square	19.4252
DF			7
Pr	>	Chi-Square	0.0070

EPA MRID Number 458677-01

61

NONPARAMETRIC COMPARISON OF CHEMICAL RESIDUES ACROSS SAMPLING SITES

----- RESIDUE=TERB -----

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable UG Classified by Variable SITE

		Sum of	Expected	Std Dev	Mean
SITE	N	Scores	Under HO	Under HO	Score
âââââââ	âââââââââ	âââââââââââââââââââââââââââââââââââââââ	àââââââââââââââ	lâââââââââââââ	ââââââââââââ
E1	24	3715.50	2316.0	252.107852	154.812500
E3	24	2158.50	2316.0	252.107852	89.937500
E4	24	1664.00	2316.0	252.107852	69.333333
Eб	24	3049.50	2316.0	252.107852	127.062500
E8	24	2890.50	2316.0	252.107852	120.437500
R1	24	1112.00	2316.0	252.107852	46.333333
R3	24	1395.50	2316.0	252.107852	58.145833
R6	24	2542.50	2316.0	252.107852	105.937500

Average scores were used for ties.

Kruskal-Wallis Test

Chi-Square	77.4362
DF	7
Pr > Chi-Square	<.0001

Median Scores (Number of Points Above Median) for Variable UG Classified by Variable SITE

		Sum of	Expected	Std Dev	Mean
SITE	N	Scores	Under HO	Under HO	Score
âââââââ	àâââââââââ	âââââââââââââââ	âââââââââââââââ	àââââââââââââââ	âââââââââââ
E1	24	21.0	12.0	2.297278	0.875000
E3	24	11.0	12.0	2.297278	0.458333
E4	24	7.0	12.0	2.297278	0.291667
E6	24	18.0	12.0	2.297278	0.750000
E8	24	16.0	12.0	2.297278	0.666667
R1	24	3.0	12.0	2.297278	0.125000
R3	24	6.0	12.0	2.297278	0.250000
Rб	24	14.0	12.0	2.297278	0.583333

Average scores were used for ties.

Chi-Square	46.4236
DF	7
Pr > Chi-Square	<.0001

•							EPA	MRID N	umber 45867	7-01
	AI	NOVA FOR C	HEMICAL	RESIDUE	S ACROSS	S SAMPLING	AREAS			63
				RESIDUE	=ATRA					
			The	ANOVA P:	rocedure	e				
			Class	Level I	nformati	ion				
	(Class	Leve	els Va	alues					
	:	SITE		8 E.	1 E3 E4	E6 E8 R1	R3 R6			
		N	Number of	observa	ations	192				
Dependent Variabl	le: UG									
_				Sum	of					
Source			DF	Squar	res	Mean Squa	re	F Value	Pr > F	
Model			7 2	97.3024	703	42.47178	15	27.66	<.0001	
Error		1	.84 2	82.56278	875	1.53566	73			
Corrected 1	Total	1	.91 5	79.8652	578					
	R·	-Square	Coeff	Var	Root N	MSE	UG Mea	n		
	0	.512710	93.20	1732	1.2392	220 1	.32953	1		
Source			DF	Anova	SS	Mean Squa	re	F Value	Pr > F	
SITE			7 2	97.3024	703	42.47178	15	27.66	<.0001	
		Levene's ANOVA of	Test for Squared	Homogen Deviatio	neity of ons from	E UG Varia m Group Me	nce ans			
	Source	DF	Sun Squa	1 of Ares	Mear Square	n e FVal	ue i	Pr > F		
	SITE Error	7 184	89 483	0.5 0.0	127.2 26.2502	2 4. 1	85	<.0001		
		Bartlett'	s Test f	or Homo	geneity	of UG Var	iance			
		Source	DF	' Chi	-Square	Pr > C	hiSq			
		SITE	7	1	347.0	<.	0001			

EPA MRID Number 458677-01

Bonferroni (Dunn) t Tests for UG

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ.

Alpha	0.05
Error Degrees of Freedom	184
Error Mean Square	1.535667
Critical Value of t	3.17001
Minimum Significant Difference	1.134

Means with the same letter are not significantly different.

