
Laboratory Information Integration Hub Project

Hub Evaluation and Recommendation Document (Draft)
Contract number: Subcontract number # 87587NBS23
Submitted to:

Margaret Gronvall

Technical Lead
Booz Allen Hamilton

Phone: (240) 314-5951
Mail to gronvall_margaret@bah.com
Chris Jones

Sr. Subcontractor Administrator

Booz Allen Hamilton

Phone: 703-377-7305
Mail to jones_christopher_a@bah.com
Submitted by:

[image: image1.png]4. SCENPRO

Smita Hastak

101 West Renner Road, Suite 130

Richardson, TX 75082

July 14, 2006

Contact Information: E-mail shastak@scenpro.com; hastaks@mail.nih.gov

Telephone : 301/402-4063 ; FAX: 972/437-3611

Laboratory Information Integration Hub Version 0.5
HUB Recommendation Document (DRAFT)

Version 1.0
07/11/2006

Document Change Record

	Version Number
	Date
	Description

	1.0
	07/11/2006
	Initial document

TABLE OF CONTENTS

31.
Introduction

1.1
SCOPE
3
1.2
Evaluation methodology
3
1.3
Reference Documents
4
2.
Evaluation Criteria
5
2.1 Compliance with caBIG™ Principles
5
2.2 Compliance with Published NCICB Technology Stack
5
2.3
Compliance with JBI Specifications (JSR 208)
5
2.4
Supported Operating Systems
7
2.5
Application Level Security
7
2.6
Transport Level Security
7
2.7
Built in Support for Guaranteed Messaging
8
2.8
Message Mediation
8
2.9
Workflow Orchestration
8
2.10
Management Console
9
2.11
Quality of Documentation
9
2.12
Installation Flexibility
9
2.13
Integrated Development Environment
10
2.14
Out of the Box Components and Services
10
3.
HUB Product Options – Preliminary SCreening
11
4.
Software Evaluation Matrix
13
5.
USE CASES
18
5.1
Administration
18
5.2
Application Interface
19
5.2.1
Loan Broker – Sample Application
19
6.
IMplImentation References
22
6.1
www.ecubesystems.com
22
6.2
LEADING ONLINE TRADING COMPANY
22
6.3
DEPARTMENT OF DEFENSE CONTRACTOR
22
7.
Conclusions and Recommendation
23

1. Introduction

The overall goal of Laboratory Hub Integration project is to build a hub system that can be adapted and extended to support multiple data formats and whose value and usability can be pilot tested in one or more cancer centers.

The Information Hub is defined as the software component that is primarily responsible for receiving input from various external systems, routing the input to various services that are hosted on the hub, and eventually routing the output of those services to external systems.

This Hub Recommendation Document captures the evaluation criteria for the selection of the software required for Information Hub. Various open source software products have been evaluated and compared based on these criteria. This document provides a report of this evaluation effort and makes a recommendation accordingly.

1.1 SCOPE

Due to the 6 month time frame of this project, the products chosen for evaluation of the Information Hub to be utilized in the 0.5 version release of the Information Hub Solution have not under gone a fully exhaustive evaluation.

caBIG is the sponsor of this project as such the evaluation has been limited to Open Source products only.

The evaluation methodology as detailed in section 1.3 has been used for evaluation and recommendation of the product.

1.2 Evaluation methodology

The evaluation steps taken for the assessment of the software required for Information Hub included the following steps:

· A set of evaluation criteria have been developed based on the overall goal of the project, compliance with caBIG principles, published NCICB future technology stack, and stated requirements.

· A preliminary screening of available open source products was conducted

· Based on the screening results, 3 dominant products were selected as candidates for further analysis. These products are Sun Project Open ESB, Apache Service Mix, and LogicBlaze Fuse.
· Short listed products were installed on a development machine. The examples included as part of the each product’s installation were tested and the product management consoles were used to start/stop applications. Each product’s published documentation has been reviewed and compared against the evaluation criteria as well. The comparison matrix thus generated has been included as part of this document.

· From this comparison matrix one product was short listed for further detailed analysis.

· With the objective of meeting project goals a few use cases have been used to evaluate the short-listed product. This document includes details of the use cases, experiments conducted and the results.

· Based on the comparison matrix and use case results recommendation has been made for the product suited for the project.

1.3 Reference Documents

For additional project, and requirement specific information, refer to the following documents:

· Lab Hub Enterprise Architect Use Case Model

· Hub Software Requirements Specification

2. Evaluation Criteria

2.1 Compliance with caBIG™ Principles

As the caBIG program is the primary sponsor, all work performed for this project must be done in compliance with the caBIG principles. Software that is used and/or developed in the context of this project must be caBIG™ compatible at the silver level (https://cabig.nci.nih.gov/guidelines_documentation/caBIGCompatGuideRev2_final.pdf) and be made available to the community through resources provided by the General Contractor. These requirements are

· Open Source

· Open Development

· Open Access

· Federation

2.2 Compliance with Published NCICB Technology Stack

The Information Hub has been proposed based on JBI (Java Business Integration) and J2EE standards and it must be in compliance with the published NCICB Technology Stack (http://gforge.nci.nih.gov/docman/view.php/27/2380/caCORE31TechnologyUsage.xls) and be compatible with

· J2EE 1.4

· Java 1.5.0_06
2.3 Compliance with JBI Specifications (JSR 208)

The overall goal of the project is to build a hub system that can be adapted and extended to multiple data formats and whose value and usability can be pilot tested in one or more cancer centers. This objective is best served by building hub based on Java Business Integration (JBI) Architecture.

JBI is based on JSR 208 specifications (http://www.jcp.org/en/jsr/detail?id=208). The objective of JBI standard is to provide a standard Message Exchange Patterns (MEPs) and Service Provider Interface (SPIs) for business integration, to provide standards for interfaces for key components in an integrated runtime environment.

The specifications opens the way for integration of multiple technologies such as B2B, BPEL, Messaging, Transformation, Scripting etc. in a standard way, leading to a true component based design.

The JBI Specification defines three types of technologies: Service Engines (SE s), Binding Components (BC s) and integration environment. SEs provides business logic and transformation service to other components. BCs provide connectivity to services external to JBI installation. BC’s convert protocol and transport specific messages such as HTTP, SOAP, FTP messages to a normalized format

 A key feature of JBI specifications is the insistence on interfaces - not the internal structure – of Service Engines and Binding Components. Except for their interfaces to the integration environment, the components are “black boxes”, which makes them loosely coupled and can be easily swapped with any other equivalent components.

Besides the interfaces JBI places only two requirements on SEs and BCs: that the exchanges between components and environment be message based (the MEPs) and that the interaction be defined in a standardized manner (the SPIs, typically expressed in WSDL)

SEs and BCs interact using a standard internal normalized message format (based on XML) and the exchanges happen using JBI runtime engine based on a Normalized Message Router (NMR)

Following diagram depicts a simple view of a JBI Container. Application A is an existing application, which has a need to exchange the data with an incompatible application, Application B.

[image: image5.png]

Based on the JBI Specifications following requirements have been selected as part of hub evaluation criteria:

· Pluggable and Swappable Service Engines

· Pluggable and Swappable Binding Components

· Support for Normalized Message Format for internal messaging

· Normalized Message Router

· Loosely Coupled Services

· Standard Message Exchange Patterns

· WSDL and Service Registry Support

· XML- Centric Messages

· JBI Management Beans

· Tools for Management and Installation of Components/Services

· Support for JBI Deployment Units and Components

2.4 Supported Operating Systems

The Hub should be able to deploy on popular operating systems identified below. Specifically Linux being an open source OS, should be supported

· Linux

· Any Unix Platform that supports Java

· Windows XP SP2

· Windows 2000

2.5 Application Level Security
To authenticate and enforce access controls upon users of Hub, JBI specifications drive a need to have a flexible API to provide access to JAAS providers, and/or plug in an Authentication Module. Following features are required to evaluate Application Level Security.