Bon	Group	oing	Mean	Ν	SITE
		A	3.3388	24	E8
	B A B B C C C C	3.0758	24	El	
		2.1950	24	ΞG	
		0.7967	24	E3	
		0.5633	24	E4	
		C	0.2454	24	R1
		C	0.2408	24	R6
		C	0.1804	24	R3

	ANOVA FOR C	HEMICAL RES	IDUES ACROS	SS SAMPLING AN	REAS		67
		RES	IDUE=DACT -				
		The ANO	VA Procedui	re			
		Class Lev	el Informat	zion			
	Class	Levels	Values				
	SITE	8	E1 E3 E4	4 E6 E8 R1 R3	R6		
	N	Number of ob	servations	192			
Dependent Variable: U	G						
Source		DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model		7 6.	8600062	0.9800009	0.29	0.9577	
Error	1	.84 624.	5005417	3.3940247			
Corrected Total	1	.91 631.	3605479				
	R-Square	Coeff Var	Root	MSE UG	Mean		
	0.010865	154.7464	1.842	2288 1.19	90521		
Source		DF A	nova SS	Mean Square	F Value	Pr > F	
SITE		7 6.8	6000625	0.98000089	0.29	0.9577	
	Levene's ANOVA of	Test for Ho Squared Dev	mogeneity o iations fro	of UG Variance om Group Means	e 5		
Sourc	ce DF	Sum of Squares	Mea Squai	an ce F Value	Pr > F		
SITE Erroi	7 r 184	158.5 9242.4	22.642 50.230	0.45 02	0.8688		
	Bartlett'	s Test for 1	Homogeneity	y of UG Varia	nce		
	Source	DF	Chi-Square	e Pr > Chis	Sq		
	SITE	7	6.2865	5 0.506	67		