· Support Java Authentication and Authorization Service (JAAS)

· Support Pluggable Authentication Module Framework (PAM)

· Support User-Based Authentication

· WS-Security

2.6 Transport Level Security
The need for secured communication with cancer centers, clients and partners require support for:

· SSL

· HTTPS
2.7 Built in Support for Guaranteed Messaging
For a messaging hub guaranteed messaging is a fundamental requirement. “Guaranteed Messaging” has a number of dimensions, including:

· Transactionality: ensuring completion of a process, even if the process is a composite application.

· Message Persistence: continuing to persist the state of message exchange that is stopped, which may be due to failure of messaging subsystem, network or recipient.

· Recoverability: the ability to restart a persisted message exchange at the point in the process where it had stopped.

· Exactly Once Delivery: ensuring that a message is delivered once and only once to avoid duplicate processing of a process or a transaction.

· Secrecy: protecting information from disclosure to outside parties.

2.8 Message Mediation
As message moves from one point to another, multiple mediating activities can take place. These activities include:

· Smart Routing: As a message moves from one point to another there may be a need for routing the message from one destination to another, placing one message ahead of another in a queue, invoking other mediating activities.
· Transformations: are the changes in data format in which message is presented to the target

· Validation: validation of content or format or context etc to allow or prevent it to proceed further.

2.9 Workflow Orchestration

Orchestration is an ability to specify the sequence of services that comprise a composite application and to execute that sequence in response to the appropriate request. BPEL has emerged as a leading standard for managing composite applications as such support for BPEL is one of the evaluation criteria. Although BPEL may not be implemented during the 0.5 release of the project, it is important that the product chosen can support or supply the following:

· BPEL Service Engine

· BPEL Development Tool
2.10 Management Console
Information Hub consists of several individual SEs, BCs and lightweight components. There is a need to have a centralized monitoring and management tool for administration of Hub and its various components.

· JMX Interface: JMX interface provides a capability to take a feed of runtime parameters and statistics. This data is displayed on console for the Hub administration and tuning purposes.

· Start/Stop Processes: Ability to start to stop processes from console is better than running commands from the command line.

· Hot Deploy/UnDeploy Components: Ability to deploy and undeploy components at run time using console.

· Monitor Component Performance: Parameters like message throughput, message count, messages in the memory, messages buffered (inbound and outbound) for hub and individual components,
2.11 Quality of Documentation
Quality of documentation is an important factor, as it would help application developers and administrators during the development, deployment and production phases of the project. The list of documentation that will be evaluated is provided below:

· User Manuals

· Installation Guides

· Developer Guides

· Example Use Cases
2.12 Installation Flexibility
Flexibility in terms of being able to install either standalone or embedded in an application component or as part of services supported by an application server allows the component reuse through out the enterprise.

· Standalone

· Embedded in an application component.

· Part of Application Server

2.13 Integrated Development Environment
An Integrated Development Environment would greatly enhance developer productivity. The time frames in which a development and Integrated Development Environment would need to be available in are as follows:

· Currently Available

· Availability in next 4 weeks
2.14 Out of the Box Components and Services
Out of the Box components and services engines are that can easily be modified or deployed on the Hub as is are very important for the project. For the current and near future requirements, we are evaluating the availability of the following components:

· Email – Support for sending email messages like critical admin support requirements etc.

· HTTP/HTTPS – Send and receive messages using HTTP

· JMS – Send and receive messages using JMS
· FTP – Send messages to a FTP Server as files. Poll a FTP location for incoming files
· BPEL – Message Orchestration Engine
· Rules Engine – Support for smart routing based on Rules.
· Scripting – Support for scripting language, required for routing, validation and transformation messages.
· XSLT Transformation – Transformation Engine based on XSLT (Spreadsheet) template

· Validation – Component for validating messages using XML Schema

· Scheduler – Support for a built in timer for scheduled service invocations.

· SAAJ – Support for invoking Web services using SOAP with attachments and Apache AXIS.

3. HUB Product Options – Preliminary SCreening

The table below lists the open source products that were evaluated during the preliminary screening process.