EPA MRID Number 458677-01

ANOVA FOR CHEMICAL RESIDUES ACROSS SAMPLING AREAS 70 RESIDUE=DACT The ANOVA Procedure Bonferroni (Dunn) t Tests for UG NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ. Alpha 0.05 Error Degrees of Freedom 184 Error Mean Square 3.394025 Critical Value of t 3.17001 Minimum Significant Difference 1.6859 Means with the same letter are not significantly different. Bon Grouping Mean N SITE A 1.4663 24 E6 A A 1.4038 24 E8 A 1.3917 24 R3 A A 1.0773 24 R3 A 1.0773 24 E3 A 1.0488 24 E4											
RESIDUE=DACT	ANOVA FOR CHEMIC	CAL RESIDUES	ACROSS	SAMPLING AR	EAS	70					
The ANOVA Procedure Bonferrori (Dunn) t Tests for UG NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWO. Alpha 0.05 Error Degrees of Freedom 184 Error Mean Square 3.394025 Critical Value of t 3.17001 Minimum Significant Difference 1.6859 Mean No Grouping Mean A 1.4663 24 A 1.4038 24 A 1.0733 24		RESIDUE=D	DACT								
Bonferroni (Dunn) t Tests for UG NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ. Alpha 0.05 Error Degrees of Freedom 184 Error Mean Square 3.394025 Critical Value of t 3.17001 Minimum Significant Difference 1.6859 Means with the same letter are not significantly different. Bon Grouping Mean A 1.4663 24 E A A 1.4038 24 E A 1.1771 A 1.0733 24 E3 A 1.0488 24 E4	The INCUL Procedure										
Bonferroni (Dunn) t Tests for UG NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ. Alpha 0.05 Error Degrees of Freedom 184 Error Mean Square 3.394025 Critical Value of t 3.17001 Minimum Significant Difference 1.6859 Means with the same letter are not significantly different. Bon Grouping Mean N SITE A 1.4663 24 E6 A 1.4038 24 E8 A 1.3917 24 R3 A 1.1771 24 R6 A 1.0733 24 E3 A 1.0733 24 E3 A 1.0488 24 E4	The ANOVA Procedure										
NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ. Alpha 0.05 Error Degrees of Freedom 184 Error Mean Square 3.394025 Critical Value of t 3.17001 Minimum Significant Difference 1.6859 Means with the same letter are not significantly different. Bon Grouping Mean N SITE A 1.4663 24 E6 A A 1.4038 24 E8 A A 1.3917 24 R3 A A 1.1771 24 R6 A A 1.0733 24 E3 A A 1.0733 24 E3 A A 1.0488 24 E4	Bonferroni (Dunn) t Tests for UG										
Alpha 0.05 Error Degrees of Freedom 184 Error Mean Square 3.394025 Critical Value of t 3.17001 Minimum Significant Difference 1.6859 Means with the same letter are not significantly different. Bon Grouping Mean N SITE A 1.4663 24 E6 A A 1.4038 24 E8 A A 1.3917 24 R3 A A 1.1771 24 R6 A A 1.0733 24 E3 A A 1.0733 24 E3 A A 1.0488 24 E4	NOTE: This test controls the Type I e: Type I	xperimentwise II error rate	e error e than	rate, but in REGWQ.	t generally has a h	nigher					
Error Degrees of Freedom 184 Error Mean Square 3.394025 Critical Value of t 3.17001 Minimum Significant Difference 1.6859 Means with the same letter are not significantly different. Bon Grouping Mean N SITE A 1.4663 24 E6 A 1.4038 24 E8 A 1.3917 24 R3 A 1.1771 24 R6 A 1.0733 24 E3 A 1.0733 24 E3 A 1.0488 24 E4	Alpha			0.05							
Error Mean Square 3.394025 Critical Value of t 3.17001 Minimum Significant Difference 1.6859 Means with the same letter are not significantly different. Bon Grouping Mean N SITE A 1.4663 24 E6 A A 1.4038 24 E8 A A 1.3917 24 R3 A A 1.1771 24 R6 A A 1.0733 24 E3 A A 1.0488 24 E4	Error Degre	ees of Freedo	m	184							
Critical Value of t 3.17001 Minimum Significant Difference 1.6859 Means with the same letter are not significantly different. Bon Grouping Mean N SITE A 1.4663 24 E6 A 1.4038 24 E8 A 1.3917 24 R3 A 1.1771 24 R6 A 1.0733 24 E3 A 1.0488 24 E4	Error Mean	Square		3.394025							
Minimum Significant Difference 1.6859 Means with the same letter are not significantly different. Bon Grouping Mean N SITE A 1.4663 24 E6 A 1.4038 24 E8 A 1.3917 24 R3 A 1.1771 24 R6 A 1.0733 24 E3 A 1.0733 24 E3 A 1.0488 24 E4	Critical Va	alue of t		3.17001							
Means with the same letter are not significantly different.Bon GroupingMeanNSITEA 1.4663 24 $E6$ A 1.4038 24 $E8$ A 1.3917 24 $R3$ A 1.1771 24 $R6$ A 1.0733 24 $E3$ A 1.0488 24 $E4$	Minimum Sid	qnificant Dif	ferenc	e 1.6859							
Bon Grouping Mean N SITE A 1.4663 24 E6 A 1.4038 24 E8 A 1.3917 24 R3 A 1.1771 24 R6 A 1.0733 24 E3 A 1.0488 24 E4	Means with the same	letter are r	ot sig	nificantly d	ifferent.						
A 1.4663 24 E6 A 1.4038 24 E8 A 1.3917 24 R3 A 1.1771 24 R6 A 1.0733 24 E3 A 1.0488 24 E4	Bon Grouping	Mean	N	SITE							
A A A A A A A A A A A A A A A A A A A	А	1.4663	24	E6							
A 1.4038 24 E8 A A 1.3917 24 R3 A A 1.1771 24 R6 A A 1.0733 24 E3 A A 1.0488 24 E4	A										
A A 1.3917 24 R3 A A 1.1771 24 R6 A A 1.0733 24 E3 A A 1.0488 24 E4	A	1.4038	24	E8							
A 1.3917 24 R3 A A 1.1771 24 R6 A 1.0733 24 E3 A 1.0488 24 E4	A										
A A 1.1771 24 R6 A A 1.0733 24 E3 A A 1.0488 24 E4	A	1.3917	24	R3							
A 1.1771 24 R6 A A 1.0733 24 E3 A A 1.0488 24 E4	A			_							
A A 1.0733 24 E3 A A 1.0488 24 E4	A	1.1771	24	R6							
A 1.0733 24 E3 A A 1.0488 24 E4	А	1 0000	0.4								
A 1.0488 24 E4	A	1.0/33	24	出 3							
A 1.0400 24 E4	A	1 0/00	24	F /							
λ	A 7	1.0400	24	£4							
A 1.0179 24 R1	А Д	1.0179	2.4	R1							