Table 3‑1
	SOFTWARE
	Supported By
	Advantages
	Disadvantages

	MULE
	SymphonySoft
	· Supports JBI integration

· Well documented

· More mature

· Open source with available paid support
	· Internals are not built on JBI

	Service Mix
	Apache
	· Built on JBI technology, Apache Foundation

· Fully compliant with JBI standard

· Potential for industry standard

· Supported by Apache Foundation

· Open source with available paid support
	· Poor documentation

· No implementation track record

	ERA HUB
	NIH
	· Developed by NIH

· Custom built, can be modified at will

· Interface documented and supported by NIH

· Familiar to some of the Research Institutions and some commercial vendors (funded SBIRS)

· Proven messaging capability

	· Work in Progress

· Soft target for completion, may not meet NCICB time frames

· Custom built, not JBI compliant, no open source community support

· No routing capability yet (except to NIH eRA

· Limited API for services plugging

· EbXML messages only

· Custom – ad hoc metadata management, Registry not implemented

	Project Open ESB
	Sun Microsystems
	· Open Source Service Bus

· Fully Compliant with JBI

· Good Documentation

· Full Integrated Development Tooling is available in the NetBeans 5.5 beta.
· Some Community Support Available
	· Project still in Beta. To be released in October 06

· Training and Paid Support still not available. Sun is currently working on it.

· Community Support still in an incubation stage.

· Currently supported on Sun Application Server PE. Not yet certified to run under other open source Application Servers.

· Available on Solaris and Windows platforms. Not yet certified to be on Linux platform

	LogicBlaze Fuse 1.1
	LogicBlaze
	· Comprehensive Open Source SOA platform

· Provided under Apache Software License 2.0. Gives complete rights to modify and distribute the code

· Fully Compliant with JBI Specifications

· Improved Documentation, Use Cases

· Single point source for all required components for building a SOA based ESB, which include ServiceMix, ActiveMQ, BPEL, Scripting etc.

· Certified and validated code versions for quality and interoperability

· LogicBlaze is a Apache Certified provider for commercial support and training for ServiceMix, ActiveMQ

· SLA based Commercial Support for Development and Production phases

· Community based free support

· Implementation References Available
	· In the current version clustering available only at the broker level. Individual component level clustering not available in the current version but expected in a later version available towards end of the year.

· Developer Level Documentation not available. Still work in progress

· Integrated Development Environment currently a work under progress. Eclipse IDE available towards end of July 2006.

4. Software Evaluation Matrix

Based on the preliminary screening in section 3 we have done a detailed evaluation on Apache Service Mix 3.0, LogicBlaze Fuse 1.1 and Sun Project Open ESB.

To accomplish this analysis, the following steps were performed on each of these products:

· Install the executable version of the software on Windows XP Professional SP2 in the lab.

· Install the source code version of the software on Windows XP Professional SP2 in the lab. Build the executable version from the source version of the software.

· Review the product documentation, installation guides, features guide, case studies, and white papers. Visit the product family websites and see the supporting products.

· Install and run the example cases enclosed with the software. Monitor results

· Start the management console and monitor the performance of different components of ESB. Try to start/stop/deploy/un deploy the components.

· Join the community forums and open tickets. Check out the response time and quality of the response.

The results are as follows:

	S. No.
	Criteria
	Apache Service Mix 3.0
	Log Blaze Fuse 1.1
	Sun

Project Open ESB

	1
	Compliance with caBIG Principles
	
	
	

	
	Open Source
	Yes
	Yes
	Yes

	
	Open Development
	Yes
	Yes
	Yes

	
	Open Access
	Yes
	Yes
	Yes

	
	Federation
	Yes
	Yes
	Yes

	2
	Compliance with Published NCICB Future Technology Stack
	
	
	

	
	J2EE 1.4
	Yes
	Yes
	Yes

	3
	Compliance with JBI Specifications (JSR 208)
	Yes
	Yes
	Yes

	
	Pluggable and Swappable Service Engines
	Yes
	Yes
	Yes

	
	Pluggable and Swappable Binding Components
	Yes
	Yes
	Yes

	
	Support for Normalized Message Format for internal messaging
	Yes
	Yes
	Yes

	
	Normalized Message Router
	Yes
	Yes
	Yes

	
	Loosely Coupled Services
	Yes
	Yes
	Yes

	
	Standard Message Exchange Patterns
	Yes
	Yes
	Yes

	
	WSDL and Service Registry Support
	Yes
	Yes
	Yes

	
	XML- Centric Messages
	Yes
	Yes
	Yes

	
	JBI Management Beans
	Yes
	Yes
	 Yes

	
	Tools for Management and Installation of Components/Services
	Yes
	Yes
	 Yes

	
	Support for JBI Deployment Units and Components
	Yes
	Yes
	 Yes

	4
	Supported Operated Systems
	
	
	

	
	Linux
	Yes
	Yes
	?

	
	Any Unix Platform which supports Java
	Yes
	Yes
	Yes

	
	Windows XP SP2
	Yes
	Yes
	Yes

	
	Windows 2000
	Yes
	Yes
	 ?

	5
	Application Level Security
	
	
	

	
	Support Java Authentication and Authorization Service (JAAS)
	Yes
	Yes
	Yes

	
	 Support Pluggable Authentication Module Framework (PAM)
	Yes
	Yes
	 Yes

	
	Support User-Based Authentication
	Yes
	Yes
	 Yes

	
	WS-Security
	Near Future
	Near Future
	 ?

	6
	Transport Level Security
	
	
	

	
	SSL
	 Yes
	Yes
	 Yes

	
	HTTPS
	 Yes
	Yes
	 Yes

	7
	Built in Support for Guaranteed Messaging
	
	
	

	
	Transactionality
	Yes
	Yes
	Yes

	
	Message Persistence
	Yes
	Yes
	 Yes

	
	Recoverability
	Yes
	Yes
	 Yes

	
	Exactly Once Delivery
	Yes
	Yes
	Yes

	
	Secrecy
	Yes
	Yes
	 Yes

	8
	Message Mediation
	
	
	

	
	Smart Routing
	Yes
	Yes
	 Yes

	
	Transformation
	Yes
	Yes
	 Yes

	
	Validation
	Yes
	Yes
	 Yes

	9
	Workflow Orchestration
	
	
	

	
	BPEL Service Engine
	Yes
	Yes
	 Yes

	
	BPEL Development Tool
	Incubation
	Incubation
	 ?

	10
	Management Console
	
	
	

	
	JMX Based
	Yes
	Yes
	 Yes

	
	Start/Stop Processes
	Yes
	Yes
	 Yes

	
	Hot Deploy/UnDeploy Components
	Yes
	Yes
	 Yes

	
	Monitor Component Performance
	Yes
	Yes
	 Yes

	11
	Quality of Documentation
	
	
	

	
	User Manuals
	Poor
	Good
	Good

	
	Installation Guides
	Poor
	Good
	Good

	
	Developer Guides
	Not Present
	Not present
	Yes

	
	Example Use Cases
	Yes
	Yes
	Yes

	12
	Installation Flexibility
	
	
	

	
	Standalone
	Yes
	Yes
	No

	
	Embedded in an application component
	Yes
	Yes
	?

	
	Part of Application Server
	Yes
	Yes
	Yes

	13
	Integrated Development Environment
	
	
	

	
	Currently Available
	No
	No
	Yes

	
	Availability in next 4 weeks
	Yes
	Yes
	

	14
	Out of the box Components and Services
	
	
	

	
	Email
	Yes
	Yes
	 Yes

	
	HTTP/HTTPS
	Yes
	Yes
	 Yes

	
	FTP
	Yes
	Yes
	Yes

	
	JMS
	Yes
	Yes
	 Yes

	
	BPEL
	Yes
	Yes
	Yes

	
	Rules
	Yes
	Yes
	Yes

	
	Scripting
	Yes
	Yes
	Yes

	
	XSLT Transformation
	Yes
	Yes
	Yes

	
	Validation
	Yes
	Yes
	Yes

	
	Scheduler
	Yes
	Yes
	?