24

0.9454

А

А

E1

		ANOVA FOR	CHEMICAL	RESIDUES	ACROSS	SAMPLING ARE	AS		71		
				RESIDUE=D	EA						
			mb e	ANOVA Deep							
			The	ANOVA Pro	cedure						
			Class	Level Inf	ormatio	n					
		Class Levels Values									
		SITE		8 El	E3 E4 E	6 E8 R1 R3 R	6				
			Number o	f observat	ions	192					
Dependent Var	iable: UG										
				Sum o	f						
Source			DF	Square	s M	ean Square	F Value	Pr > F			
Model			7	7.0382250	0	1.00546071	8.40	<.0001			
Error			184 2	22.0181666	7	0.11966395					
Correct	ed Total		191 :	29.0563916	7						
		R-Square	Coeff	Var	Root MS	e ug m	ean				
		0.242226	104.	4958	0.34592	5 0.331	042				
Source			DF	Anova S	S M	ean Square	F Value	Pr > F			
SITE			7	7.0382250	0	1.00546071	8.40	<.0001			
		Levene's ANOVA of	Test fo: Squared	r Homogene Deviation	ity of s from	UG Variance Group Means					
			Sui	n of	Mean						
	Source	e DF	Squa	ares	Square	F Value	Pr > F				
	SITE	7	2.1	2597	0.3228	2.39	0.0233				
	Error	184	24.3	8825	0.1352						
		Bartlett	's Test :	for Homoge	neity o	f UG Varianc	e				
		Source	D	F Chi-S	quare	Pr > ChiSq					
		SITE		7	140.8	<.0001					

EPA MRID Number 458677-01

ANOVA FOR	CHEMI	ICAL RESI	DUES ACROSS	SAMPL	ING AREAS	74
		RESI	DUE=DEA			
		The ANOU	A Drogoduro			
		THE ANOV	A PIOCedure			
Ι	Bonfer	roni (Du	nn) t Tests	for U	7	
NOTE: This test controls the $T_{\rm YM}$	ре I е Туре	experimen II error	twise error rate than H	rate, REGWQ.	but it generally has a higher	
Alph	9			(0.5	
Frro	r Dear	rees of H	reedom	`	184	
Erro	r Mear	Square	1 CCGOIII	0 110	9664	
Crit	ical V	Value of	+	3 1	7001	
Minir	num Si	gnificar	t Difference	- 0 ·	3166	
Means with the	e same	e letter	are not sign	nifica	ntly different.	
Bon G	roupin	ng	Mean	Ν	SITE	
	A		0.68417	24	El	
	A					
В	A		0.51542	24	E6	
В	A					
В	A	C	0.45875	24	E8	
В		С				
В	D	C	0.30375	24	E3	
В	D	C				
В	D	C	0.26333	24	R3	
	D	C				
	D	C	0.19333	24	E4	
	D					
	D		0.12958	24	R1	

0.10000

24

R6

D

D

	ANOVA FOR (CHEMICAL RE	ESIDUES ACRO	SS SAMPLIN	IG AREAS		75
		RI	ESIDUE=DIA -				
		The Al	10VA Procedu	ire			
			The second	tion			
		CIASS L	evel informa				
	Class	Levels	s Values				
	SITE	8	3 E1 E3 E	E4 E6 E8 R1	R3 R6		
	1	Number of d	observations	s 192			
Dependent Variable: U	G						
Source		DF	Sum of Squares	Mean Squ	are F Value	Pr > F	
Model		7 1.	.21022500	0.17288	929 4.14	0.0003	
Error	-	184 7.	.67894167	0.04173	338		
Corrected Total	:	191 8.	.88916667				
	R-Square	Coeff Va	ar Root	MSE	UG Mean		
	0.136146	75.5454	15 0.20)4287	0.270417		
Source		DF	Anova SS	Mean Squ	are F Value	Pr > F	
SITE		7 1.	.21022500	0.17288	929 4.14	0.0003	
	Levene's ANOVA of	Test for H Squared De	Homogeneity eviations fr	of UG Vari com Group M	ance leans		
Sour	ce DF	Sum o Square	of Me es Squa	ean are FVa	lue Pr > F		
९ T म म	7	- 0.078	-	12 1	07 0 3813		
Erro	r 184	1.909	95 0.01	104			
	Bartlett	's Test for	Homogeneit	cy of UG Va	riance		
	Source	DF	Chi-Squar	re Pr>	ChiSq		
	SITE	7	35.103	37 <	.0001		