	
	SAAJ
	Yes
	Yes
	?

	14
	Project Status
	
	
	

	
	Incubation
	
	
	Yes

	
	Version Ready for Deployment
	Yes
	Yes
	No

	15
	Training and Support
	
	
	

	
	Free Community Support
	Yes
	Yes
	Incubation

	
	Paid Developer Level Commercial Support with SLA
	Yes
	Yes
	 Not yet

	
	Paid Production Level Commercial Support with SLA
	Yes
	Yes
	 Not yet

	
	Paid Product Training
	Yes
	Yes
	 Not yet

	
	Single Point Whole Product Support for all required components for Hub
	No
	Yes
	 No

	
	
	
	
	

	16
	Certified Distribution
	
	
	

	
	Validated Code Versions for quality and interoperability
	No
	Yes
	 No

Based on the results captured in the comparison matrix, Logic Blaze Fuse is a better-suited product for the project requirements. More details of Logic Blaze Fuse features are covered in the subsequent sections as well as a use cases that were tested using Logic Blaze Fuse and the product support.

5. USE CASES

5.1 Administration

In this use case we performed following activities:

· Test Ease of Installation – Logic Blaze Fuse1.1 code was downloaded from the www.logicblaze.com. The code is available as binary distribution as well as source distribution. Both distributions were downloaded in the lab on a Windows XP SP2 machine; instructions were followed in the enclosed documentation for installation of the product. Product got installed in first attempt in a matter of few minutes.

· Check the enclosed documentation – User level documentation is available along with the code distribution. The documentation is clear and easy to follow.

· Start/Stop the Server in standalone mode – Logic Blasé Fuse 1.1 server was started using the instructions in the enclosed documentation; Server came up cleanly. On following stop instructions the server went down also cleanly.

· Test Management Console Features – Following the steps detailed in “Logic Blaze Fuse Console Guide”, console came up easily. Console is web based and consists of several portlets. These portlets are:

· JBI Container – Displays software version of the JBI Container, Status (stopped/started). Allows user to start/stop the container.

· System Service – Displays status of all the JBI system services and allows the user to start/stop the services. Some of these services are installation service, broker service, AdminCommandService, AutoDeploymentService etc.

· JBI Components – Displays JBI Component details like - type of component (SE/BC), Status (Stopped/Started), and lets administrator start/stop a component.

· Components Statistics – Polls the log files every second and display the information like inbound rate/count, outbound rate/count of messages, queue size etc.

· Archives Installed/Deployed – Allow to install/uninstall and deploy/undeploy service assemblies and units. Displays the current status of these components.

· Brokers – Lists the running Apache ActiveMQ Message Brokers

· Queues – Monitors Apache ActiveMQ Queues

· Topics – Monitors Apache ActiveMQ topics

5.2 Application Interface

As part of hub requirements we have identified following as key requirements which we would like to test using sample applications

· Ability to receive SOAP Messages using Web service calls from client

· Ability to use a BPEL engine to orchestrate the messages

· Ability to invoke applications like CSM, caAdapter, C3PR using Service Engines

· Ability to invoke external web services to access applications like CTOM

We have two sample applications, which came bundled with Logic Blaze Fuse 1.1; we used these applications to test our individual requirements. These applications are

5.2.1 Loan Broker – Sample Application

[image: image2.wmf]Loan Broker

Bank X

Bank 2

Bank 1

Credit Agency

Loan broker BPEL

WS Notification Broker

Web Client

In this use case

1. The web client requests a loan rate from the Loan Broker system

2. The loan broker BPEL service engine asks the Credit Agency for the credit rating of the loan requester.

3. The loan broker solicits the best loan rate from multiple banks. The WS-Notification service engine sends the request amount, duration, and the loan requesters credit score to the banks.

4. The bank responds to the loan broker with the best loan rate.

5. The loan broker determines which bank had the best rate and returns that information to the requester (web client)

This use case is implemented with two banks. The message flow in the application is as follows

[image: image3.wmf]Bank X

Bank 2

Bank 1

Web Client

ActiveMQ JMS Queue

N

M

R

Loanbroker-jms

BC

Loanbroker-lb

SE

Loanbroker-bpel

SE

Loanbroker-ca

HTTP BC

Bank0-service

WS Notification

Broker (SE)

Credit Agency

creditagency-http

HTTP BC

Message Flow

1. The web client is loan requester. It requests a loan rate by publishing a JMS message on an ActiveMQ queue.

2. Loanbroker-jms receives the message. Loanbroker-jms is a binding component that can receive and process JMS messages. Loanbroker-jms will normalize the incoming message. Normalizing the message will put it in the neutral format that is used within the JBI system. After normalization, loanbroker-jms will pass the message along the intended recipient via the Normalized Message Router (NMR). In this case loanbroker-lb is the message recipient. Loanbroker-jms implements the In-Only Message Exchange Pattern (MEP).

3. Loanbroker-lb is a front end to the BPEL process. Loanbroker-lb is a service engine (SE) and its job is to take the loan request and pass it to the loanbroker-bpel process. It then waits for a reply from the BPEL process. The loanbroker-lb is an aggregator; it receives an In-Out MEP on a callback endpoint. The response is sent back to the consumer as the Out message of the In-Out MEP.

4. The loanbroker-bpel process receives the loan rate request. As the BPEL process is asynchronous, the incoming MEP for loanbroker-bpel is In-Only and the response is sent as In-Only MEP to a callback endpoint.

5. First loanbroker-bpel must obtain the credit rating of the requester. To do this the BPEL process sends a message over the NMR to the loanbroker-ca process.

6. Loanbroker-ca is a binding component. It translates the normalized message (which contains a credit rating request into a HTTP-SOAP message. This is done so that loanbroker-ca can communicate with the creditagency-http binding component. The MEP for the loanbroker-ca is In-Out.

7. The creditagency-http BC passes the credit rating request to the creditagency-service.

8. The creditagency-service processes the request and response. The response is sent back via a SOAP message over HTTP to the creditagency-http binding component.

9. The creditagency-http binding component receives the HTTP+SOAP response from the creditagency-service and passes it to the loanbroker-ca binding component, also via HTTP-SOAP.

10. Loanbroker-ca normalizes the HTTP-SOAP message and sends it over the NMR to the loanbroker-bpel process.

11. Now that the BPEL process has the credit score information it can send the loan rate request to the banks. The loan request for the bank is sent to a WS-N process. This component would normally notify a group of banks of the request. The message exchange pattern for the loanbroker-bpel is In-Only.

12. bank0-wsn sends the loan request to Bank 0. The MEP is In-Only.

13. bank0-service processes the loan request and sends a response back to loanbroker-bpel using an In-Only MEP

(Please note: In order to reduce the complexity message flow only for Bank 0 is shown. For other banks message flow has not been shown)

6. IMplImentation References

Sections 6.1 – 6.3 list implementation references provided by LogicBlaze. These companies and organizations have chosen to utilize the Fuse product within their respective environments.
6.1 www.ecubesystems.com
eCube has selected LogicBlaze FUSE as the underlying platform for its eCube NXTware Evolution Server product, which provides mainframe integration with COBOL and CICS transactions. eCube chose to build NXTware Evolution Server 2.5 on the LogicBlaze FUSE platform for its component-oriented SOA framework, and JBI-standard APIs. eCube extends LogicBlaze FUSE with commerical JBI binding components for COBOL, CICS, and CORBA interoperability.

6.2 LEADING ONLINE TRADING COMPANY

(NDA in place with LogicBlaze)

Company has selected the LogicBlaze FUSE platform to provide an ultra-high performance transport for real-time data feeds. The Apache ActiveMQ messaging component manages each subscription profile and publishes updates to Jetty for transmission to the clients. Jetty is providing container services in addition to managing the I/O overhead for HTTP. This streaming portfolio management application monitors any dynamic combination of a collection of 30,000 data points. In the Jetty/AJAX-based web client configuration, the platform has scaled over 10,000 concurrent clients on a single instance with continuous data streaming.