EPA MRID Number 458677-01

ANOVA FOR (CHEMICAL	RESIDUES AC	ROSS SA	MPLING AREAS	78
		RESIDUE=DIA			
	The	ANOVA Proces	lure		
В	onferroni	(Dunn) t Te	ests fo	or UG	
NOTE: This test controls the Type	e I exper Type II e	imentwise en rror rate th	rror ra nan REG	te, but it generally has a higher WQ.	
Alpha Error Error Critic Minimu	Degrees Mean Squ cal Value um Signif	of Freedom are of t icant Diffe:	Orence	0.05 184 0.041733 3.17001 0.1869	
Means with the s	same lett	er are not s	signifi	cantly different.	
Bon Group:	ing	Mean	N	SITE	
	A A	0.40208	24	E8	
	A A	0.39042	24	El	
B	A	0.27875	24	E6	
B	A	0.25375	24	E3	
B	A A	0.24000	24	R3	
B	A A	0.23333	24	E4	
B		0.19958	24	R1	
B		0.16542	24	R6	

		A	NOVA FOR	CHEMICAL	RESIDU	ES ACROS	S SAMPL	ING AREA	AS		79
					RESIDU	E=TERB -					
				The	ANOVA I	Procedur	e				
				Class	Level 1	Informat	ion				
			Class Levels Values								
		i	SITE		8 I	E1 E3 E4	E6 E8	R1 R3 R6	б		
				Number o	f observ	vations	192				
Depen	dent Variabl	e: UG									
					Sur	n of					
	Source			DF	Squa	ares	Mean S	quare	F Value	Pr > F	
	Model			7	118.3988	3167	16.91	41167	18.58	<.0001	
	Error			184	167.4817	7500	0.91	02269			
	Corrected T	otal		191	285.8805	5667					
		R	-Square	Coeff	Var	Root	MSE	IIG M	Pan		
		0	4141EE	70 1	1750	0.05/		1 205	417		
		0	.414155	79.1	4/50	0.954	030	1.205	ΨL /		
	Source			DF	Anova	a SS	Mean S	quare	F Value	Pr > F	
	SITE			7	118.3988	3167	16.91	41167	18.58	<.0001	
			Levene's ANOVA of	s Test fo Squared	r Homoge Deviati	eneity o ions fro	of UG Va om Group	riance Means			
				Su	m of	Mea	in				
		Source	DF	F Squ	ares	Squar	re F	Value	Pr > F		
		SITE Error	7 184	7 65. 1 3	4317 33.2	9.347 1.811	74 .1	5.16	<.0001		
			Bartlett	t's Test	for Homo	ogeneity	of UG	Variance	e		
			Source	D	F Chi	i-Square	e Pr	> ChiSq			
			SITE		7	41.4268	3	<.0001			

EPA MRID Number 458677-01

ANOVA FOR CHEMICAL RESIDUES ACROSS SAMPLING AREAS						82
RESIDUE=TERB						
The ANOVA Procedure						
Bonferroni (Dunn) t Tests for UG						
NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ.						
Alpha 0.05 Error Degrees of Freedom 184 Error Mean Square 0.910227 Critical Value of t 3.17001 Minimum Significant Difference 0.8731 Means with the same letter are not significantly different.						
Bon	Bon Grouping			N	SITE	
	А		2.8488	24	El	
	в		1.7792	24	E6	
C	B B		1.6154	24	E8	
C	B B	П	1 0804	24	R6	
C	D	D	0.0767	21		
C		D	0.8/0/	24	ES	
		D D	0.5625	24	E4	
		D	0.5571	24	R3	

0.3233

24

R1

D D