6.3 DEPARTMENT OF DEFENSE CONTRACTOR

(NDA in place with LogicBlaze)

Company is developing an embedded software framework that uses LogicBlaze FUSE as the platform for their Service Oriented Architecture. Company selected LogicBlaze FUSE because of mission-critical message performance. The solution provides real-time, in-flight operational commands via packet messaging over military-band radio frequency communications. LogicBlaze FUSE provides an event-driven architecture using services that interact over a JBI-compliant Normalized Message Router (NMR). Multiple instances of the ActiveMQ messaging component are clustered to form a single logical NMR across the cluster for purposes of data replication. In-flight vehicles utilize an auto-discovery algorithm in FUSE to join/leave the cluster as necessary allowing for a very dynamic system.

7. Conclusions and Recommendation

Based on the lessons learned during our evaluation process and our findings from the website, reference documentation of Logic Blaze Fuse we summarize our findings about LogicBlaze fuse as follows:

· LogicBlaze Fuse is provided under the Apache Software License 2.0 (often referred to as “ASL”). LogicBlaze has taken care to ensure that the distribution does not include any components, libraries or technologies licensed under the General Public License (GPL) or Lesser General Public License (LGPL). The most obvious benefit of Apache 2.0 License is that, unlike GPL or a LGPL, it gives organizations the right to modify the code and redistribute it without restriction. The full text of ASL can be found at http://www.apache.org/licenses/LICENSE-2.0
· Logic Blaze bundles best of breed of components from the open source community and ensures that the distribution contains a stable and interoperable code base from all the components. LogicBlaze has selected components from strong open communities with a robust pace of innovation and development

· LogicBlaze Fuse is a comprehensive SOA runtime platform provided as an open source distribution. Figure 6-1 depicts the general structure of the platform:

Figure 7‑1
[image: image4.emf]Web Services Registry

Service Directory

(Appache jUDDI)

Lookup and/or

Discover Web

Services

Interfaces and Bindings

HTTP Server

(Jetty)

Connect AJAX, REST and other HTTP Interfaces

Client Connections

Exchange Messages and Data via JavaMail,

Jabber, RSS etc.

Connects to clients using Ruby, Perl, .Net, C/C++,

Python

Service Engines

BPEL Engine

Orchestrate Business

Process flows across

composite apps

Smart Routing

Routes messges based on

content or other factors

Transformation Engine

Transform data from one

XML format to another

Deployment and Management

Deployment Kernel

Deploys components without

dependencies on applications server

Management Console

Monitor Activity, start, stop components,

processes etc.

Messaging and Service Infrastructure

Enterprise Service Bus

(Apache Service Mix)

Enable Loose Coupling across heterogeneous interfaces and transports

Implement and manage reliable Web Services

Centrally Manage all service engines and binding components

JMS Messaging Platform

(Apache ActiveMQ)

Provide high performace, reliable JMS-based

messaging,

plus interop with all standard JMS providers

Persistence Database

(Apache Derby or MySQL)

Persists messages for reliable

delivery

(General Structure of LogicBlaze Fuse)

· LogicBlaze offers a free community based support. It also offers a commercial SLA based support for

· Development

· Production Environment

It is the recommendation of the Laboratory Information Integration Hub team that LogicBlaze Fuse be selected and utilized as the integration/messaging hub for the Laboratory Information Integration Hub project.

It is also recommended that NCICB purchase commercial product support for this product before the product is deployed in the production environment.

_1214043353.vsd
text�

 �

Web Client
�

Loan Broker�

Loan broker BPEL
�

WS Notification Broker
�

Credit Agency�

Bank X�

Bank 2�

Bank 1�

_1214047402.vsd
text�

�

�

�

Credit Agency
�

Bank X�

Web Client�

creditagency-http
HTTP BC�

Bank 1�

Bank 2�

ActiveMQ JMS Queue�

�

NMR�

Loanbroker-jms BC�

Loanbroker-lb
SE�

Loanbroker-bpel
SE�

Loanbroker-ca HTTP BC�

Bank0-service�

WS Notification Broker (SE)�

�

�

�

